Establishing recommended data on thermodynamic properties of hydration for selected organic solutes

Appendix 1

Thermodynamic background and main classes of experimental data needed

Thermodynamic property (function) of hydration (TPH) - difference between a property in the standard state of infinite dilution (temperature and pressure of the system) and in the state of an ideal gas (temperature of the system and standard pressure of 0.1 MPa)

$$
\Delta_{\mathrm{hyd}} X_{2}^{\mathrm{o}}=X_{2}^{\mathrm{o}}[T, p]-X_{2}^{\mathrm{ig}}\left[T, p_{\mathrm{o}}\right] \quad p_{\mathrm{o}}=0.1 \mathrm{MPa}
$$

Gibbs energy of hydration $\Delta_{\text {hyd }} G_{2}^{0}$:

Relationship with the Henry's law constant: $\Delta_{\mathrm{hyd}} G_{2}^{\mathrm{o}}=G_{2}^{\mathrm{o}}-G_{2}^{\mathrm{ig}}=R T \ln \left(k_{\mathrm{H}, 2} / p_{\mathrm{o}}\right)$
Relationship with the Gibbs energy associated with dissolution of a liquid or solid solute
$\Delta_{\mathrm{hyd}} G_{2}^{\mathrm{o}}=\Delta_{\mathrm{sol}} G_{2}^{\mathrm{o}}+R T \ln \left(f_{2}^{\bullet} / p_{\mathrm{o}}\right)=\Delta_{\mathrm{sol}} G_{2}^{\mathrm{o}}+R T \ln \left(\phi_{2}^{\bullet} p_{2}^{\text {sat }} / p_{\mathrm{o}}\right)+\int_{p_{2}^{\text {sat }}}^{p} V_{2}^{\bullet} \mathrm{d} p$
Relationship of $\Delta_{\text {sol }} G_{2}^{0}$ to the symmetric limiting activity coefficient (liquid solutes)

$$
\Delta_{\mathrm{sol}} G_{2}^{\mathrm{o}}=G_{2}^{\mathrm{o}}-G_{2}^{\bullet 1}=R T \ln \gamma_{2}^{\mathrm{R} \infty}
$$

Relationship of $\Delta_{\text {sol }} G_{2}^{0}$ to the solubility (sparingly soluble liquid or solid solutes)

$$
\Delta_{\mathrm{sol}} G^{\mathrm{o}}=G_{2}^{\mathrm{o}}-G_{2}^{\bullet}=-R T \ln x_{2}^{\mathrm{sol}} \gamma_{2}^{\mathrm{H}} \cong-R T \ln x_{2}^{\mathrm{sol}}
$$

Experimental data needed:

(aq) - Henry's law constants (gases), limiting activity coefficients (hydrophilic and moderately hydrophobic liquid solutes), solubilities (hydrophobic liquid and solid solutes)
(pure) - vapour pressures, gas nonideality corrections, densities of pure solutes
Enthalpy of hydration $\Delta_{\text {hyd }} H_{2}^{0}$:
Relationship with the enthalpy associated with dissolution

$$
\begin{aligned}
& \Delta_{\text {hyd }} H_{2}^{\mathrm{o}}=\Delta_{\text {sol }} H_{2}^{\mathrm{o}}+\int_{0}^{p}\left(V_{2}^{\bullet}-T\left(\partial V_{2}^{\bullet} / \partial T\right)_{p}\right) \mathrm{d} p \quad T>T_{\mathrm{c}} \\
& \Delta_{\text {hyd }} H_{2}^{\mathrm{o}}=\Delta_{\text {sol }} H_{2}^{\mathrm{o}}-\Delta_{\text {vap }} H_{2}^{\bullet}+\int_{0}^{p_{2}^{\text {sat }}}\left(V_{2}^{\bullet}-T\left(\partial V_{2}^{\bullet} / \partial T\right)_{p}\right) \mathrm{d} p \cong \Delta_{\text {sol }} H_{2}^{\mathrm{o}}-\Delta_{\text {vap }} H_{2}^{\bullet} T<T_{\mathrm{c}}
\end{aligned}
$$

Relationship of $\Delta_{\text {sol }} H_{2}^{0}$ to the data resulting from calorimetric experiments

$$
\Delta_{\mathrm{sol}} H_{2}^{\mathrm{o}}=\left(H_{2}^{\mathrm{o}}-H_{2}^{\bullet}\right)=\lim _{n_{2} \rightarrow 0}\left(\Delta_{\mathrm{sol}} H / n_{2}\right)
$$

(pure) - residual enthalpies (enthalpic departure function resulting from $p V T$ data) for gases and supercritical fluids, enthalpies of vaporization (liquids) / sublimation (solids)

Heat capacity of hydration $\Delta_{\mathrm{hyd}} C_{p, 2}^{0}$:

$$
\Delta_{\mathrm{hyd}} C_{p, 2}^{\mathrm{o}}=C_{p, 2}^{\mathrm{o}}-C_{p, 2}^{\mathrm{ig}}
$$

