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ABSTRACT
The gel point is a well-understood critical point in polymer science (Flory,
Stockmayer). A summary is given of the resolution of those aspects which may
seem paradoxical at first sight. The relevant equations for the basic paradigm of
f-functional polycondensation are very simple. Special attention is paid to the
critically branched state of materials not far from the gel point. The quasi-
invariance principle is explained according to which all solution properties
appear ultimately to level off as the critical conversion is approached from
below. The 'Malthusian' packing paradox is resolved by a proper treatment of
the ring-chain competition situation, which also disposes of the spurious
divergence of the rate of cyclization predicted by a more naive theory.

Network theories not based on extinction probability (Charlesby) are not
worth considering. The proper definition of an elastically active network chain
(EANC) was based on this concept by Scanlan and by Case in 1960, and it
greatly simplifies the graph-like-state theories of network structure (usually
called 'network topology'). It allows classical rubber elasticity theory to be
applied near the gel point. The point is characterised by a fifth-order Ehrenfest
transition due to the contribution of long-range correlations to the configura-
tional free energy. Though directly relevant data on reversible gelation are not
available, data on isothermal crosslinking of very diverse systems support this
analysis. Except possibly for some highly crosslinked systems, the parameter
M (mean chain length between 'crosslinks') is an undesirable ingredient of
elasticity or swelling theories. Chain-end corrections are quite undesirable (and
usually done incorrectly). Everything is correctly and more simply formulated
in terms of Scanlan—Case EANCs.

The proper understanding of the gel point as a critical point allows the
construction of reduced plots, illustrated with temperature superposition of
experimental modulus—conversion plots (by M. Judd) for aqueous gelatin
jellies. These fit reasonably to the basic model involving triple-helix junction
zones, essentially without adjusting arbitrary parameters. Such reduced-
variable treatments for critically branched materials eliminate the otherwise
inescapable difficulties of characterization, purity, electrolyte content, etc.,

from gelatin research.

1. INTRODUCTION

Chemical physics derives most of its interest from the existence of critical
points. One of the very few that is fully intelligible theoretically, largely
thanks to the analysis of Flory1 and Stockmayer2. is also the simplest and the
most important, because no living being exists on Earth whose material
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substance has not passed through this critical point. I mean. of course. the gel
point.

Compared with the critical point of three-dimensional Ising models (e.g.
the Curie point), gelation gives rise to only paltry paradoxes. I apologize for
using this lecture to explain them once again before I turn to recent develop-
ments.

The mathematical simplicity of gelation theory. like that of the one-
dimensional Ising model for the helix—coil transition3. stems from the one-
dimensional ('graph-like' or floppy) nature of the particles in the model.
From the start. the theory was sufficiently general to embrace all kinds of
gelling materials within one framework: the conversion parameter of
functionalities. and the valency or 'functionality' I of a repeat unit. are the
sole parameters of the basic theory, equally defined for polycondensates.
polyfunctional vinyls or vulcanizates made by crosslinking primary chains.
Later. further intermediate parameters were introduced, but they are
calculated directly from cx andf Especially, Charlesby4 re-invented the general
notion of the extinction probability v for polymer science (it was already
known in the theory of branching processes5), while Scanlan6 and Case7
defined the number Ne of elastically effective network chains (EANCs) in a
perfectly generalizable way. Further generalization of the basic parameters cx
andf to multicomponent (vectorial) form cxi. c2.... andf1,f2... . to deal with
more complex copolymeric systems or primary chain distributions is largely
a routine matter. The generality of the first-approximation theory of crosslink-
ing and networks will allow us to illustrate calculation of all interesting and
paradoxical aspects on the basis of the simplest model situation (Section 2).
The resulting almost trivial formulae are usually verified experimentally with
high precision. Although chemists accept the point-atoms of the ideal-gas
model, they are revolted by the floppy molecules of the graph-like state.
However, on the ideal-gas model, the difference in standard entropy at 25°C
between n-octane and 2.2,3,3-tetramethyl butane is zero, while on the graph-
like floppy model 8 it is 8R ln 3 55.2J K' mol . The experimental value
is 74.3, so that there the graph-like state forms a typically reasonable first
approximation.

2. THE BASIC PARADIGM OF CHEMISTRY AND THE GEL
POINT

Chemistry is the science of the making and breaking of bonds. The simplest
starting model (Figure 1) is, therefore. constructed as follows: a large number
of identical one-dimensional particles are enclosed in a box. each with a num-
ber f of functionalities or binding sites, which are identical, preferably by
virtue of molecular symmetry. These are allowed to make and break bonds
and reach equilibrium under the simplest thermodynamic regime, viz, bond-
additivity of the free enthalpy. The reaction H + H = H2 is a degenerate
case (f = 1) of this basic paradigm of chemistry, first formulated in 1941 by
Flory' under the name of f-functional random polycondensation; but few
British chemists have yet heard of it. Without further assumptions, this model
leads to a critical point. This is shown in Figure 2 for the case f = 3. e.g. the
etherification of 1,3,5-trimethylol benzene9—in terms of plots of the mean
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(b) (c)

Figure 1. Graph-like state model for the random trilunctional condensation of 1,3,5-trimethylol
benzene. Top, formation of dimer in chemical notation. (a), Reduction to civilized (graph-like)
state, which contains the relevant information. (b) and (c), Basic paradigm of the graph-like
particle in a box, respectively at conversions a = 0and a > 0. A, formation of dimer. The box (c)
also shows the two possible isomeric tetramers at the top

sizes Xmax, 1 and Xmax, 2 of the largest1° and second-largest molecules as
functions of relative conversion x/x. where ; is the critical conversion. In
principle, the equilibrium conversion cx can be adjusted by varying the pressure
or temperature. In practice, the mixture P205/POC13 can be treated as an
example of the model, and here cx is controlled by the stoichiometric ratio11
(cf. Groenweghe, Payne and Van Wazer12). Also irreversible but random
(ring-free) condensations pass through states (distributions) indistinguishable
from those of the reversible equilibrium model (Stockmayer2). The quantities
Xmax, 1 and Xmax 2 fluctuate at flxed cx/; from one test-tube sample to another
but we have plotted the mean, denoted by a bar, over many test-tubes. We see
how. over a very narrow range of conversion, the largest molecule increases
on average by many powers of ten, while the second-largest follows close
behind up to the critical point, and then quickly declines. The critical
phenomenon is easy to explain qualitatively. An x-mer molecule (cf. Figure 1)
must have x — 1 inter-unit links to hold the x units together, andfx — 2x + 2
terminals ('free functionalities'). This follows for all isomers from elementary
combinatorial graph theory. Thus a graph-like x-mer species in the box has
degradation rate oc (x — 1) and a growth rate oc fx — 2x + 2. Accordingly.
when f> 2, the chance of further growth, rather than degradation, as the
equilibrium is driven towards higher conversions cx. is the more favourable

3

> >—<
(a)



Figure 2. Plots of the logarithms of the mean DPs of the two biggest molecules against relative
conversion near the gel point. The mean is taken over a large set of systems of a few mg of tn-
functional polycondensates, each with 2 x 1019 repeat units. Curve a, calculated from equations
(Al) and (A3) (with the asymptotic distribution, equation 2), is the lower limit, and a' the upper
limit, arising from statistical approximations (equation A7); both refer to the largest ( (max, 1) and
second-largest (max 2) molecule. These become separately distinguishable very close to the gel
point (a/ac = 1) S 0 Xmax 1' OXmax, 2 At the gel point the exact points shown differ by 4 log 3.
Curve b represents max, 1' now the gel molecule, calculated as max, 1 = ge1 = 2 X 1019

— (a1 — l)}. Curve c represents Xmax, 2 the largest molecule in the sol fraction, found by
reflection of a (and of the circles) in the line ci!; =

the larger x. i.e. the larger the species. As a result, one single species, over a
quite narrow range of conversion, finally outgrows all others in size, which
explains Figure 2.

