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Abstract—An improvement of the bundle model gives the possibility to discuss quantitatively the solid state transition
and the final melting of PE and calculate the transition data as well as the cooperativity. A similar quantitative
treatment is carried out to explain the kink-block transitions in clay organic complexes.

As we all know, there is no chance today to achieve any
quantitative molecular-based result by strictly applying
the fundamental laws of physics to a many-body
disordered system, like fluids, melts or the amorphous
solid state. What we have to introduce are assumptions
which allow the problem to be treated analytically or at
least numerically. Each assumption is part of a model, and
one should in fact look upon models not only regarding
their drawings but also by examining the physical
assumptions involved, because these are essential for a
quantitative application of a model.

The most serious assumption to be made for a system
of condensed polymer-chains is the degree of order or
chain alignment. The models proposed so far differ there-
fore in the assumed content of chain parallelism (Fig. 1).

(1) The random coil model—established for dilute
solutions—in which one has to envisage densely-packed
and mutually penetrating coiled molecules.! To achieve a
dense package, however, a certain number of chain
segments have to be parallel, a condition which possibly
violates the basic assumption of this model.

(2) The bead-string model—qualitatively proposed by
Schoon’—in which molecules pass from one folded region
to another.

(3) The meander model—in which bundles of mole-
cules sharply fold, to give an isotropic and densely-
packed polymer material.’ This model comes closest to
the bundle concept of Kargin which he proposed in 1957.*

There are two more micellar models to be mentioned.

(4) The folded-chain fringed micellar grain model by
Yeh® which combines bundle domains with partially
folded grain boundaries and intergrain regions in which
the molecules are in a more truly random conformation.

(5) The cell structure model of polymer gels by
Vollmert® in which only partial penetration of neighbour-
ing coiled molecules into their contact zones is required
from side group conversion experiments.

Three of these models have been proposed only

qualitatively to account for certain experimental results,
e.g. electron diffraction and microscopy. A quantitative
treatment will possibly give rise to difficulties.

The random coil model and the meander model
represent opposite views. Considering the chain align-
ment they are limiting models. Though differing greatly,
both can in many cases explain the same experimental
results, e.g. rubber-elasticity, the radius of gyration,
measured by neutron scattering”® and the magnetic
birefringence.>"®

Since the discussion of the most recent experimental
results on the basis of either model is going on, we will not
deal with any details here, but only draw attention to
recent electron microscopic work by Petermann and
Gleiter.""" These authors investigated thin polyethylene
films—prepared by a spreading technique onto a surface
of a hot liquid—and concluded, that the random coil
model could not explain most of their observations. So, at
least for thin films, 100-1000 A in thickness, the bundle
model seems favoured by these experiments. Now turning
to the theoretical approach within the framework of the
two models, it is obvious that either model is based on
fundamental assumptions which have not been proved so
far. The random coil concept assumes the neighbouring
molecules to set up a mean field similar to the §-condition
in dilute solution and does not take into account
contributions of energy from local distortions of molecules
which certainly arise from the mutual penetration.'

The bundle model—as proposed by Blasenbrey and
Pechhold™ starts from the ideal crystal and describes the
real crystal by introducing appropriate defects (kink-
isomers). In order to explain the short range order of the
melt or the amorphous state it assumes the crystal order
to be destroyed by increasing the concentration of
kink-isomers, the chains, however, remaining nearly
parallel. A second assumption is made in the course of an
approximate cooperative treatment by choosing a seg-
ment of four CH,-groups (in the case of PE) as statistical

Fig. 1. From left to right: the random coil, the bead-string, and the meander model.
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element which predetermines the final kink density of the
melt.

In the following we shall neither discuss further details
of these models nor present corresponding theories of
polymer properties. Instead we limit ourselves to
derive an improvement of the bundle model as far as it
applies to the problem of molecular order and to phase
transitions.

This improvement has been stimulated—as progress in
theory often is—by a new experimental fact: the
observation of a high pressure crystalline phase in PE by
Bassett and coworkers.'*" This hexagonal phase, show-
ing a sharp Debye-Scherrer ring (a =8.46 A, b =4.88 A
compared with a =7.58 A, b =4.814 for the all trans-
crystal at 220°C and about 4 kbar), has consumed about
3/4 of the heat of melting and 1/2 of the volume change at
melting (at 5 kbar) and is observed above 3 kbar.

