Establishing recommended data on thermodynamic properties of hydration for selected organic solutes

Appendix 1

Thermodynamic background and main classes of experimental data needed

Thermodynamic property (function) of hydration (TPH) – difference between a property in the standard state of infinite dilution (temperature and pressure of the system) and in the state of an ideal gas (temperature of the system and standard pressure of 0.1 MPa)

$$\Delta_{\text{hyd}} X_2^{\text{o}} = X_2^{\text{o}}[T, p] - X_2^{\text{1g}}[T, p_0] \qquad p_0 = 0.1 \text{ MPa}$$

Gibbs energy of hydration $\Delta_{hvd}G_2^o$:

Relationship with the Henry's law constant: $\Delta_{hyd}G_2^o = G_2^o - G_2^{ig} = RT \ln(k_{H,2} / p_o)$ Relationship with the Gibbs energy associated with dissolution of a liquid or solid solute

$$\Delta_{\text{hyd}}G_2^{0} = \Delta_{\text{sol}}G_2^{0} + RT\ln(f_2^{\bullet}/p_0) = \Delta_{\text{sol}}G_2^{0} + RT\ln(f_2^{\bullet}p_2^{\text{sat}}/p_0) + \int_{p_2^{\text{sat}}}^{p} V_2^{\bullet} dp$$

Relationship of $\Delta_{sol}G_2^0$ to the symmetric limiting activity coefficient (liquid solutes) $\Delta_{sol}G_2^0 = G_2^0 - G_2^{\bullet 1} = RT \ln g_2^{R\infty}$

Relationship of $\Delta_{sol} G_2^0$ to the solubility (sparingly soluble liquid or solid solutes) $\Delta_{sol} G^0 = G_2^0 - G_2^{\bullet} = -RT \ln x_2^{sol} g_2^H \cong -RT \ln x_2^{sol}$

Experimental data needed:

(*aq*) - Henry's law constants (gases), limiting activity coefficients (hydrophilic and moderately hydrophobic liquid solutes), solubilities (hydrophobic liquid and solid solutes) (*pure*) - vapour pressures, gas nonideality corrections, densities of pure solutes

Enthalpy of hydration $\Delta_{hyd}H_2^o$:

Relationship with the enthalpy associated with dissolution

$$\Delta_{\text{hyd}} H_2^{\text{o}} = \Delta_{\text{sol}} H_2^{\text{o}} + \int_0^p (V_2^{\bullet} - T(\partial V_2^{\bullet} / \partial T)_p) dp \quad T > T_c$$

$$\Delta_{\text{hyd}} H_2^{\text{o}} = \Delta_{\text{sol}} H_2^{\text{o}} - \Delta_{\text{vap}} H_2^{\bullet} + \int_0^{p_2^{\text{sat}}} (V_2^{\bullet} - T(\partial V_2^{\bullet} / \partial T)_p) dp \cong \Delta_{\text{sol}} H_2^{\text{o}} - \Delta_{\text{vap}} H_2^{\bullet} \quad T < T_c$$

Relationship of $\Delta_{sol}H_2^0$ to the data resulting from calorimetric experiments

$$\Delta_{\text{sol}} H_2^0 = (H_2^0 - H_2^\bullet) = \lim_{n_2 \to 0} (\Delta_{\text{sol}} H / n_2)$$

Experimental data needed:

(aq) - enthalpies of solution (dilute aqueous solutions)

(pure) - residual enthalpies (enthalpic departure function resulting from pVT data) for gases and supercritical fluids, enthalpies of vaporization (liquids) / sublimation (solids)

Heat capacity of hydration $\Delta_{hyd} C_{p,2}^{o}$:

$$\Delta_{\rm hyd} C_{p,2}^{\rm o} = C_{p,2}^{\rm o} - C_{p,2}^{\rm ig}$$

Relationship of $\Delta_{hyd} C_{p,2}^{o}$ to the data resulting from calorimetric experiments

$$C_{p,2}^{0} = c_{p,1} \cdot M_2 + \lim_{m_2 \to 0} \left(\frac{c_p - c_{p,1}}{m_2} \right)$$

Experimental data needed:

(*aq*)- specific heat capacities (heat capacity differences) of dilute aqueous solutions (*pure*)- ideal gas heat capacities of solute

Partial molar volume at infinite dilution V_2^0 :

$$V_2^{0} = \frac{M_2}{r_1} - \frac{1}{r_1^2} \lim_{m_2 \to 0} \left(\frac{r - r_1}{m_2} \right)$$

Experimental data needed:

(aq) - densities (density differences) of dilute aqueous solutions

Relationship between individual TPH:

$$\Delta_{\text{hyd}} G_2^{\text{o}} = \Delta_{\text{hyd}} G_2^{\text{o}} [T_{\text{r}}, p_{\text{r}}] - (T - T_{\text{r}}) \Delta_{\text{hyd}} S_2^{\text{o}} [T_{\text{r}}, p_{\text{r}}] + + \int_{T_{\text{r}}}^T \left(\Delta_{\text{hyd}} C_{\text{p},2}^{\text{o}} \right)_{p_{\text{r}}} dT - T \int_{T_{\text{r}}}^T \left(\Delta_{\text{hyd}} C_{\text{p},2}^{\text{o}} \right)_{p_{\text{r}}} d\ln T + \int_{p_{\text{r}}}^p (V_2^{\text{o}})_T dp$$

where

$$\Delta_{\text{hyd}} S_2^{\text{o}}[T_{\text{r}}, p_{\text{r}}] = (\Delta_{\text{hyd}} H_2^{\text{o}}[T_{\text{r}}, p_{\text{r}}] - \Delta_{\text{hyd}} G_2^{\text{o}}[T_{\text{r}}, p_{\text{r}}]) / T_{\text{r}}$$

 $T_{\rm r}$ =298.15 K, $p_{\rm r}$ = $p_{\rm o}$ = 0.1 MPa

Symbols : 2 solute, 1 solvent ; superscript \bullet - pure solute property, superscript °- standard state of infinite dilution, superscript ig – ideal gas

Note: thermodynamic properties of water are obtained from the equation of state for ordinary water substance (IAPWS-95 formulation)

Appendix 2

Classes of compounds covered and tentative numbers of solutes included

Compounds of carbons and hydrogen (C-H) Alkanes Cycloalkanes Unsaturated aliphatic hydrocarbons Aromatic and unsaturated monocyclic hydrocarbons Polycyclic hydrocarbons	55
Compounds of carbon, hydrogen and halogen (C-Hal, C-H-Hal) Fluoroderivatives Chloroderivatives Bromoderivatives Iododerivatives Mixed halogen derivatives	20
Compounds of carbon, hydrogen and nitrogen (C-H-N) Amines Nitriles Heterocyclic nitrogen compounds Miscellaneous nitrogen compounds	30
Compounds of carbon, hydrogen and oxygen (C-H-O) Ethers Alcohols and phenols Carbonyl compounds Acids Esters Heterocyclic oxygen compounds Miscellaneous oxygen compounds	60
Compounds of carbon, hydrogen and sulphur (C-H-S) Sulphides Thiols Heterocyclic sulphur compounds	15
Other organic compounds Compounds of carbon, hydrogen, halogen and oxygen (C-H-Hal-O) Compounds of carbon, hydrogen, nitrogen and oxygen (C-H-N-O) Compounds of carbon, hydrogen, oxygen and sulphur (C-H-O-S) Miscellaneous compounds	10
Inorganic gases (H ₂ O ₂ , N ₂ , He, Ar, CO ₂ , NH ₃ , H ₂ S,)	10