The details for calculating max are given in appendix A. Here we note
merely the basic equations underlying the criticality. Stockmayer gave the
weight distribution w of x-meric species in the f-functional random poly-
condensate model:

= —x)1f x_1(1 — fx—2x+2 (1
(fx—2x+2)!(x—1)!

/

and his formula for the asymptotic form ( —*;) may be written:

w = (BA'/x) + o(x) (f> 2)

A = (1 — )I2(f 1)'/(f— 2)1—2 (3)

B (1 — ci)2J(f— 1)4/(2n)4(f— 2)5/2 (4)
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In particular, at the gel point itself (cx = cxc) we find the asymptotic distribu-
tion (for x> Ca. 100). thus

w. = const. x (const. 1) (5)

independently off if f> 2.
Figure 2 solves the conceptual difficulty some beginners experience when

they encounter the term 'infinite' molecule instead Of Xmax( ). When the
size of the system increases by a factor c. say. max crit increases by a factor c*
(equation Al), and tends to infinity with c.

We revert briefly to the notion of compositional variations (at fixed cx) from
sample to sample. Figure 3 shows schematically how the smooth asymptotic

C0
U0

V i0 1010
X—4-

Figure 3. Statistical effect of finite number of repeat units on the tail of the weight fraction
distribution near the gel point (schematic). At low molecular weights the smooth theoretical
curve for an infinite system is an excellent representation. At high molecular weights each
single x-mer molecule actually present exceeds its weight-fraction quota, and the spacing bet-
ween the sizes of representative x-mers actually realized increases. The last molecule realized on
the right is Xmax 1

distribution2 must 'fade out' in practice at high enough x to hand over to the
discrete distribution of isolated large molecules, ever more widely spaced out.
in a statistical way, until we reach Xmax 1.Fluctuationsfrom sample to sample
are most obvious in this high molecular weight region. But they exist even at
low molecular weight. We may calculate from Pólya's formula13 that there
are approximately l0° different isomers in the 100-mer fraction of tetra-
functional polycondensate of the type under discussion. Only an infinitesimal
fraction of these can be present in a given sample, and no two samples are
ever going to be identical in practice. But the physical properties will gen-
erally be indistinguishable from sample to sample, because a representative
selection of species generally arises on a statistical basis (except possibly
extremely close to the gel point). To deal with equilibrium fluctuations more
precisely if it becomes necessary, Whittle14 showed how the kinetic equations
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for f-functional random polycondensation could be elegantly generalized to
a stochastic form, from which, in accord with the classical Gibbs distribution,
the number fraction n emerges as a Poisson variable at fixed conversion.

3. QUASI-INVARIANCE PRINCIPLE FOR CRITICALLY
BRANCHED SAMPLES1°

The quasi-invariance principle for critically branched materials was
deduced for f-functional random polycondensates'°. but is no doubt a
quite general statistical phenomenon. The principle concerns effects arising
from cutting-off of the tail of the molecular weight distribution, for con-
venience taken to occur at a sharp limiting value, Xijm, say. Three reasons for
such curtailment are important in practice:

(1) The statistical tail-cutting. arising from finiteness of samples (cf. Figures
2 and 3). Species beyond Xmax, present in the theoretical distribution for
infinite samples, are not present in the finite sample. and thus connot contri-
bute towards measurable properties: we may put X max Xiim.

(2) Preparative cut-off: species beyond a certain Xijm may be lost. e.g. in
removing dust by centrifugation prior to light-scattering.

(3) Instrumental cut-off, e.g. GPC does not respond to molecules beyond a
certain Xmax, depending on the pore size of the gel.

Although in principle present in all polydisperse samples. these three tail-
cutting effects are most serious in critically branched samples. because of
their pathological polydispersity (DPW/DP iO is easy to attain). The
quasi-invariance principle states: if samples ever closer to the gel point are
prepared. all physical properties which represent averages over the distri-
bution will rather suddenly level off at a fixed value depending on Xijm. the
cut-off point of the distribution. In particular. DP. DPI. etc.. instead of
appearing to diverge as they should in absence of tail-cutting, will level in this
way. The explanation is simple: over the very small range of conversion which
is significant(cf. abscissae in Figure 3). the values of w are practically invariant.
except for very large x. In other words, the gelation phenomenon is concern-
ed almost exclusively with what happens to the few molecules in the very high
molecular weight tail (cf. Figure 3). If these molecules are cut away, no effect
of further pre-gel conversion will be seen. Some quantitative calculations and
plots for the quasi-constancy of the measured DP were given previously10.
The onset of a quasi-invariant DP is even more sharply accentuated.

The value of the quasi-invariance principle in cell regulation may be
exemplified speculatively as follows. Suppose that a cut-off mechanism exists
by way of precipitation from solution of molecules exceeding a certain
molecular weight threshold. Such a (very sharp) threshold normally arises in
the vicinity of a theta temperature. The displacement of the linking equili-
brium in solution (by pH, allostery, etc.) towards higher conversion will then
be accompanied by precipitation of substantially all newly formed molecules
exceeding the threshold size. The quasi-invariance principle ensures that the
molecular weight averages and, hence, the viscosity. etc., of the remaining
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liquid phase remains practically unchanged, which might be vital to the
continuance of other processes. This kind of mechanism could, accordingly.
be of use in the laying down of gel coats or membranes from the cell medium.
or in the regulation of membrane permeability1 . while maintaining con-
stant physical properties in the medium itself.

Flory16 also drew attention to the possible importance of tail-cutting
effects of the statistical kind (Figure 3) in emulsion systems because of the
small mass of the droplets. Indeed, the statistical cut-off point varies as
(mass)*.

4. RESOLUTION OF THREE PARADOXES ABOUT GEL
MOLECULES

4.1 Non-Markovian statistics of gel

The first paradox about gels arises from the statistics of their one-dimen-
sional structure (molecular graph). It deals with correlations of unlimited
range inside any such structure. which are unconnected with the embedding
of the graph in (or the existence of) three-dimensional space.