This phase corresponds to the crystalline high tempera-
ture phase in trans-PBD and probably to similar phases in
other polymers. Such phases, which probably have
incorporated a lot of conformational entropy but remain
crystalline (at least laterally) and therefore densely packed,
can be explained by any theory which claims to describe
melting.

Before giving a thermodynamical treatment, we detail
the method to be used on another example, namely the
formation of kink-block structures in clay organic
complexes that were extensively investigated by Lagaly
and Weiss."*® These observations are of great importance
for membrane research too.

KINK-BLOCK FORMATION IN CLAY ORGANIC COMPLEXES

Figure 2 shows a system of bilayers formed by
alkylammonium and alkanol chains prepared by cation
exchange in a beidellite crystal. Studying the temperature
dependence of the long spacing, Weiss and Lagaly found
several phase transitions mostly accompanied by 1.3 A
steps in lamella height (Fig. 3). The authors showed that
the only explanation left is the formation of kink blocks.

Figure 4 shows a Stuart-model of one half of a bilayer
between rigid plates indicating the kink-blocks formed.
After the formation of more than half of the maximum
number of kink-blocks the chains are assumed to tilt
because of a better packing of the existing blocks. On
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Fig. 3. Temperature dependency of the basal spacings d. of n-
tetradecylammonium-tetradecanol-beidellite showing the stability
ranges of the low temperature phases 8., B2, B3, B+ and of the high

temperature phases a, @, as. (from'®). :

further increase of temperature the residual kink-blocks
are formed.

In order to treat this system statistically, one has to
know the partition function Q of a C;H,-rotator in trans-
and in kink-conformation (Fig. 5). The following rota-
tional potential has been suitable:

U(e)=2.15(1 - cos ¢)—1.17(1 — cos 2¢)
kcal
+3.83(1-cos 3¢) ol

From the partition functions (given in Fig. 5) the differ-
ences in entropy and enthalpy are calculated in the usual
way. One gets for each kink in an isolated chain

Skink = Strans = 1.29 €.u., Hiink — Hiraos = 1.27 %. (o))

The enthalpy per kink in a block has to be reduced by
about 0.29 kcal/mol because the available cross-section
per chain is 24 A” (due to the layer charge‘z compared with
that of the best intermolecular fit (18.2 A” in PE):
(Hyink—Hirans)biock = 1.27-0.29 = 0.98 kcal/mol.  (1a)
Figure 6 shows a drawing of a bilayer with one kink-block
and the free energy for such a system per chain pair (in
chain direction). This free energy is composed of the
molar free energies G; and G of trans- and kink-

Kink block structures in clay organic complexes
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Fig. 2. Bilayers formed by alkylammonium and alkanol chains through cation exchange in beidellite crystal (from'®).
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Fig.4. Stuart model of a monolayer between rigid plates indicating the kink-blocks formed.
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Fig. 5. Calculation of entropy and enthalpy of a hindered rotator
) in trans- and kink-conformation.
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Fig. 6. Model of bilayer and the free energy of chain pairs (y
probability for a kink, 1y for all trans)—full cluster—entropy
assumed. n = 1 for the first kink-block transition.

conformations respectively multiplied by their prop-
abilities, an additional entropy term yR1n2 which takes
into account the equivalent type of kinks with their
rotational axis in the second C-C-bond direction, an
entropy term accounting for the different possibilities of
kink-block arrangements, and the entropy of mixing
trans- and kink-conformations. The bottom line (Fig. 6)
comprises the cooperativity of the problem and gives the
energy of deformation if not all the chain pairs are kinked
or unkinked (rigid beidellite-layer!).

The thermodynamic treatment starts with the equilib-
rium conditions

G _ . G _
L0 ay—o 2

which lead to the following equation (with f; = f, = f)
(n- 1)!((%—0— n+ 1)!
n '(Q - n)!
c

=1n1%y+3(2y—1). 3)

Gk_Gr [
RT 1n2 Loln

This equation, the right side of which is plotted in Fig. 7 for
three different B’s, gives the equilibrium kink concentra-
tions as function of temperature in the regions with
negative slope. The positive slope in between indicates a
region of instability (maxima of G) which the system may
overcome by a first order phase transition. As the free
energy of the two competing phases—with low and high
kink density respectively—must be equal at the transition
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Fig.7. Thermodynamic analysis of kink-block transition (for
details see text),
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temperature, this temperature is determined by the left side
of the upper equation if its representation (a horizontal
line) bisects the area under the S-shaped curve (represent-
ing the right side). In this simple symmetric case the left
side has to become zero at the transition.

