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POLYMERS AT INTERFACES AND THE
INTERACTIONS IN COLLOIDAL DISPERSIONS
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Abstract—Solutions of different polymers in the same solvent are incompatible as a rule and show phase separation
when they are mixed. If incompatibility is also to be observed in systems where one of the polymer components is
replacedbycolloidalparticles, sterically stabilizedbyacover of polymer chains, will be discussed inthis lecture.

After a discussion of the applicability of statistical thermodynamical criteria for colloid stability we focus attention
on the potential of average force between two particles, V(r), and the second virial coefficient, B2.

First it is shown from general arguments that V(r) and B2 always decrease in magnitude upon addition of particles
identical to the particle pair considered. The decrease is particularly large for high molecular weight polymers.

Subsequently, the analysis is extended, with the help of simple models, to mixtures of polymer colloid and polymer.
It is predicted that B2 should decrease and may become negative when the molecular weight and concentration of the
polymer are sufficiently large. For high molecular weight polymer this is of the order of a per cent or less. More polymer
is needed for low molecular weights.

The destabilization is intimately connected with the expulsion of polymer from the interstitial spaces between
approaching particles because of "volume restriction"- and "osmotic" effects.

The predictions are in accordance with some experiments that were available. Finally the applicability of light
scattering as an experimental tool in these stability problems is stressed. Results are alsogiven of the incompatibility of
two polymers in a single solvent in which one of the polymers is masked i.e. does not scatter light.

1. INTRODUCtION

When two dilute solutions of different polymers in the
same solvent are put together, generally a cloudy mixture is
formed that upon standing separates into two phases. The
homogeneous system in which both polymer species are
uniformly dispersed is clearly unstable. One says that the
polymers are incompatible. In our laboratory we have been
working on this phenomenon and in this lecture I will
discuss the experimental methods and some results later
on.

First, however, I would like to discuss a question that is
of more interest for the colloid scientist.

At present an increasingly important class of colloidal
dispersions is stabilized by polymer chains attached to the
particle surfaces in one or another way. In Fig. 1, I have
sketched a scale of possibilities ranging from linear
polymer molecules (type A) to uncovered particles (type
F). Now one may ask: what will occur upon mixing of
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Fig. 1. Types of polymer colloids (A = linear mac-
romolecule; B = star macromolecule; C, D, E cores,
sterically stabilized by attached macromolecules; F =

nakedcore.
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different dispersions of the types A—F; are those species
also "incompatible"? In this lecture I will attempt to make
some theoretical predictions. For simplicity the discussion
will be restricted to mixtures of A (or B) with A—F.

1.1. Incompatibility and coacervation
Some 30 yr ago, Dobry and Boyer—Kawenoki' showed in

experiments with many polymers and solvents that, with a
few exceptions, incompatibility is the rule.

This can be explained by the observation that the
entropy of mixing of a solution containing large chains is
only small, whereas the energy of mixing is of the same
order of magnitude as in a low molecular weight mixture.
Slight differences in the interactions between polymer
segments are thus sufficient to give phase separation. The
effective interactions between different polymer segments
are usually unfavorable so that after phase separation has
occurred the different phases contain mainly the separate
polymer components. In fact the opposite case—in which
the effective interactions are favorable—was investigated
earlier especially by Bungenberg de Jong and Kruyt2'3
They observed all mixing of two solutions of macro-
molecules carrying ionized charges of opposite sign, gives
a phase separation in which one of the phases contains
predominantly the macromolecular "complex" and the
other phase is very dilute. They called it (complex)coacer-
vation. The term coacervation is still used frequently for
phase separations of this sort. Entering into the question of
incompatibility in the more general types of polymeric
dispersions (A—F) leads us in the first place to the more
general question as to how far thermodynamic (stability)
criteria can be used for the problem of colloid stability in
general.

2. STABILITY OF COLLOIDS

In the early days of colloid science it was felt that
thermodynamic criteria of stability could not be applied to
colloids. This was quite clear from observations of
irreversible flocculations in hydrophobic colloids. But
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even for systems as mentioned above, i.e. the instability
of a solution containing two macromolecules with opposite
charges (hydrophobic colloids), Kruyt and Bungenberg de
Jong2 found it expedient not to identify this with phase
separation in the classical thermodynamical sense. That is
why they coined the term "(complex) coacervation";
coacervation meaning here: "grouping together".

At present, however, it is felt that this view is too
restrictive. Thermodynamic criteria are used successfully
to describe solutions of polymers and polyelectrolytes,
including phase separation.

But also in hydrophobic colloids at least the effective
forces between the colloidal particles can be described in
(statistical) thermodynamical terms, and the way in which
they manifest themselves in stable states can be studied,
e.g. by measuring (Donnan) osmotic pressure or light
scattering.