At the gel point the population of components ('molecules') of the graph
which represents the chemical sample (i.e. atoms =points; bonds = lines)
becomes statistically heterogeneous (Whittle1 7), This is illustrated very
graphically in Figure 2: the biggest molecule (gel) forms one 'population';
the rest of the sample. led by the relatively tiny second-largest molecule.
forms a second population. Of course, the over-all conversion is continuous
through the gel point at = But the 'private' tx-value (gei) of the largest
molecule rises to a value exceedingly close to 2/f> 1/(f— 1) o, where
f> 2. Here x = 2/f is the exact value of the conversion needed to link f-
functional units into any shape of infinite tree. On average, two out of thef
functionalities of the units in such a tree must be converted to links. This is
quite obvious if the shape chosen is a linear chain extending to infinity; but
rearranging the links to form a single infinite branched tree does not involve
a change in the ratio x of free functionalities to links. The statistical hetero-
geneity, illustrated by the finite difference between ;ei and has led some
workers to introduce unnecessary complications into the calculation of
statistical parameters. The cascade formalism allows the calculation of all
statistical parameters for the sol by a routine transformation of the basic link
probability generating function (LPGF, from which all parameters are
calculated anyway). Gel parameters are found by difference, or from a trans-
formation leading from the LPGF to the 'tie generating function'1 .Those
who use the complicated route of calculating such parameters by ad hoc
probability arguments almost always make the mistake of neglecting corre-
lations in the gel structure.

Thus so1' but paradoxically not ge1' is the mean of a random link probability
distribution. For example, the sol units of our randomf-functional model do
follow the random Bernoulli or binomial distribution, i.e. a unit chosen at
random in the sol has the chance
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p(i) = (i(l — (6)

of bearing i reacted functionalities (links). There is clearly no analogy with
the gel fraction in this respect, since the corresponding Bernoulli distribution
with gei would merely split again into a sol fraction and a gel fraction; in
particular. this distribution generates a fraction p(°) = (1 — geiY of totally
unreacted monomer, which clearly has no place in the presumed gel fraction.
Similarly for vulcanizates, the length distribution of chain segments between
cross-links about M is never a Flory (most probable) distribution in the gel
either. This general paradox is resolved by reference to the statistical hetero-
geneity of the sample: for all calculations of gel parameters, which are
attempted by excluding the sol from the calculation first and using ge1 directly.
it would be essential to use a conditional probability distribution, i.e. con-
ditional on applying to the geL Then correlations of infinite rangel9a are
bound to feature in such a conditional distribution. The conditional chance
of finding a free functionality at one point of a supposed gel tree would be
zero if all paths radiating from its bearer unit finally die out, and this can only
be ascertained by following each branch to its bitter end, if any, at infinity.
Fortunately, however, calculations involving ge1 as a parameter in this way
are never necessary. In fact, no statistical technique is yet known19 for genera-
ting long-range statistics of the gel without contamination by sol: the correct
and exact theory lumps sol and gel together but introduces the extinction
probability v. Instead of requiring us to trace an infinity of paths for an in-
finite distance, the extinction probability obeys a recurrence relation, from
which it is calculated (see equation 14). The second and third gel paradox
concern genuinely three-dimensional effects: the 'Malthusian packing
paradox'19 and the wrongly predicted 'cyclization explosion'20.

4.2 Malthusian packing paradox
Malthus greatly influenced Darwin with his observation that while family

trees increase geometrically, the food supply for the members increases only
in arithmetic progression. Similarly, the molecular family tree of a gel, by the
geometrical progression of its members from generation to generation,
outstrips—not its food supply—but the available space for accommodation.
For our random f-functional model, when we trace the molecule from an
arbitrary unit chosen as root of its tree (Figure 4), the number Nr of members
of generation gr increases as

Nr =fix{(f— 1)}t_1 (7)

Thus the root on g0 hasffunctionalities, each with chance of conversion to
a link to an offspring on g1: the mean number of members on g1 is N1 =fix.
Each of the members of g1 in turn has on average (f — 1)cx offspring on g2, so
the total number of grandchildren on g2 of the root-member is on average
N2 =f(J —

1)oc} and the total number of great grandchildren on g2 is on
average N2 = fix(f — 1)}2. If we proceed in this way, equation (7) is proved.
Of course, the shells of members of successive generations in the roughly
spherical-branched molecule find accommodation in three-dimensional
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N,. (x/a)

lim{Nr/Vr ] lim( ( /c)'/r }: cor-oo
Figure 4. Illustration of the Malthusian Packing Paradox. A gel molecule is shown as a rooted
family tree, with: • repeat units, 0 free functionalities. The number Nr of repeat units increases
(subject to statistical fluctuations) exponentially with the number r of generations

space restricted to a volume Vr ' r2. Since after the gel point (f— 1)x > 1. we
have the limiting density of packing:

lim (Nr/Vr) = lim(cr/r2) = cc
£

(8)

In chemical parlance, such structures are impossible because of steric
hindrance. Real three-dimensional structures must obey the asymptotic law
Nr + i/Nr -÷ 1 as r —÷ cc. Diamond, for instance, does obey it. If we place one
carbon as root on g0, its four neighbours on g1, its twelve second neighbours on
g2, and so on, the family 'tree' has Nr +i/'r —÷ 1 (from above) because the
presence of rings in the diamond graph leads to extensive sharing of offspring
(as by intermarriage of second cousins in a genetic tree). Although /;, or
similar indices of branching in more complex network forming systems such
as vulcanizates, can locally exceed unity, its average over an infinite graph
cannot. Theories of networks are nevertheless based on tree-like models of
average or crosslinking indices larger than unity, and the correct theories
work well in practice. This paradox is resolved when the effects of cycles are
taken into account correctly (see below).

First we point out how simply we can obtain Stockmayer's formula2 for
the weight average degree of polymerization of a random f-functional poly-
condensate from equation (9). DP is the mean number of units in a tree
obtained from the choice of a unit at random which forms the root on genera-
tion g0 (Figure 4). Now the mean of a sum is always the sum of the means. The
mean number of units in a tree borne by a randomly chosen unit is merely

Nr. the sum of the mean number of units on g0 (=1). on g1..... etc. Thus

from equation (7) we have

DP = 1 +ftr; (f_ 1)}' (9)
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= (1 + )/ 1 — (f — 1)x} (Stockmayer) (10)

merely by summing the geometric series. The gel point condition of Flory
follows:

DP —÷ oo if xTl/(f— 1); i.e. = 1/(f— 1) (11)

The question of ring-chain competition led Stockmayer2 to one slight
criticism of Flory's gel theory: 'it may readily be demonstrated that the
method of Flory predicts the occurrence of intramolecular reactions in the
gel'—since, indeed, in Flory's theory ;eI rises above 2/f immediately after
gelation. 'Quite aside from the fundamental logic involved in Flory's pro-
cedure', Stockmayer continued, '.. . it cannot be rigorous, for it predicts a
very definite number of cyclic linkages in the system for any chosen total
extent of reaction , though the initial assumptions do not specifically treat
such structures in any way.' Flory's implicit assumption, however, was the
intuitively sound one made more explicit in the citation from James and
Guth (see later): the rings in the gel arise from collisions under the mass law of
pairs of functionalities which move like free particles.

