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THERMODYNAMICS OF ADSORPTION AND
GIBBSIAN DISTANCE PARAMETERS IN TWO-
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Abstract—In a multicomponent, 2-phase system, the Gibbs dividing surfaces for the respective components are
separated by characteristic distances,

A, = 17/iXc5. (I)

More generally, if b designates an arbitrary criterion defining a surface, e.g. F- = F-, and d designates another
criterion, e.g. the surface of tension,

For a binary, liquid—liquid system,

Abd (f(b) f(d))/C = (f(b)

A=(3-r'1\0PJT,t

(II)

(III)

In a 3-phase system with a line of 3-phase contact, it is possible to set up the one-dimensional analog of the Gibbs
dividing surface, and to treat a linear excess mass that corresponds to the Gibbsian surface excess mass. The line of
tension is the analog of the surface of tension. A linear thermodynamics can be developed, that is the
one-dimensional analog of Gibbsian surface thermodynamics. Applications of eqns (I and III) are reported, for the
estimation of A. For the interface between air and solutions of water andethanol, at mole fraction ethanol = 0.18, 2
is 8.8 A. For the benzene—water system, 12 is found to be about 0.1 A.

427

(1)
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1. INTRODUCTION 2. THEORY: TWO-PHASE SYSTEMS

The spatial location of Gibbsian dividing surfaces in a As a preliminary, we note that in a binary, 2-phase
binary or ternary system has received little attention in system, the Phase Rule allows no variation of composi-
the past. Gibbs1 conjectured that the "I' = 0" surface was tion, at constant temperature and pressure. Hence, the
at an experimentally negligible distance from the surface general statement of the Gibbs adsorption isotherm
of tension. Buff and co-workers2 have treated the equation is limited to systems with 3 or more components:
distance between the F = 0 surface, in a one-component
system, and those surfaces with respect to which the
surface excess energy, U, and entropy, S, are zero.

Guggenheim and Adam5 have concluded that the

PYapl F + F a1 ] >2
L ap jT,P E LJT,P'

superficial excess of matter, in a binary liquid—vapor Here yp is the interfacial tension between phases a and
system, is dependent on the convention in which /3, is chemical potential, and F is surface excess of
concentrations in the surface region are expressed for the matter.
purpose of defining the reference dividing surface. This For the same reason, the Gibbs—Duhem equation at
dependence on conventions may have discouraged constant temperatures and pressure (which is the form
theoretical investigation, in this field. We will show, employed by most surface scientists) is limited to systems
below, that this defect of convention can be with three or more components:
removed.

Nomenclature and notation are, all too often, not given
their due, as ingredients in the advancement of ther-
modynamics. The common attitude of theoreticians is, to
embody their own understanding of thermodynamics in
notation which, if properly interpreted, says all that needs

N'2 d ='E i /LI

=
N dp 0

to be said. But their interpretations are not always where N is the number of moles in i in the designated
accessible to subsequent workers, and so sometimes are phase. Defay et a!.6 have pointed out that measurements
lost. It may even be questioned whether the interpreta- on ordinary 2-component, liquid—vapor systems are made
tions existed at all, or were clear, in the minds of the in air or an "inert" gas, and if the component that
pioneers. Gibbsian surface thermodynamics is a case in comprises the gas phase is not appreciably adsorbed at the
point. If a notation could be introduced which made the liquid—vapor interface, the ternary system may, as a good
interpretations clear, it might remove much of the approximation, be treated as a binary with the Phase Rule
well-known abstractness and lack of usefulness of surface relaxed.
thermodynamics. A part of the contribution of this paper For a binary, liquid—liquid system, this treatment, i.e.
will amount to a very simple change in notation, which eqn (2) with n =2, cannot be employed. Guggenheim
clarifies the interpretation of certain concepts which erred in this regard,7 and obtained an incorrect set of
Gibbs left obscure. equations for liquid—liquid systems.
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Three-phase systems may exist, in which the number
of components is one, or two, or three. We will be
interested, here, in binary or ternary systems in which
there is a non-zero contact angle 0. At constant
temperature and pressure, these are invariant. Hence,
only if there are four or more components, can the Gibbs
equation at constant T and P be employed.