However, consideration of unstable states in hyd-
rophobic colloids requires more care. This can be
illustrated with the (now) classical picture in which the free
energy of interaction (or potential of average force)
between two particles, V(r), is determined by electrical
double layer repulsion and van der Waals attraction forces.
Generally, V(r) has two minima separated by a maximum,
depending on the surface potential of the particles and the
electrolyte content in the surrounding solution (see Fig. 2).

Fig. 2. Schematic plot of the potential of average force,
V(r), for electric double layer repulsion plus van der Waals

attraction forces.

If the maximum is too small or absent two interacting
particles may reach the primary minimum in which they are
in close contact. In this state of close proximity the
minimum in V(r) can be very deep so that a spontaneous
escape is very improbable and subsequent irreversible
processes as sintering, recrystallization etc. can take place,
making it impossible to redisperse the particles by simply
changing the conditions of the surrounding solution. The
main description of instability here is the kinetics of the
irreversible flocculation process. This does not mean that
in this case thermodynamics cannot be used for partial
processes. It will depend, however, on the time scale in
which these processes occur4 and thus on the specific
properties of the system under study.

When the maximum in V(r) is high enough, two
interacting particles cannot reach the deep, primary
minimum and cannot come in close proximity. The
particles feel a repulsive force at a finite distance between
their surfaces, the magnitude of this distance depending on
the surface potential of the particle and in particular on the
thickness of the double layer.

When the depth of the secondary minimum, preceding
the maximum is smaller than the thermal energy kT, the
particles feeleffectively only the repulsion due to the steep
rise in V(r) and the system will be stable. In certain
important cases, however, where the size of the particles is
large enough, the secondary minimum can also become
deep enough to trap the second particle for some time. (In
this process no activation barrier has to be crossed as
usually occurs in flocculations in the primary minimum.)

In this case the occurrence of subsequent, irreversible
processes is less obvious than in the former one although
there is an important exception in the case of emulsions
where subsequent breaking of the intervening liquid layer
between the particles may take place after which
coalescence of the two particles occurs.

Now, when the particles always keep their individuality
in all the processes the system undergoes, there is no
formal difference between such a colloidal suspension and
a low molecular liquid. This was stated clearly for the first
time by Einstein5 in his treatment of osmotic pressure and
Brownian motion of suspended particles. It was worked
out further inparticularby McMillan andMayer,6 Onsager
and Hill.8 In this picture the particles act as "supra-
molecules ", whereas the liquid solution between the
particles merely acts as a background medium, the
properties of which only enter in an indirect way in that
they determine the properties (magnitude and range) of the
(effective) interactions between the particles. The effec-
tive interactions have a free-energy character. Formally
the pair potential between two molecules, U(r), has to be
replaced by the potential of average force, V(r), of two
particles.

This has far-reaching implications for the study of these
systems because the whole machinery of (statistical)
thermodynamics of liquids can be invoked. Recently
Snook and van Megen9 used a Monte Carlo technique and
Richmond'° used the Percus—Yevick equation to calculate
the radial distribution function, g(r), at higher particle
concentrations for V(r) as in Fig. 2.

OttewilV' will report in this conference on light
scattering experiments from which g(r) was obtained. At
present some "coacervates" are recognized as separated
phases. In systems containing anisometric particles
so-called "tactoids" have been known for a long time
although it is not certain if phase separation is due here to
the secondary minimum alone. But also in systems
containing spherical particles phase separations of this
type have been reported e.g. by van den Tempel'2 in
emulsions. Phase separation of another type, due to
repulsive ordering, have been reported by Krieger'3"4 and
Hachisu.'5"6

These considerations are not new. Martynov and
Muller17 recently discussed certain properties of
aggregate-equilibria in particulate systems. They coin the
names infra-gas, infra-liquid and infra-solids for these
systems. We would prefer the prefix "supra" instead of
"infra". Also Long, Osmond and Vincent18 discussed some
equilibrium aspects of weak flocculation.

The point we want to stress, however, is that this
approach may become of particular significance for the
increasingly important class of colloidal dispersions
stabilized by macromolecules (as depicted in Fig. 1). The
attached polymer chains can be very efficient in keeping
the particle surfaces separated at a finite distance. Theory'9
suggests that V(r) has one minimum comparable with the
secondary minimum in the classical double layer and
steeply rises at smaller r (see Fig. 3). These types of V(r)

V(r)
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B2 = — V(r T]4irr2 dr. (1)V(r)

.— r

We will first look at the simplest situation and investigate
how V(r) of a particle pair and B2 as given by eqn (1) will
change when one adds particles that have identical
properties as the pair considered. This is a special case that
can be treated in a general way and gives insights of a much
wider scope.

3. MIXTURES OF MARKED AND UNMARKED PARTICLES

Consider a mixture of two kinds of particles, 2 and 3, in a
low molecular weight solvent, 1, which plays only a role as
a background medium with a constant chemical potential.
We stipulate that all the physical properties of 2 and 3 are
identical, except that one of them is marked in one or
another way for convenience.