Stockmayer took the total exclusion of rings, even from the gel, seriously
and arrived at the conclusion that DP, so! was constant irrespective of con-
version > Whittle21 recently calculated the same rigorous model in
more detail, and showed that the whole sol distribution, not only its mean
DP, so!' is invariant. But this is not physically realistic in flexible gel molecules,
and Flory's model'or, even better, its generalization to the spanning-tree
approximation for ring-chain competition described below is excellently
supported by experiments.

The spanning-tree model assigns to the intermolecular process one funda-
mental rate constant k, and to the intramolecular processes in the sol one
fundamental rate constant, k. The actual rate of intermolecular reactions is
proportional to k(1 — )2. The actual rate of forming a ring-closure which
unites two sol functionalities separated by a (minimum) path of x atoms is
proportional to kFx . Here F is the mean number of free functionalities
at distance x within the graph; the factor x comes from Gaussian chain
statistics in three dimensions. The links already formed may be assigned a
constant rate of scission proportional to their concentration; however, we
shall equate it to zero in order to treat at present only the irreversible kinetic
process. Gordon and Scantlebury22 generalized this model to allow for co-
condensation (e.g. of adipic acid and pentaerythritol), and for the first-shell
substitution effect of reacted links on the reactivity of neighbour functional-
ities. They wrote down the necessary differential rate equations and intro-
duced into the statistical treatment one asymptotically exact approximation.
later called the spanning-tree approximation23. Asymptotic correctness
means that the relevant first-order quantities, especially the displacement

of the critical intermolecular conversion from the classical model,
become exact as the fraction c of functionalities reacted intramolecularly (to
form rings) goes to zero. The equations were solved by computer and fitted
successfully to experiments, later extended to other substrates, especially
longer-chain dicarboxylic acids24. The effect of dilution with inert solvents
gives rise to increase in i at fixed a—in particular, at cx. The Stockmayer plot
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of (x + ) against reciprocal concentration has been used for independent
confirmation of the model parameters22' 25

4.3 The cycization explosion paradox
It is a paradoxical feature of the model just described that the over-all

cyclization rate would seem to diverge to infinity at the gel point. The argu-
ment resembles that for the Maithusian paradox. The cyclization rate is the
sum of rates of formation of rings of all sizes. The rate of forming a ring of
size x repeat units is reduced by the factor x through Gaussian statistics,
which opposes the chance of two functionalities separated by a chain of
length x units meeting by random diffusion. However, the rate of formation of
rings of size x is also proportional to the number, F, of free functionalities
available at distance x to a given unit in the branching structure, equal to

F = (f— 1)(1 — (12)

It follows from equation (7) that this quantity again diverges exponentially
as soon as the gel point is passed, even when multiplied by the Gaussian
weighting of x -k As defined, the number of reaction partners for ring forma-
tion diverges so catastrophically immediately after the gel point that the
situation is not remotely saved by the Gaussian damping factor, just as the
packing problem is hardly touched by the factor x2 arising from the increas-
ing space accommodation.

The error in the formulation, which leadsto this catastrophe, canbecorrected
rigorously and exactly20. The rate equations have to be corrected for an
implicit over-counting of the intramolecular reaction steps within the gel (gel—
gel steps), relative to sol—gel and sol—sol reaction steps.

Not only are such gel—gel steps included in the ka-term (and to such an ex-
tent that they cause this term to give a divergent rate), but they are also
included in the k -term. In the region just after the gel point, it makes the best
physical sense to accept the contribution of gel—gel steps to the ku-term com-
pletely, and to cancel out completely their contribution to the ks-term, thus
removing the divergence. This amounts to treating gel—gel steps as bimolecu-
lar collisions governed merely by the law of mass action, and not in terms of
Gaussian statistics of the sub-chain linking the two functionalities concerned.

The automatic inclusion of the gel—gel steps in the ku-term arises as follows.
In accord with the mass law, this term treats the chance of a given functionality
undergoing reaction as proportional to the total concentration of partner
functionalities available for reaction in the system as a whole. If, and only if,
the given functionality resides on the gel, a finite fraction of the number of
partner functionalities in the system as a whole resides on the same molecule
as the given functionality (in this way intramolecular steps creep into the rate
term designed for intermolecular steps)20.

The physical plausibility of letting gel—gel linking steps be represented by
the mass-action contribution already automatically included in the usual rate
equation, and thus disallowing any part to be played by configurational chain
statistics, has been expounded before20. A long quotation from the funda-
mental paper by James and Guth26 was given which culminates in the clear
statement: 'the relation of these chain elements is then almost the same as if
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they were separate molecules in an ordinary liquid'. The plausibility, in
particular, of avoiding, by this formulation of the theory, the unreasonable
divergence of the cyclization rate at = ;÷ may be demonstrated as follows.
The divergence arises because the number of reaction partners increases
exponentially with the length of the paths in the branching molecular tree
which we trace (Figure 5) from a given free functionality to such partners. It

Figure 5. Diagram to explain the definition of extinction probability v. The base of the tree a link
chosen at random. rather than a point (repeat unit) as in Figure 4

would be wrong to imagine that all these potential reaction partners are in
true competition for cyclization with our free functionality merely by virtue
of micro-Brownian configurational changes subject to Gaussian statistics. In
reality, a more or less random selection of these potential partners will happen
to lie close enough to collide with the free functionality in a reasonable time
while the vast majority lie far away in three-dimensional space, and are often
separated by many active network junction points along the path in the graph
from the free functionality. In practice, they will never achieve a collision with
it. So the potential reaction partners are rather sharply divisible into two
classes: members of the first class happen to lie close to the free functionality
and are practically unaffected by configuration constraints (because the
intervening paths along the graph are so long); the other class never has a
chance. The reactive class reacts by collisions under a mass-law régime. This
régime implies that there are many unsuccessful collisions before a successful
one which leads to a cycle being formed. As the reaction proceeds well
beyond the gel point. however. the exhaustion of free functionalities and
restrictions in motional freedom cause a transition to a régime of diffusion
control, in which every collision is successful. The inapplicability of Gaussian
chain statistics (based on unperturbed chain dimensions) to collisions between
two functionalities belonging to the active network deserves emphasis. For
example, by an attempted application of such unperturbed Gaussian statis-
tics to the kinetics of the formation of inactive chain loops in the network. the
extent of this kind of wastage of cross-links in competition with effective
cross-linking was rather overestimated in a recent paper (see reference 27).
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To implement the cancellation of the unwanted Gaussian chain cycliza-
tion effects from the ku-term in the rate equation requires a relatively trivial
correction: essentially F. the mean number of reaction partners for closing
an x-ring with a free functionality. must be generalized from

fc{(f — 1)}2(f — 1)(1 — ) tofv{(f — 1)v}2(f— 1)(1 —

(cf. equations 7 and 12). Here the extinction probability v is introduced.
which is unity up to the gel point but <1 thereafter. We turn to explaining this
parameter in the next section. Experimental verifications of the kinetic
scheme based on extinction probabilities, analogous to equation (13). have
been given20'25.