Since the differential, djt,, and the derivative
(3pj/3pi>r,p do not exist in an invariant system, we should
not even write the differential form of the Gibbs equation
for a binary, without noting that both T and P may not be
kept constant. If, then, we allow T or P to vary, we are
led to the conditions under which a Gibbsian treatment of
adsorption can be carried out for a binary, liquid—liquid
system: variation along the saturation line of the phase
diagram, i.e. variation such that

il=d, i=lor2.

We now consider the Gibbs equation, subject to these
limitations.

dyap = S" dT + F dv,.

We designate the saturation condition, i.e. eqn (3), by the
subscript "sat." Then from eqn (4), for a binary, 2-phase
system,

—[], sat
S +, F[1] sat

E] sat

2

F, [']T, sat

We now undertake the problem of the locations of
Gibbsian dividing surfaces relative to the plane that we
intuitively recognize as the "physical" surface. Actually,
the latter has a unique definition only for a molecularly
smooth solid. And, even for the smoothest possible solid
surface, the F, =0 surface (where substance 1 is the
principal component of the solid) does not necessarily
coincide with the physical surface.

To consider the distance parameters directly, we find
that it greatly increases clarity to introduce a minor
novelty of notation. It is universally recognized, of
course, that in eqn (4), S and F are defined with
reference to an arbitrary dividing surface. We now
propose to write

— = F
[LL]

. (9)
T,P j 0/i T,P

Gibbs' discussion of a one-component system, referred
to above, can be put in the following form. The two
conditions specifying dividing surfaces are: "t", meaning
the surface of tension, and F, =0. Let A,, be the distance
between these two surfaces. Then

FAtta'. (10)

For a liquid—vapor system appreciably far from its critical
temperature, with f3 designating the vapor phase, cP CIa,

A,, F,()/ca. (11)

(3) Gibbs' conjecture amounts to the hypothesis that A,, is
negligible. For a liquid—solid one-component system, the
approximation, eqn (ii), cannot be made. However, for
such a system, the "surface of tension" does not have the
same meaning as it does in a liquid—vapor system. Indeed,

(4\
it has no operational meaning at all.

To extend this discussion of distances to a binary
system, consider Fig. 1. A column, of unit cross section
area, extends from z =0 to z =L. The interface between
phases a and 13 lies parallel to the xy plane; the shaded
area, in Fig. la, indicates the regions in space where an
appreciable concentration gradient exists. In Fig. ib, the
gradients of composition are indicated, together with the
F, =0 and F2 =0 dividing surfaces, which will not in
general coincide in space. The distance, A,2 is obtained as
follows. Let the volume of the cylinder be V. Since the

(6) area of the cylinder is 1 cm2,

V=L =b+(L—b)
=z,+(L —z,)=z2+(L —z2). (12)

Taking the F, =0 surface as the reference surface, we can
write for N, (the total number of moles of substance 1 in
the column)

N, = Z,C,a + (L —z,)c,. (13a)

With respect to the surfaces at z2 and at a general
location, b, respectively,

N, =Z2C,' + (L — z2)c,'3 + (13b)

dyap = S dT + dp1 (7)

where "(b)" refers to some objective criterion, b, that
specifies the reference surface. The best-known of such
criteria is, that the surface excess of one component is
zero. We further propose that the superscript designating
the dividing surface should never be omitted. It is our
contention that the reference surface is an indispensable
part of the Gibbs equation, and to fail to designate it is to
hint at the possibility that it might even be eliminated as a
concept. Speaking heuristically, we may refer to the
adage, "Out of sight, out of mind."

With reference to the F =0 surface, the Gibbs equation
is written:

For substance 2,

A•b — Zb = —Ab. (15)

A,2 = z, — z2 = —A2,.

(5)

= bc,a +(L —b)c, +F,. (13c)

N2 = Z2C2a + (L — z2)c2 (14a)

= Z,C2' + (L —z,)c2 +F2' (14b)

= bc2a +(L — b)c2 + F2. (14c)

With positive sign defined as in Fig. 1, we set

That is, for example,

dyap = S0() dT + F' dji1 (8) We designate component 1 as the major component of
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(b)

F, o, F2 >0

F2o,1 >0

(b)

zb,F1

phase a (the lower phase, in a gravitational field) and we
define the concentration differences as

— Ci'3, iC2 C —

Eliminating N1 between eqns (13a) and (13b), and N2
between eqns (14a) and (14b),

=

= = —A12&2.