The model of course must also give the cooperativity
parameter B, which is an additional test besides yielding
the right transition data. In this case

=L(£)2=_1_A(g)’=
B=32\2) "G, 78 Lo \2) =34 30
@

which is mainly determined by the compliance of the gap
between the monolayers. B turns out to be approximately
3 using: A =24 A% S.. =3.4x 107" cm?/dyn and the “gap
compliance”  SgpX Lo=1.1X10"*cm’/dyn, recently
measured by Strobl” from an analysis of the Raman active
accordeon modes in tritriacontane.

From the transition intercepts y; and y, one gets the
jump in kink concentration and the transition data AH
and AS.

kcal

AH = (y3— y1)(Huink — Hirans) = 0.85 X 0.98 = 0.83 ol

8]
AS =(y;— ya)[Sm— Seans+ R In2

(n-—l)!(—Ié—"—n+1)!

() [o

Table 1 gives the results for 3 bilayer systems, which
sufficently agree with the experimental data available

+RL£01n
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(given in brackets, compare Fig. 8). Starting with the first
kink-block formation (n = 1) this statistical treatment has
been similarly applied to subsequent kink-block transi-
tions taking into account the reduced entropy of
kink-block arrangements along the chains (which is a
function of n).

At this stage it must be admitted, that we kept back so far
a certain difficulty which arose: We got the free energy G
of this bilayer system (Fig. 6) by using the full entropy of
mixing kinked and unkinked chains and only considering
the formation of kink-blocks in the energy per kink (in
which no additional misfit energy was included). In fact, we
have made use of a hypothesis which seems to us very
important for condensed phase systems and which we call

Cluster-entropy hypothesis
The entropy (e.g. transition-, orientation-, deformation-entropy)
of a cluster of m equivalent elements, each having f internal (e.g.
vibrational) accessible states is m times the entropy of a single
element as long as f is sufficiently larger than m.

In other words, equivalent elements retain their full
entropy contribution as long as clusters formed by them
contain no more elements than the accessible states of
a single element. This hypothesis has still to be proved,
but is intuitively plausible if one remembers the definition
of microstates as states including all degrees of freedom,
not only those of interest in a special problem. There are
several applications of this hypothesis in various fields
like those of membranes, liquid crystals, condensed
polymers and biopolymers.

CRYSTALLINE KINK-BLOCK PHASE IN POLYETHYLENE
Let us now consider the crystalline high pressure phase
of PE. From Bassett’s X-ray work' it follows that the
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Fig. 8. Long spacings d.. of various beidellite organic complexes and corresponding calorimetric measurements for the

tetradecyl system.

Table 1. Transition data AS,T; of kink block formation (AHpeor=

0.83kcal'mol ™, AH,.,,, = 0.73 kcal-mol )

System Lo/c AS, T,°C AS, T,°C AS; Ti°C

254 6 247 65 243 0
R e @ e @ W
XCU My w23 (8 @3 (0)
oo 10 M6 028w w
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cross-section of a PE chain increases from 1824 to
20.7 A? during the transition from the all-trans to the new
phase. This increase of about 15% is compensated partially
by a shortening of the chains. From the change in
cross-section and the 5% increase in specific volume™*
one calculates a chain shortening of about 10%. Looking
for an energetically favoured chain conformation with a
10% shortening with respect to the trans chain, potential
calculations suggest the structure in Fig. 9 with a period of
4.57 A is in very good agreement with the shortened chain
length of 4 CH,-groups (4.6 A).

C=2,54A C=4,57A
Fig. 9. Suggested ideal chain conformation in the high pressure
phase of PE.

This suggested conformation can be described as a
tgtgtgtg-sequence but will only incorporate additional
conformational entropy if transitions in the rotational
potential are allowed. This together with a nearly perfect
(i.e. crystalline) lateral packing of the chains can be
achieved by virtue of the cluster-entropy hypothesis. In
Fig. 10 some possible arrangements are built up with
Stuart models which show a sufficiently good packing of
adjacent chains if they have identical conformations and
provided the chains are nearly straight, i.e. every second
C-C-bond is in a trans-position. In the assembly at the
lower right a crystal defect—a pair of holes—is shown
which arise from a chain conformation differing from the
adjacent ones. A statistical treatment of this laterally
crystalline phase and of its formation from the all-trans
crystal is readily achieved by using the C,Hi-rotators as
statistical elements (Fig. 11). Partition functions are now
calculated—similar to the above treatment (Fig. 5)—for
each rotator in the rotational potential of one of its
adjacent C-C-bonds (1/2 of the above given U(e))
specifically for the trans- and both gauche-conformations.