5. THE EXTINCTION PROBABILITY v
Consider a trifunctional random (and therefore ring-free) polycondensate

at conversion or. e.g. polyetherified 1.3.5-trimethylol benzene9. Choose one of
its ether links at random. and choose at random one of the two ways of orient-
ing it vertically on the page. The repeat unit A (Figure 5) which we are bound
to find at its upper end bears two further functionalities which we direct
upwards, and we consider the molecular sub-tree that has its root (lower end)
at A: if this sub-tree is finite, we say that our chosen link becomes extinct in
the chosen (upward) direction; if it is infinite, our chosen link forms a tie in
this direction (see later). The probability v of extinction, or 1 — v of non-
extinction, is found from the assumptions of the random condensation model,
by writing down and solving a recurrence relation.

The sub-tree rooted at A is extinct, with probability v, if and only if the two
functionalities pointing upwards from A bear at most finite sub-trees. The
chance (1 — + v) that one of them bears at most a finite sub-tree is made
up of two parts: a part (1 — cx) that it is found unreacted. which means im-
mediate extinction, plus a chance cxv that it has reacted (chance cx) to form a
link which in turn leads only to a finite sub-tree (with chance v). The chance
that both upward functionalities lead to extinction is thus (1 — cx + cxv)2. so
that

v=(1—cx+cw)2 (14)

To solve this recurrence relation for v does not even demand the solution of a
quadratic equation. All equations in v have as one root v = 1. as is obvious by
inspection in the case of equation (14). Removing this root and solving the
resulting linear equation gives

v = [(1 —
cx)/cx]2 (15)

This quantity v, so simple to calculate in a simple case, provides the unique
and universal key for calculating the sol and gel fractions and their statistical
parameters. Its role in equation (13) is now clear: wherever the chance cx of
finding a link (as distinct from the chance 1 — cx of a free functionality) occurs.
we multiply it by v, to implement our model postulate that our calculation
is restricted to the population of molecules of finite size. It is understood
that we always choose v as the smallest positive root of a defining equation

13
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such as (13) or (17). Up to the gel point, this is always v = 1, so equations
(13) and (17) are true before, at and after the gel point, a fact appreciated by
electronic computers.

6. SCANLAN—CASE EANCs

Scanlan6 and Case7 showed how to define an elastically active network
chain (EANC) of a tree-like gel. First, an active junction point is a point
from which at least three 'ties' (links leading to infinite sub-trees) radiate,
since in three-dimensional space a network point would relax after an affine
transformation of the specimen, unless it was tied to the surface by three
independent routes. (In the statistical model the surface is, of course, pro-
jected to infinity.) An EANC is a chain segment which has active junction
points only at its two ends. Figure 6 shows how this definition of an EANC

(0)

£1J_U 1'
I

(b)

Figure 6. (a) Schematic sketch of section of vulcanizate gel of chains and crosslinks, immediately
after stretching. (b) The same, after relaxation. Note that not only chain ends have relaxed, but
also more complex loosely attached material, such as those shown on the right (c) Definition of
elastically active network chain. Each of the two network junction points must have at least three
'ties' (shown by arrows). A tie is a link from which a path can be drawn to the surface of the
specimen along the gel molecule. (d) An active network chain (heavy line) in a trifunctional
polycondensate (cf Figure 1). Note that all the branches (thin lines) attached along the active
chain can relax after stretching

applies naturally to rubbery networks made either by polycondensation of
small units or by vulcanization of primary chains.

The reason why the tree-like gel model gives such an excellent account of
the properties of a real network containing more and more cycles as o increases
beyond ; is simple to state. If a link attached to a network junction point is a
tie, so that at least one path to infinity passes from the point through the link.
then cascade statistics assures us that there will be an exceedingly large
number of paths which can be traced starting from that point, through that

14
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link and on through the branching structure. In the real structure some of
these paths will be abortive, because some of the links which we allowed to
form as bimolecular steps (both in the kinetics and in the statistical model)
really have the character of formation of large cycles in the gel. But it is most
unlikely that all the almost innumerable paths would terminate prematurely
in cycles, thus requiring the formal reclassification of a tie as a non-tie. The
calculated concentration of ties and of EANCs will be exact within experi-
mental error.

To give a feeling for the simplicity and power of this Scanlan-Case EANC.
we shall once again do the calculation for the simplest case, the trifunctional
random polycondensate. The number Ne of EANCs per repeat unit, to which
the elastic modulus is proportional, is found as the number of active junction
points per repeat unit, times This factor occurs because (a) each active
junction point is here attached to three ties exactly, which lead to one EANC
each; and (b) each EANC is attached to two active junction points at its ends,
and so we divide by two to correct the overcount.

The number of active junction points per repeat unit is merely the fraction
of repeat units which are active junction points, viz. {cx(1 — v)}3. (Each of the
three functionalities has a chance c' of being reacted, and—if reacted—a
chance (1 — v)of having formed a tie.) Thus we have, for trifunctional random
condensates.

Ne {cx(1 — v)} = — 1/} (16)

by using equation (15). The first equality holds for all . with v = 1 (i.e.
Ne = 0) up to the gel point, oc the second equality makes physical sense
only after the gel point. Strella and Bibeau28 obtained the same formula (in
an algebraically complicated but equivalent29 form) and confirmed its
essential features by experiments on a model phenolic resin (Figure 7).

The generalization from tn- to f-functional random polycondensates of

Figure 7. Fit by Strella and Bibeau28 of their measurements by equilibrium swelling of N against
conversion a for a model trifunctional phenol/formaldehyde resin. The curve is calculated from
equation (16)
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equation (14) is obvious; v is the lowest positive root of

v=(1—+v) (17)

In generalizing equation (16) for the relative number of EANCs. we must
remember that active junction points may now have 3.4... ..f ties. A little
calculation18 gives

Ne = 3(1 — v)2(1 — j3)/2 (18)

where

fi as (f— 1)xv/(1 — + v) (19)

Turning to the case of randomly cross-linked linear primary chains of any
normalized number-fraction distribution function n,. with number-average

we have the following generalization of equation (17):

v = nx(1 — + XV)x
-

(20)

It is well known that the gel point is given by
= 1/(DP — 1) (21)

where DP is the weight-average DP of the primary chains. If. following the
usual cascade formalism, we introduce the definition

F0(v) = n(1 — + XV)' (22)

then the completely general formula of Dobson and Gordon18 for the number
of EANCs per primary chain may be quoted, thus:

Ne = [y(l — v2) — 21 — F0(v)}]{y(1 — v)(1 — 2v) + 1 — F0(v)}/y(1 — v)2
(23)

with

y as cDP, (24)

This formula generalizes and frees from approximations numerous results
obtained by lengthy calculations of individual cases in a number of
papers6' Three regions of this equation, and of equation (18). are
important for studies of elasticity, swelling, etc.: (1) the region immediately
following the gel point. (2) the region of intermediate degrees of crosslinking
which follows it, and then (3) the asymptotic domain of high crosslinking.
These regions are discussed below.