In a similar manner, we obtain

= AlbCl (17c)

A2b ic2. (17d)

By further simple manipulation, we obtain

= ç1(2) + (Aib —

= F12 + A2, ZC1

F2 =F2°+Alb&2 (18b)

ç,(b) (Al2+A2b)Ict (l9a)
= (A21 +A1b)Lc2.

If we consider a second arbitrary condition d (not one
of the F = 0 surfaces), we find that

j-'(b) —
Abd = for each i. (20)

The F's can be also expressed in terms of the
integrated concentration functions, c1(z) and c2(z). Thus,

(16)
ç1(O=0= c1(z) dz —J c dz — j c1'3 dz (21)

jZt +JL [c1(z)—c1'3]dz

(l7a) b

(lTh)
F1= J [c1(z)— Cia] dz + lb [c1(z)— ci'3] 0. (22)

We may now employ the complete Gibbs—Duhem
equations for the two phases, to evaluate 8 /3j.t.

V dP —S dT= N1 dp +N2 d2 (23a)

V'3 dP — S'3 dT = N1'3 dp + N2'3 dp2. (23b)

Here, V and S are the volume and entropy, respectively, of

(18a) the phases denoted by the superscripts. Dividing by V
and V'3, we obtain

dP —Sj dT= Cia djti + c2a dp (24a)
dP — S'3 dT = c1'3 d1 + c2'3 d/L2 (24b)

(l9b) where S is entropy per unit volume.
When mutual solubilities are low,t i.e. c2a a

c ' c2'3, we may write,

dP — S dT= cia dp (25a)
dP — S'3 dT= c2'3 d2 (25b)

[] sat
=

z

Fig.!. Concentrationproffles and dividing surfacesforabinary, liquid—liquid system.

tlf this approximation is not made at this point, the derivation is
more general but somewhat more lengthy. If the general
development is employed, with the low-solubility approximation
made at the end, the result is exactly the same as reported here.
The more general treatment will be reported elsewhere.8 [ 8P2]

1

9P T, sat
= (26b)
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Equation (6) can now be put in the form,

_[] ç(b)
a

T,sat C1 C2

F (2) (1)
1 2

Cl C2

Since, when mutual solubilities are low, the concentra-
tion of the major component in moles per unit volume is
the inverse of the molar volume Vm, we have as an
excellent approximation,

1 (0yap\
1 V3P),sat

F (1) — 1 faya'\
2

sat.

Rearranging eqns (17a) and (iTh), in the case of low
solubility,

A — (2), a_ (1)j 3
12 I /Ci —— 2 JC2

Combining with eqn (28), we obtain

— It9YapA12 — —j —L T,sat.

Gibbs1 has given a physical interpretation of ay/8P: it
is the change in volume of the system, that accompanies
unit increase in interfacial area. A volume divided by an
area is, of course, equal to a distance.

3. THREE.PHASE SYSTEMS

We have already described the Phase Rule constraints
on 3-phase systems. The discussion of the A's for dividing
surfaces can be carried over intact, from binary 2-phase
systems, as regards interfaces, to regions far from the lines
which bound them. In addition to the surfaces of tension
which are associated with a two-phase system, there is a
line of tension.9'1° If the line of tension is curved, there
exists an inward hoop-stress that is the two dimensional
analog of the Laplace pressure across a curved inter-
face.11 We will, in what follows, restrict the discussion to
cases in which the 3-phase line is straight.

Associated with each of the three interfaces in a 3-phase
system, there will be one F 0 dividing surface for each
component that is present. For a system in which 0 >0,
the three surfaces of tension must be confluent at the line
of tension; but this does not necessarily mean that
Gibbsian dividing surfaces are confluent at a line. Rather,
they will come together in a region, a volume which lies
around a line, which is the analog of the interfacial region
between two bulk phases. Somewhere in that volume lies
the line of tension. Compare the situation in a two-
dimensional, two-phase system, where the physical
transition occurs over an area which encloses the
geometric line of contact.

When we discuss line tension, 'y', or linear free energy,
we mean the excess free energy in the system over that
which would be present if the three interfacialfree energies
(and other surface excess properties) were constant, all the
way up to the line of confluence of the interfaces. The
excess free energy per unit length of line is analogous to
the excess free energy per unit area, the surface free
energy.