The free energy G of the system is composed of the
respective molar free energies G; and G, multiplied by
their probabilities and an additional entropy term R In2,
which takes into account the respective mirror images
of the described microstates. The middle line of G(Fig.
11) gives the full entropy of mixing the trans and gauche
states of the rotators taking into account the cluster-
entropy hypothesis. The lower line comprises as before
the cooperativity of the problem. The first two terms give
the deformation energy due to the difference in cross-
sections of the trans- and gauche-blocks, the last term
takes into account the deformation energy which balances
the fluctuation in chain length. All cooperative terms

Fig. 10. Some possible arrangements of chains in the PE-high pressure phase.
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G=(1=y)G; + yGy + ypAV —yRTn2

+RT ]:ytny+(|—y) Ln(l—y)] +

Yo [ 1=y (8AV, y (DA-3ANE yi-y) [ Ac \2
M [ < (A (SR 42 (&) ]
Fig. 11. Model describing the phase transition to the PE-high
pressure phase and its related free energy per C,H.,-rotator
(y-probability for g or g conformation, 1 — y for ¢-conformation).
Full cluster-entropy assumed.

vanish in the limit of either all trans or all gauche
conformations.
By applying the two equilibrium conditions

96, WG_,

30A ay @

one gets a similar formula as for the clay organic
complexes (3)

Gg _ Gt+pAV_
RT RT

In2= 1n1%y+ BQy-1) @)

with the cooperativity parameter
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which is sufficiently large to get the full entropy and
enthalpy difference during this first order transition. To
calculate B the following data were used: K=K, =
2,...,08x107°bar! for p=0,...,5kbar,® S. =
3.4x 1077 bar™, V, =28 cm’® (C,H,rotator), A,= 18.2 A2,
(AAJAo) =0.15, (AV]V,) = 0.05, (Ac/co) = —0.10.

The transition data of the new phase are the differences
in entropy and enthalpy between the tgtg and the
all-trans conformation, AH including the pressure work
pAV and an additional energy contribution -of
0.5 kcal/mol rotator, accounting for the less tight chain
packing and corresponding to the 5% volume increase.
AH, =0.62+0.5+0.034 p /kbar

[kcal/mole C;Hs]  (10)

AS =1.23+1.38eu. (1
The interchain energy contribution (0.5) compares with
potential calculations” of fitting kink pairs but must be
still confirmed more accurately. These data together with
the transition temperature and the volume effect are
shown in Fig. 12 as functions of pressure (dashed curves,
all data given per CH,). The fully drawn curves in Fig. 12
approximate fairly close the experimental data for the
total melting process, splitting up into the solid state
transition () and the true melting at pressures above
3 kbar.

THE MELTING OF THE KINK-BLOCK PHASE

The interesting experimental fact, that for higher
pressures a laterally crystalline phase consumes most of
the enthalpy and entropy and more than half of the
volume change during melting, in our opinion rules out,
that in the subsequent melting any appreciable amount of
coiling will take place. Although coiling can not be
completely excluded at low pressures the analysis so far
favours the bundle model for the molten state.

The final step, now, is to ask whether melting itself can
be described, starting from the kink-block-phase discus-
sed above. This is readily achieved, if one visualizes the

B= Vo [1 (M)2+ 1 (&.)z] ~10 o) large laterally crystalline kink-blocks to be broken into
2RT LK \Ao/ S. \co short fibrils by cooperatively incorporating packing
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Fig. 12. Enthalpies, entropies, transition temperatures and volume changes for the solid state transition (dashed
curves) and the melting of PE. The fully drawn curves give the sum of the respective quantities of both transitions.
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irregularities (misfits) in between. The idea is, that such
misfits form holes that carry energy as well as entropy, the
latter because of their manyfold geometrical shapes
determined by the various kink-blocks in the adjacent
determined by the various kink-blocks in adjacent fibrils
(Figs. 13, 14).