6.1 The gel point as a fifth-order Ebrenfest transition*
For random (ring-free) systems. equations (14)—(23) apply equally to the

equilibrium case (crosslinking rate = splitting rate) and the irreversible case
(splitting rate = 0). We shall now turn to the thermodynamic nature of the
reversible transition, for which the equilibrium conversion is controlled by

* The transition was wrongly stated to be in most cases of order 4 in a contribution by the
author to the Discussion of the Faraday Division on Gels and Gelling Processes.
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temperature or pressure, etc. Stockmayer called it a phase transition. and
compared it to the condensation of a vapour; cf. Gibbs et al.33. We shall show
that it is always an Ehrenfest transition of the fifth order. It is easy to show
qualitatively how this comes about. According to classical rubber elasticity
theory, Young's modulus Yis a quantity proportional to a second derivative of
the free enthalpy. The modulus is not discontinuous as the equilibrium con-
version cx is driven through its critical value;, and exactly three differentia-
tions of the modulus are necessary to reach a quantity which is discontinuous
at the gel point, making a total of five differentiations starting from the free
enthalpy. The three differentiations of the modulus arise because the modulus is
proportional to Ne. the relative number (concentration) of EANCs. According
to the Scanlan—Case definition, an EANC links two active branch points. i.e.
two branch points with at least three ties (links through which paths continue
to infinity). But initially, as active branch points come into existence im-
mediately after the gel point, they will almost always have exactly three ties.
since the chance of having more ties will be an infinitesimal of higher order
(or zero forf = 3). Moreover, the cha'ice cx(1 — v) that a functionality leads on
to a tie is continuous through the gel point, while its derivative is discon-
tinuous (Appendix B), i.e. v/cx (like aS/ocx. where S is the sol fraction) is zero
for all cx <cxc, but jumps to a finite value at;. Accordingly, N is found to be
proportional to (1 — v)3 (e.g. equation 16) at cx = ;+, because a branch point
will typically acquire three ties to become active, so that d3Ne/dcx3 and d3 Y/
dcx3 are discontinuous. Some relevant results are given for various chemical
systems (molecular graphs) in Appendix B; full calculations will be submitted
elsewhere.

This has substantial practical and theoretical importance. The curve of Y
against cx!; always starts at cx = ;, like a cubic curve tangent to the cx/; axis.
It is true that measurements close to the gel point are not accurate enough to
verify the cubic law with great precision, but the general shape has been well
verified35 under kinetic conditions in a great diversity of systems (Figures
7—10). It is sometimes argued that a fifth-order Ehrenfest transition is almost

:
30 /

E 20
U

x

10 x/
x

x/
x#

0 500 1000 1500

Time,s

Figure 8. Measurements34 of shear modulus versus curing time for a 'Beetle' unsaturated poly-
ester resin
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Figure 9. Comparison (see reference 37) of experimental results by Meissner and Kuchaf 1k of
concentration N of active network chains per primary chain against crosslinking index y for
two polybutadienes. The lower curve is calculated to fit the primary distribution (e = 0.375) of
the solid circles and does fit well; the upper curve that (e = 0.688) of the crosses (poor fit)

z
(I)

-n0
E
U,
0)c
0
>-

Figure 10. Plots of measured Young's modulus against relative conversion (from optical rotation
measurements'°). for six runs at two different temperatures. Each run was carried out on a
freshly made solution. Gel times at 26.6CC: . 61 mm; D. 60 mm; 0. 60 mm. At 26.9CC: A. 76
min;U, 80 min; 77 mm. Four theoretical plots (equation 31); A, x = 6 sites per primary chain,
and n = 2 primary chains involved in each helix; B, x = 20. n = 2; C, x = 8. n = 3; D. x = 8.
n=4
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meaningless to an experimentalist and in practice unverifiable, but this is a
serious misunderstanding. It is not claimed that one can ever determine the
precise order of a transition by making measurements exactly at that point.
Other phenomena will obscure the results there, e.g. premelting in a first-order
case. But successful measurements at a small distance from the point can
establish the formal contribution to the order of the transition by a dominant
mechanism which is of interest, as (for instance) in the case of the Debye—
Scholte extrapolation36 to a spinodal point.

Experimental verification well within the cubic range is afforded by the
system decamethylene glycol/benzene 1.3.5-triacetic acid20. although the
proportionality constant is about three times too high, which remains
unexplained10. Verification of equation (18) is excellent for the phenolic resin
of Strella and. Bibeau28, as shown in Figure 7. The experimental range is
rather beyond the scope of the purely cubic approximation. Figure 8 presents
data34 on a cross-polymerized polyester resin which shows the initial upturn
qualitatively. Figure 9 shows one convincing fit of theory to data by Meissner
and Kuchafik on natural rubber vulcanizates33, with the same initial up-
turn which should start as a cubic equation. In the next section. Figure 10
illustrates the same theory for an aqueous gelatin system.

The initial cubic law has thus been at least approximately verified directly.
or by extrapolation to the measured gel point, essentially without adjusting
parameters (except for some doubt concerning the proportionality constant)
for very diverse systems. This tends to confirm that three units are contributed
to the order of reversible gel transition by the long-range correlations through
the factor (1 — v)3. Theoretically the high order of the Ehrenfest transition is
the result of an enormous co-operativity effect, depending on three independent
and branching paths which run through the whole substance of the example.

6.2 Intermediate degrees of crosslinking
For network formation by random linking processes of long primary

chains, the plot of N or Young's modulus Y against the crosslinking index 8
(see equation 24) must always have an inflection point, i.e. the plot is sigmoid.
This follows geometrically from the emergence of the plot with zero slope at
the gel point, together with the asymptotic approach (see below) of the plot at
high c/; to a line from its underside. It has been shown that for vulcaniza-
tion of any primary distribution the slope at the inflection point 1.5. and in
practice it is usually around 1.2.

6.3 At high crosslinking
At high crosslinking (x -+ 1). the plot of Ne against y for long primary

chains of any distribution approaches asymptotically from below the line:

Ne'Y1 (25)

In this domain of high crosslinking, Ne becomes all but proportional to the
number. y. of crosslinked units per number-average primary chain, although
the term —1 represents an ineluctable 'wastage' of crosslinks arising from one
free end of the primary chains. Of course, the plot terminates when every unit
is crosslinked (y = DP). For the formation of networks by end-linking of
homodisperse three-functional star units. the simple equation (16) is applic-
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able. In this case, the plot of N against /oc remains concave upwards18 to
its terminal point = 2). at which the number of EANCs per star unit is. and the terminal slope is

Ne//c)} = = 2) (26)

Because of the high sensitivity of Ne to /o the elastic modulus could be
useful in studying the diffusion-controlled death-throes of the cross-linking
reaction (as —÷ fina1 < 1). but star units with long flexible branches would
have to be employed.