If in a liquid—liquid—vapor system, no surface active
components are present, and if the molecules from

p27'
liquid 1 adsorb to a negligible extent at the liquid 2-vapor' I interface,12 the confluence of the various F = 0 surfaces
will be in the region close to the line of tension, where

(28)
gradients of local concentrations exist. For each compo-
nent 1, the three F = 0 surfaces, extrapolated into the
3-phase region, will in general enclose a triangular
prismatic volume. These prismatic volumes for the
different components i, j, . . . will have parallel sides, of
course; but they will be displaced, one from another, and
will have different cross-sectional areas. If there is
appreciable surface activity of any component at any
interface, then the F = 0 surface for that component will

(28a) be spatially removed from the corresponding surface of
tension (see below) and the lines of intersection of that

(28b)
surface with other F = 0 surfaces will be more or less far
removed from the region around the line of tension.

In principle, there should be a one-dimensional analog
of F, i.e. a linear excess mass, for each component. Let us
call it F, where (b ) designates some criterion, just as in
eqn (7). For a 2-phase film on a Langmuir trough, this
concept can easily be grasped, with respect to the
boundaries of the 2-dimensional phases, by analogy to
three-dimensional systems.

Some new considerations arise, however, in a 3-phase
(30) system with 0 > 0. For such a system, we can write the

linear excess mass F with respect to the line of tension:
F", for each component i. In general, these F(ts will be
unequal, and none will be zero. There will exist a F 0 line
for each component i, analogous to the F, =0 surface for a
component at an interface. If there are three components,
there will be three F/ = 0 lines, and they will be at the
edges of a triangular prism. (There is no obvious physical
significance to the planes that comprise the sides of the
prism.) With respect to each F,' = 0 line, there will be an
excess mass of each other component, f/(1). Therewill also
be linear analogs of surface entropy and total energy, for
example S' and U'1.

At present, there do not exist any general, practical
methods of measuring line tension. If a time comes when
such methods become available, it will be worthwhile to
investigate the linear analog of the Gibbs equation.

When one of the phases is solid, the above arguments
hold, with the exception that the F =0 surfaces,
extrapolated, will not intersect in such a way as to form a
prism. Indeed, the FISL and surfaces will not, in
general, interect at all, if the solid surface is planar (see
Fig. 2). The region in Fig. 2a, between the two planar F1 =0
surfaces, requires the (novel) formal definition of F1 as
being based on the concentration profiles along a plane
perpendicular to the solid surface. Then the hump in the
F1 =0 profile, in the region of the 3-phase line, corresponds
to the fact that F1'2 >0, for the system sketched.

4. DISCUSSION OF SURFACE EXCESS FUNCTIONS

A question may now arise, because of the conventional
—used in the Guggenheim—Adam account,5 noted in the
Introduction. Is not the dependence of F on arbitrary
definitions incompatible with the theory we have just
developed, in which A12 is a unique quantity? To answer
this we note first that the Guggenheim—Adam term,
"convention," is ill-chosen, because its common interpre-
tation is the antithesis of "absolute." Actually, however,
all the "conventions" (N, M, etc.) correspond to what we,
here, refer to as "b" conditions: unique specifications for

(29)
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Fig. 2. (a) Dividing (1', = 0) surfaces in a solid—liquid binary system
with a non-zero contact angle, extrapolated as planes. (b) A
possible confluence of a F1,, =0 surface with a rl,SL =0 surface.

geometric surfaces. And the values of any such F's can in
principle be obtained uniquely as functions of F12 and
12(l). Howçver, we note in passing that the formulas given
by Guggenheim and Adam for computing F1N, F1M, etc,
from F12 or f20) are based on the Gibbs—Duhem equation
at constant temperature and pressure,

N1d1+N2dj2=0,

from which the expressions

dy/d/L2 = F2 — N2F1/N1

dy/d1 =F1 — N1F2/N1

are obtained. As already shown, above, this is not a
rigorous procedure, and so the significance of the exact
values of F', FM, etc. reported5 is open to re-examination.

As Adamso&3 has remarked, "The subject.. . of the
various types of surface excess quantities. . . has been the
source of confusion to both students and research
workers." An alleviation of that confusion would be
desirable, and so we offer the following discussion and
definition.