To describe the cooperative formation of holes in terms
of accumulated misfits we first focus attention to
neighbouring C,H,-rotators and remember, that there are
one perfect (i.e. crystalline) and 3 imperfect pair
conformations, enclosing misfits in each coordination. For
simplicity we choose a coordination number 4, here. If z
denotes the concentration of misfits in a growing hole
between neighbouring chains, we may set up the free
energy for a representative hole

G=2(U+pAV-RTIn3)
+RT[zInz+(1-2)In(1-2)]
Vo (A.d)z -

+ s \d z(1-2)
with(J, AV as mean energy and volume of a C;H,-rotator
misfit in one lateral direction. The last term accounts for
the cooperativity i.e. the deformation energy of bond
angles necessary if misfits have not yet accumulated to
give a sufficiently smooth hole. Ad characterizes the
average additional chain separation in a misfit, S the
compliance for sharp chain bending, which should not be

much less than S,. =3 X% 1077 bar™.
With this simple model one gets—in a similar ther-

(12)

Fig. 13. Kink-block-phase broken into fibrils by smooth holes
which originate from cooperatively arranged misfits between
neighbouring rotators (longitudinal section).

modynamical treatment as above—a strong first order
transition for the melting process but no information
about the sizes of the generated holes. These must be
approximately estimated from” (compare Fig. 13) and will
be determined—together with their corresponding
energies—by further semi-empirical potential calculations.

To procede further we now assume that n=4
successive misfits compose a smooth hole (Fig, 13) and
that one can subdivide all Q=3" possible holes into 3
representative types, which are characterized by the
following AV; and U; and degeneracies

AV]/V0=0.7 AVz/V(): 10 AV3/V0= 14

_ _ _ ¢ Keal
U,=28 U,=4.0 U;=5.6 mol (13)
and

0, =3"3=27

Vo=30cm’ is the molar volume of a C,H,rotator in the
kink-block phase. The ratio of hole energy to volume has
been kept constant according to Ref. 21. The transition
data at melting depend upon the concentrations ¢; of holes
being cooperatively formed. It seems obvious and takes
into account the equilibrium state of the melt, that ¢; must
obey the usual Boltzmann distribution:

Q, exp[_U.-+_m&V,]
¢ = RT (14)
i _Ui+PAVi]'
1+2,_ QO exp[ —RT

The entropy and enthalpy of melting and volume change
are given by

AS, = % RIn3*xS ¢,+8S eu/molCH, (I5)

AHM=§2 a(Ui+pAVi)+6H kcal/mol CH, (16)

AV, =§2 cAV, (17

These data refer to one CH,-group (8 CHz-groups per hole
length). The factor 2 accounts for the two independent
coordination directions (Fig. 14). The small additional
terms S =0.08¢e.u. and 8H =0.02 kcal/mol take into
account entropy and energy of the meander
superstructure.’ The results of (15-17) are added to the

—

—_

—

LIT ] ]

L

—
—_
N

Fig. 14. Dense and broken up kink-block-phase (schematic cross-section).
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Fig. 15. Summary of entropy data of the n-alkanes from various sources.

corresponding data of the kink-block transition and
plotted in Fig. 12 as fully drawn curves. They fit the
experimental data sufficiently.

The temperatures of melting are calculated by

AH,
Tn = AS,

(data from 15, 16) above 3 kbar and

T. = AH, +AH,,

"TAS +AS,
(data from 10, 11 and 15, 16) below 3 kbar, i.e. in the
region where T; would be above T..

CONCLUSION

An improved version of the bundle model allows a
quantitative discussion of the solid state transition and the
final melting of PE. It is possible to calculate the transition
data as well as the cooperativity. A similar quantitative
treatment can also be given for 1.4-trans-PBD, which is a
little more complicated geometrically because of the one
cis and two skew valleys of the rotational potential.

The question, whether coiling of molecules occurs in
the melt can be negated for high pressures but cannot be
finally answered for the low pressure region—from these
considerations—without a similar treatment of interpenet-
rating coils which seems to be very difficult.

Figure 15 shows a summary of entropy data for the
n-alkanes from various sources. If one compares the
slopes of the entropy-curves for the liquid and the
gaseous state at 298 K there is a difference of 1.46 e.u. per
CH, which at least partially may be due to the subsequent
coiling of molecules during evaporation. This argument,
we believe, favours the bundle concept of the liquid phase
too.
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