Discussion
Much current theorizing concerning rubbers and jellies (i.e. weakly rubbery

materials) attempts to graft refinements on too roughly formulated basic
models. The gel transition, one of the most highly co-operative phenomena
known, exerts its statistical effects not only in the critically branched state of
viscoelastic behaviour in the close vicinity of the gel point, but even at what are
considered asymptotically high degrees of crosslinking. Although an average
quantity such as M (the number-average chain length between crosslinks in
vulcanizates) appeals to intuition, it is an undesirable ingredient of any theory.
and especially so if refinements of basic theory are aimed at to cover effects
such as chain loops or entanglements. Authors were forced to introduce
chain-end corrections in addition to M from the early days of network theory;
but calculations based on the correct Scanlan—Case-type EANCs show how
poorly such corrections deal with inactive material belonging to the gel. In
addition, the actual 'correction' factor applied27 is usually too large by a
factor of two. A network theory not based on the extinction probability v
(or Charlesby's approximation thereof by the sol fraction S for long-chain
vulcanizates) is not worth considering today. Apart from the simplification
introduced by the extinction probability into the mathematical formulae, this
concept immediately applies to all kinds of networks however synthesized. If
the reader cares to look at the simple formula (16), essentially verified by
swelling equilibria (Figure 7), he might like to consider what meaning he
could possibly attach to M in such a network. Other parameters beside M
should be discarded or recalculated on the proper statistical basis. Duek38
showed that, even after moderately heavy crosslinking, the statistical value
of the effective functionality fe of junction points (i.e. the mean number of
ties on an active junction point) falls appreciably below the value 4; e.g.
in the vulcanization of long chains fe is only 3.5 when on average each chain
carries 10 crosslinks. Chemically, of course, each crosslink has func-
tionality 4, but in network theories only active branches must be counted.
In another paper, the same author39 developed the theory to expose the
appreciable sensitivity of network properties to first-shell substitution
effects (FSSE, of a functionality on the reactivity of a neighbouring one) in
polycondensates. The occurrence of FSSE effects in the esterification of
pentaerythritol with polybasic acids22 has recently been verified by kinetic
and GPC analysis on monofunctional carboxylic acid analogues40. As regards
systems derived by randomly crosslinking primary chains, a routine method
has been published41, for calculating the z-average particle scattering factor
P (up to gelation. or in the sol thereafter), starting from any given primary

20



THE STRUCTURE AND PROPERTIES OF MOLECULAR TREES AND NETWORKS

chain distribution. From P the Zimm plot leads to M and (kz). The theory
underlying these calculations is based on the assumption of Gaussian or
random-flight statistics for all sub-chains (paths) in the system. and satis-
factory experimental verification has been forthcoming.

7. A MODEL FOR THE NETWORK IN WEAK AQUEOUS GELATIN
JELLIES

We briefly report some more recent results of Judd. to supplement a report
of preliminary measurements on the gelation of aqueous and the
development of an equilibrium Young's modulus Y(Figure 1O)by the resulting
jelly. Only brief experimental details need be given (see below), because the
treatment of the data sets this work apart from the situation typical for
gelatin research. Normally, the study of the physical properties of gelatin
systems needs careful control over such variables as source, preparation.
thermal treatment, pH. electrolyte content. etc. Our sample solutions were.
of course, prepared from a well-characterized gelatin and carefully handled.
but the reduced plots (viscosity i or Y against ci/;) are claimed to render
results in any case very largely independent of the usual troubles. This is the
power of reduced plots based on critical points generally: e.g. the WLF
transform. based on T, superposes properties of the most chemically diverse
glass-forming substances. Similarly, theory suggests that a gelatine solution
which gels at all (under isothermal conditions) will give a reduced plot charac-
teristic in general shape for all gelling systems (cf. Figures 7—9); if it does not
differ too radically from the range of condition here employed, it is expected to
fit approximately to the theoretical plot C in Figure 10, which is quite insensi-
tive to adjustments in relevant parameters.

Experimental details
The viscosity ij of a quenched 5.7 per cent aqueous solution of ilford

SC200 gelatin (taken to consist essentially of homodisperse ci-chains of
molecular weight 105 000) was followed isothermally to the gel point in a
moving-sphere microrheometer, which also allowed Y to be charted after
gelation. Y is plotted for six separate solutions at two temperatures against
the relative conversion ci/; in Figure 10. The latter quantity is deduced by
assuming ci to be proportional to the change in optical rotation, measured
separately for two such solutions at the same concentration at 26.9°C
against time. The specific volume was found to change proportionally to
optical rotation. This calibration plot, and some of the data in Figure 10 have
been previously10 published, together with some further experimental details.

Model for gelation of gelatin
The model fitted to the plot of Y against ci/; inFigure lOis as follows. A set

of n chains locally come together to form an n-fold helical junction zone.
acting as crosslink among the set of primary chains concerned. For n = 2, this
is the familiar model for carrageenan, illustrated in Figure 1 of the recent
paper by Bryce et al.42. The isothermal coil—helix transition of a given
junction zone is assumed to be fast compared with the rate of nucleation of
junction zones and to give rise to a constant contribution to the optical rota-
tion or specific volume of the solution. Each primary chain has a constant
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number. x, of sites suitable for participating in a helical junction zone and the
régime of crosslinking is random, i.e. there is no correlation in the chances of
forming junction zones between any of the sites. A random network between
the junction zones will thus be formed, and the usual tree-like graph model is
readily applied. In particular. the gel point is found to be

= {(x. — 1)(n — 1)}1 (27)

where the fractional conversion c of sites to junction zones is monitored by
optical rotation.

Let q denote the chance that a site on a given primary chain A does not
participate in a junction zone in such a way that a path can be traced to
infinity from that site. through that junction zone (i.e. not passing through
other sites belonging to A). Then

q=1—+v (28)

and the extinction probability v obeys its standard recurrence relation.
generalizing equation (14):

v = q(X — 1)(n —1)
(29)

Hence. q can be calculated as a function of c for given x and n on a pocket
calculator. The calculation can be continued to give (in a form simpler than
the equivalent formula'° given before) the quantity proportional to Young's
modulus

Ne = YVrnoi/3gRT (30)

viz.

2(n — 1)(1 — q)q(X_ 1)(n2) [i — qX 12Ne = (1 — q)X — 1 + qX —
x(1 — q)(x_ 1)(n -1) Li q

— xqx1j
(31)

Here g is the front factor taken as on theoretical grounds and Vmoi the
volume per mole of primary chains, calculated to be 1.8 x 106 ml.

The four plots in Figure 10, based on equation (31), show two surprising
facts. When the reduced variable /; forms the absicissa, the plots are (a) not
very sensitive to the number of sites, x, per chain when x> 6. but (b) re-
markably sensitive to the number n of chains per junction zone.

The scatter of the results in Figure 10 reflects the difficulties in measuring
very low moduli. Superposition of the plots for two different temperatures is.
however, satisfactory.