Gibbs recognized the mathematical possibility of an
infinity of dividing surfaces, but he also saw that,
physically, one particular specification of a surface was
especially important. Mechanologists of Gibbs' day
assumed, mathematically, that density and other proper-
ties of phases were continuous, up to a geometric surface,
and then changed discontinuously. They either considered
this discontinuity to be real, or, with Mach, that the
question of "reality" was meaningless in this regard.
Gibbs saw that, if the description with the discontinuity
were taken as describing a reference system, then the
difference between the real system and that reference
system was operationally meaningful. He also saw that,
for a one-component liquid—vapor system, it was possible
to locate a surface of discontinuity such that the

P.A.C., Vol. 48, No. 4—D

quantities of matter in the real and the reference systems
were the same.

In the usage recommended by IUPAC,14 the term,
Gibbs dividing surface, refers to any geometrical surface
parallel to the interface, which is used to define a
reference system. We here propose that the term be
restricted to surfaces for which F =0 for some ith
component, in terms of moles; then for any other
component, j, the term F3 will no longer be used, but
instead, either the surface excess with respect to the
Gibbs dividing surface for component i, or F, the excess
with respect to the surface specified by the criterion, (not
convention,) b.

In proposing this, we are removing the stultifying
conventionalism that appeared to be present in the
Guggenheim and Adam treatment, which was noted in the

17
:

• Introduction. We are also alleviating an educational
Is difficulty, which is that novices in surface science often do

not realize that, in the Gibbs Equation, the concept of a
dividing surface which has an objective location in space
is a necessary part of the equation.

In fairness to Guggenheim and Adam, we should
remark that what we have done, in the theory given
above, could be interpreted as a formal generalization
from their multiplicity of F's. However, the focus of
attention is quite different, in our approach, being not the
multiplicity of F's, but the infinite number of locations of
geometric reference surfaces. From this focussing on the
surfaces, we arrive at the existence of an infinity of
different F's, each having just as much absolute signifi-
cance, relative to the GDS for that substance, as does a
non-zero temperature, relative to the zero of the Kelvin
scale.

5. APPLICATIONS

We may illustrate the distance parameter concept, using
data on Gibbsian absorption of surface active materials
such as alcohol and sodium lauryl sulfate, and with the
benzene—water system.

(a) Air—water interface. For the ethanol—water system,
the maximum value of F2w (where 2 refers to ethanol) is
reported5 to be about 6.5 x 10_b mol/cm2 at mole fraction
0.18. This corresponds to an area of about 25 A2 per
ethanol molecule. The corresponding value of A12 is 8.8 A.

Using the F'" criterion to specify a dividing surface, the
surface excess of ethanol, at 0.18 mole fraction, is
5.5 x 10 mol/cm2.5 The value of A1N is, then, 7.4 A. The
"N" surface is the surface with respect to which the total
number of molecules of both species, per unit volume, is
the same as in the bulk, all the way up to the dividing
surface; and this surface is 7.4 A from the F1 =0 surface.
This is illustrative of the computations which could be
made, using the various criteria.

For the sodium lauryl sulfate-water system, surface
tension data15 show that F is nearly constant, between
concentrations of about 2 and 6 x 10_6 mol/cm3, at about
5.75 x 1O'° mol/cm2. The value of A12, then, varies from
3 x iO A, at 2 x 10_6 mol/cm3, to 1 x iO A at the higher
concentration.

It is clear that, for systems containing a surface active
component, A12 will in general be large, and will give little
information about the molecular geometry at the inter-
face. It is easy to recognize why A12 will be large. See Fig.
3. The graphical construction for determining the location
of the F2 = 0 surface, by making the two cross-hatched
areas equal, shows that the F2 =0 surface lies well outside

(a.)

Liquid

0 surface

0 surface

Vapor

0 surface- - -________
—

Solid'

(b.)

0

0

(I)
0

0

Distance Parallel to Solid
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Fig. 3. Concentration profiles and Gibbs dividing surfaces for a
binary liquid—vapor system in which one component is surface-

active.

the region where the concentration gradients of compo-
nents 1 and 2 are appreciable.

It is also clear that the Gibbs conjecture, that A11 is an
experimentally negligible distance, is not valid with
respect to a surface active substance in a multicomponent
system. Gibbs made the conjecture with respect to a
one-component, liquid—vapor system. It may now be seen
that only with respect to non-surface-active components is
it applicable to multicomponent systems.