Relationship of $\Delta_{\mathrm{hyd}} C_{p, 2}^{\mathrm{O}}$ to the data resulting from calorimetric experiments

$$
C_{p, 2}^{\mathrm{o}}=c_{p, 1} \cdot M_{2}+\lim _{m_{2} \rightarrow 0}\left(\frac{c_{p}-c_{p, 1}}{m_{2}}\right)
$$

Experimental data needed:

(aq)- specific heat capacities (heat capacity differences) of dilute aqueous solutions (pure)- ideal gas heat capacities of solute

Partial molar volume at infinite dilution V_{2}^{0} :

$$
V_{2}^{\mathrm{o}}=\frac{M_{2}}{\rho_{1}}-\frac{1}{\rho_{1}^{2}} \lim _{m_{2} \rightarrow 0}\left(\frac{\rho-\rho_{1}}{m_{2}}\right)
$$

Experimental data needed:
(aq) - densities (density differences) of dilute aqueous solutions

Relationship between individual TPH:

$$
\begin{aligned}
\Delta_{\mathrm{hyd}} G_{2}^{\mathrm{o}}= & \Delta_{\mathrm{hyd}} G_{2}^{\mathrm{o}}\left[T_{\mathrm{r}}, p_{\mathrm{r}}\right]-\left(T-T_{\mathrm{r}}\right) \Delta_{\mathrm{hyd}} S_{2}^{\mathrm{O}}\left[T_{\mathrm{r}}, p_{\mathrm{r}}\right]+ \\
& +\int_{T_{\mathrm{r}}}^{T}\left(\Delta_{\mathrm{hyd}} C_{\mathrm{p}, 2}^{\mathrm{o}}\right)_{p_{\mathrm{r}}} \mathrm{~d} T-T \int_{T_{\mathrm{r}}}^{T}\left(\Delta_{\mathrm{hyd}} C_{\mathrm{p}, 2}^{\mathrm{o}}\right)_{p_{\mathrm{r}}} \mathrm{~d} \ln T+\int_{p_{\mathrm{r}}}^{p}\left(V_{2}^{\mathrm{o}}\right)_{T} \mathrm{~d} p
\end{aligned}
$$

where

$$
\Delta_{\mathrm{hyd}} S_{2}^{\mathrm{O}}\left[T_{\mathrm{r}}, p_{\mathrm{r}}\right]=\left(\Delta_{\mathrm{hyd}} H_{2}^{\mathrm{O}}\left[T_{\mathrm{r}}, p_{\mathrm{r}}\right]-\Delta_{\mathrm{hyd}} G_{2}^{\mathrm{O}}\left[T_{\mathrm{r}}, p_{\mathrm{r}}\right]\right) / T_{\mathrm{r}}
$$

$T_{\mathrm{r}}=298.15 \mathrm{~K}, \quad p_{\mathrm{r}}=p_{\mathrm{o}}=0.1 \mathrm{MPa}$

Symbols : 2 solute, 1 solvent ; superscript • - pure solute property, superscript ${ }^{\circ}$ - standard state of infinite dilution, superscript ig - ideal gas
Note: thermodynamic properties of water are obtained from the equation of state for ordinary water substance (IAPWS-95 formulation)

Appendix 2

Classes of compounds covered and tentative numbers of solutes included

Compounds of carbons and hydrogen (C-H) 55
Alkanes
Cycloalkanes
Unsaturated aliphatic hydrocarbons
Aromatic and unsaturated monocyclic hydrocarbons
Polycyclic hydrocarbons
Compounds of carbon, hydrogen and halogen (C-Hal, C-H-Hal) 20
Fluoroderivatives
Chloroderivatives
Bromoderivatives
Iododerivatives
Mixed halogen derivatives
Compounds of carbon, hydrogen and nitrogen (C-H-N) 30
Amines
Nitriles
Heterocyclic nitrogen compounds
Miscellaneous nitrogen compounds
Compounds of carbon, hydrogen and oxygen (C-H-O) 60
Ethers
Alcohols and phenols
Carbonyl compounds
Acids
Esters
Heterocyclic oxygen compoundsMiscellaneous oxygen compounds
Compounds of carbon, hydrogen and sulphur (C-H-S) 15
Sulphides
Thiols
Heterocyclic sulphur compounds
Other organic compounds 10
Compounds of carbon, hydrogen, halogen and oxygen (C-H-Hal-O)
Compounds of carbon, hydrogen, nitrogen and oxygen (C-H-N-O)
Compounds of carbon, hydrogen, oxygen and sulphur (C-H-O-S)
Miscellaneous compounds
Inorganic gases $\left(\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{He}, \mathrm{Ar}, \mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{~S}, \ldots\right)$ 10