The moduli measured immediately after gelation are seen in Figure 10 to
lie systematically above curve B, calculated from the relative critical con-
versions /; (found by optical rotation) via equations (27H31). This syste-
matic deviation is not attributable to a horizontal misplacement of the data
points arising from an error in the gel point = 1), since this point is
indicated within 0.05 by the divergence of the viscosity and the emergence of a
reasonable modulus. The cause of the inflated modulus values is assigned to the
viscous component. which is noticeable in extremely weak gels, especially
when the 'crosslinks' are easily reversible. (The displacement of the micro-
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sphere under the magnetic force was not always found to be fully recoverable
just after gelation.) At conversions /oc, > 1.4 the fit to the theoretical plot C
is thought to be reasonable, and the marked upswing of the data points
observed in the polycondensate DMG/BTA seems to be absent in these gels.
The upswing is traditionally assigned to 'physical crosslinks' due to entangle-
ments. However, while such a contribution is theoretically expected in the
dynamic behaviour at appreciable frequencies, the relevance of entangle-
ments to true equilibrium moduli seems much less well founded in theory.

The parameter x, the number of sites per chain, was taken as eight in
calculating curve C of Figure 10 from equations (30) and (31). Ferry43 pro-
posed that x = 5, and this value is also confirmed approximately—on
obvious assumptions by comparing our experimental change in optical
rotation ( 33.5°) with the known value for total renaturation of collagen
( 275°). Using equation (27). we thus find

1/(n — 1)(x — 1) = 1/2(x — 1) = 33.5/275 (32)

which yields x 5. The difference between x = 8 and x = 5 causes only a
small displacement downwards in the plot C (Figure 10), about 25 per cent
initially (see equation B5). Such a displacement is hardly significant for our
purpose—namely to confirm the applicability of the basic statistical theory of
gelation and rubber elasticity to aqueous gels of gelatin. Despite the experi-
mental scatter, since all the significant parameter values used in calculating
plot C are independently supported by theory and other experiments, this
purpose is broadly achieved. Further work is, of course, desirable, especially
since the exploitation of the critical nature of the gel transition holds the
promise of increasing the sensitivity of experimental tests of theory to most
parameters which are of interest, while allowing unwanted interferences to be
eliminated by the rescaling according to /cc.
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AppendixA: Estimation of max, (Figure 2)
Throughout Appendix A we consider an ensemble of an infinite number of

reaction systems, each containing afixed finite number, N, of repeat units. and
a fixed conversion, , just below The degree of polymerization. Xmax, 1 of
the largest polymer molecule will vary appreciably from system to system.
We derive an approximation to the mean, Xmax, 1. over these statistical
fluctuations, together with rather sharper error limits than suggested before.
We note that

N (w/x)dx = (Al)

Here ñ is the mean number of molecules per system of size larger than y
Using the asymptotic form of w of equation (5) and the approximation
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y[(2i — 1)/2] Xmax, (A2)

and. in particular.

Y() max, 1 (A3)

(see below), the plot of Xmax 1 against /o in Figure 2 was drawn up to the
gel point. To explain the approximation (A3), we remark that the degree of
polymerization y4), beyond which a system on average contains -ofa mole-
cule, leads to the following one-to-one correspondence: for each molecule in
the ensemble of DP > y(-), there is one molecule in the ensemble which is the
largest in its reaction system and for which DP <y(). We show that in fact
y() is a lower limit for Xmax,i. The difference in size between the nth-largest
and (n + 1)th-largest molecule in a system tends statistically to increase
strongly with decreasing n (cf. Figure 3). This follows from equation (Al)
(using equation 2), and at the gel point the same situation is illustrated by the
proportionality to y of the number-average DP of the tail beyond y, i.e.

DP(of tail beyond y) (wdx/ (w/x)dx = (A4)

(using the asymptotic distribution w. x -j. Thus we see that the mean
sizes Xmax, 1 of the largest molecules in those systems which have Xmax 1 <
y() lies closer to y() than the mean size of all molecules of size > y(). Since
the two sets of molecules thus compared are in one-to-one correspondence, we
have proved

Y() < max, 1 (A5)

It is also easy to show that at the gel point

2y(1) (A6)

and by equation (A3) that the DP of the tail beyond y(l) is
—a 1DP(of tail beyond y(l)) = 3y(l) = 3 x 2 x y() l.9y() (A7)

In words. this DP is the mean size of molecule per system beyond that limit
of size at which, on average, a system at the gel point contains just one
molecule. But this quantity is easily seen to be an upper bound for Xmax, 1:
there is now a one-to-one correspondence between the set A of the largest
molecules of systems for which Xmax <y(l) and the set B of molecules which are
of size > y(l) but are not the largest molecules in their respective systems. In
forming the average DP (of tail beyond y(l)), we are including the set B, while
in calculating Xmax, 1 the set A takes its place. Because the mean of the DP of
members of A lies closer to y(l) than the mean of members of B. the DP(of tail
beyond y(l)) is an upper bound for Xmax so that altogether

Y() <max, 1 <l.9() (A8)

at the gel point. These error bounds hold afortiori at conversions less than the
gel point.

After the gel point, the gel molecule is the largest in the system by a tre-
mendous margin; the second-largest molecule in each system is the largest
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molecule of the sol fraction (Figure 2). The sol-fraction distribution I of
conversion x is (even in presence of FSSE) indistinguishable from a
pre-gel distribution II of over-all conversion cx. Accordingly, the largest
molecule follows the same statistics in both samples, I and II; hence, plots a
and c in Figure 2 are asymptotically symmetrical near the gel point (/; = 1).

Appendix B: Limiting forms of cubic equation for the early post-gel region of
the modulus

For the reference case of randomf-functional polycondensation, the jump
in dv/d, as passes through cxi, at the gel point, is

çO for c' =
(dv/d) =

( —2/(f— 2) for x (Bi)

The limiting form for the number of EANCs per repeat unit is found from
equations (17)—(19) by a perturbation calculation:

Ne = 2
(f_2)2 ( — 5 {' 3(1—2) ( 1)

± o(. —
i)}

(B2)

The corresponding treatment of equations (20)—(24) for the case of random
pairwise crosslinking (i.e. vulcanization) of distributions of primary chains
which are arbitrary apart from the approximation DP > 1 yields

Ne =
2DPnDPw(

— —
— 1)} (B3)

where N is now the number of EANCs per primary chain, and the subscript
p refers to the primary chain distribution.

For long homodisperse primary chains, the correction term has been
calculated:

Ne 2( - {i
- - ± - 1 (B4)j 7\; J \ Jj

Finally, the analogous perturbation of equations (27)—(29) and (31) produces
the following cubic approximation for the case of junction zones formed
randomly from n chains (each with x active sites):

Ne
2x(x — 1)

2 ( — ± — 1 (B5){(n - 1)(x -1) - 1} j
For large x, this rapidly approaches the form:

Ne 2 2(__1 (B6)
(n—i) \C j

Both equations (B5) and (B6) show Ne to be sensitive to the number of primary
chains entering into each junction zone.
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