(b) Liquid-liquid systems with no surface active corn-
ponent. For a system such as a hydrocarbon vs water, the
copcentration proffles should not have peaks such as that
in Fig. 3, but monotonic gradients, as in Fig. 1. The two
F =0 surfaces must lie in the regions where gradients of
concentration exist; and so A12 will give some indirect
information about the structure of the interface.

The pressure coefficient of interfacial tension has been
measured for only a few water—organic systems, and we
have found little reliable data available. Perhaps the best
data are on benzene vs water;''8 the value, [ay/0P]T,sat =
—0.0007 ergs per cm2 per atm may be chosen. From this, we
compute the values of the surface functions shown in
Table 1. Here B refers to benzene and W to water.

Table 1. Benzene—water system

ABW 0.1xl08cm
Fw(B) 4 X 1O mol/cm2
r8 0.8 x 10 mol/cm2

The small, positive excesses, Table 1, correspond to an
excess density of packing of molecules in the interfacial
region, over the packing that would be expected on the
basis of the bulk densities. It is of interest to examine
several possibilities, in assigning that excess to the water
or to the benzene. Let us first assume the transition layer
to be as sharp as conceivable, and that the water density is
constant right up to, but not necessarily including, the last
layer of water molecules, and the same for the benzene. A
monolayer of water molecules would have approximately
16 x 10'° mol/cm2; and the value of Fw corresponds to
an increase of 2.5% in this concentration per unit area. A

monolayer of benzene molecules (assuming an area of
28 A2 per molecule) would contain about 5.9 x
b_b mol/cm2; and so the value of F5° would correspond
to about a 1.3% increase in packing density. This
attribution of all of the excess functions to structural
changes in one phase or the other is, of course, an
approximation, since it is the interaction that must be
considered, to give a complete explanation.

Next, we assume that, in the terminal layer of each
phase, the density per unit area corresponds to the bulk
values. If the intermolecular distance between water and
benzene molecules, across the interface, were the
arithmetic mean of the water—water and benzene—benzene
distances, which is (3. 10 + 5.28)12 = 4.19 A, then there
should be no change in volume of the system, with increase
in interfacial area. However, as Good and Hop&517 have
pointed out, an arithmetic mean is an intrinsically unlikely
relationship, for intermolecular distances. If a geometric
mean is assumed, i.e. r12 = (r11r22)112, then the predicted r12
is 4.057 A, which is 3% below the arithmetic mean. The
observed A12 corresponds to a 2% reduction of r12 below
the arithmetic mean, which is good agreement considering
the accuracy of the data. Now, it would be very unlikely
for a geometric mean combining rule to be valid unless
there was a physical resemblance, between the types of
bonds of unlike molecules to each other (i.e. benzene to
water) and the bond types of like molecules (i.e.
benzene—benzene and water—water.) And such a bond is
known to exist, between a hydroxyl and the IT electrons
of benzene.22 Its energy has been estimated as about
2.4 kcalfmol.23

Thus, considerations of intermolecular potential energy
curves will qualitatively account for the value of A 12. This
is, of course, only a first-order calculation, which does not
take into account such features as the coordination
number of water, nor the possibility of mixing of water
and benzene in the transition layer.

6. SUMMARY

We have pointed out some consequences of the Phase
Rule with respect to adsorption thermodynamics in
binary, 2-phase systems and binary or ternary three-phase
systems. We have shown that the surface excess
functions, in a liquid—liquid binary system, can be
obtained from the pressure coefficient of the interfacial
tension. From 8y/19P, we can also determine the distance,
A12, between F1 =0 surface and the F2 =0 surface. We
have proposed a removal of the convention of
definitions of various surface excess functions, which
Guggenheim and Adam had introduced. And we have
examined the nature of dividing surfaces in three-phase
systems with non-zero contact angles, and in principio,
the existence of linear excess thermodynamic
functions.

Illustration has been given of the concepts de-
veloped, for surface active compounds at the air—
water interfaces. In such systems, A12 may be very large,
and little direct physical interpretation can be given, of
such values of A12. If surface active components are
absent, A12 is small, and its value can be used in drawing
inferences about interfacial structure. The value of A12 for
the benzene—water system, approximately 0.1 A, may be
interpreted in terms of increased packing density in the
terminal layers of either phase, or the closer molecular
approach of water molecules to benzene molecules, in
comparison to the arithmetic mean combining rule for

13
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intermolecular distances. Hydrogen bonds between hyd-
roxyls and IT electron systems are, no doubt, involved.
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