The main question is: how are the effective interactions
between particles of type 2 affected by the presence of
particles of type 3? More particularly we will discuss the
following process.

Take a system of particles 3 in which one considers a
macroscopic (geometrical) volume V. How will the number
of particles 3, N3, in V change when one adds particles 2 in
V and keeps them there and how will the pressure, P,
change?

In other words: how large is the "adsorption",
1' (an3/an,, of particles 3 "on" particles 2 and how
large is (aP/an2)3? Here n, = N/V and j., is the chemical
potential of component i. The device is really a Donnan
osmotic cell having a membrane permeable to 1 and 3 but
not to 2. Although such a membrane does not exist it is
sometimes possible to obtain the same kind of information
from light scattering (see section 7).

3.1. Thermodynamic route
For the chemical potentials one may write

p2/kT = const. +ln n2 +f(n,) (2)

3/kT = const. +ln n3 +f(n). (3)

Here n is number density (number of particles per unit
volume) of component i and nt = n2 + n3. These equations
merely express that all the non-ideal terms in the chemical
potentials depend on the total number density, n,, only
which is obvious because we stipulated that all the
interactions of 2 and 3 are identical. Information of f(n)
can be obtained from experiments or from a theory. So,
from the osmotic pressure, P, (of either 2 or 3 in 1) one
obtains

dP/kT dn = nt clpJkT dn, = 1 + nt df/dn = 1+ nsf'
(4)

where we write: f' = df/dn,.
To obtain (aP/3n2),, we use the following ther-

modynamic relation (see e.g. Guggenheim20)

— (aP/an3)2(3j3/an2),(3P/3n2),, — (aP/an2), —
, . (5)

u/J3jUn3)2

Substituting the eqns (2—4) one then obtains

FldP/ ,ar IT ntj —
1 + LI1 unt 6

kT\0n2,/,31+n3f' 1 dP
kT dn

Fig. 3. Schematical plot of the potential of average force,
V(r), for sterically stabilized particles with repulsive
"volume restriction" forces plus repulsive (or attractive—
depending on solvent quality—) "osmotic" forces plus

attractive van der Waals' forces.

have the same shape as pair potentials in simple liquids,
although there can be important differences in the depth
and the width of the potential well. In liquids the depths are
in the order of kT and the widths are comparable with the
size of the molecules. For the larger colloidal particles the
depths may be many times kT and the widths, although
large with respect to atomic dimensions, may be very small
with respect to the particle size.

Let us now see what mechanisms in steric stabilization
contribute to V(r).

2.1. Volume restriction and osmotic effects
In a previous paper'9 on the theory of the steric

stabilization of dispersions, two mechanisms were consi-
dered by which polymer chains attached to the particle
surface can keep the particles in suspension.

(a) Polymer chains attached to a particle surface lose
configurational entropy when they approach the (surface
of a second) particle. This was called: "volume restriction
effect".

(b) When the layers of attached polymer chains on the
two particles interpenetrate, the higher polymer segment
concentration between the particles will lead to a local
"osmotic pressure" in many cases counteracting the
approach.

Up to now these mechanisms were considered for
particles dispersed in a simple, low molecular weight
solvent. The question now arises what will occur if one
adds polymer molecules (A/B)to the solvent. We think that
similar mechanisms will operate.

(a) added polymer molecules lose configurational
entropy when they penetrate the (narrow) space between
two interacting particle surfaces

(b) segments of added polymer molecules will interact
with the segments of the attached chains

Both mechanisms will promote the expulsion of added
polymer from the space between the particles, when the
solvent is not poor. Effect (a) will be most effective when
the size of the polymer molecules is larger than the
thickness of the polymeric layer around the particles (type
E and F) and effect (b) in the opposite situation.

2.2. Potential of average force and second virial coefficient
Our theoretical discussion will be concentrated on the

potential of average force, V(r), and the second virial
coefficient, B2, of suspended particles of the types A—F in a
solvent containing polymers of the type A/B, where
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This equation reveals that the effective interactions
between the particles 2 are damped out when n3 increases.
So when (1/kT) dP/dn,> 1 and n3 n2 one has

1 1 0P\—i—i —*1
kT \3n2/3

Let us consider more particularly the second virial
coefficient of component 2 (in 3), B2(n3), as a function of n3.
The second virial coefficient is defined by

1 /aP\
kT \onJ,3

= 1+ 2B2(n3)n2 +

'idP
2B2(n3) = 1

1 dP J
\3idflt/n=n3.

Also this equation reveals several interesting features.
When (1/kT) dP/dn, ' 1, e.g. when n3 is large, then

2B2(n3)—*--

which is small. When (1/kT) dP/dn = 1, B2(n3) = 0. The
"adsorption" of component 3 "on" component 2,
F = (0n3/an2), can be obtained in a similar way

(3p3/3n2), — — n3f' orF (0n3/0n2), = —
(aj3/an3).

—
1+n3f"

1 dP1
J

ldP.
fl2+ fl3j—

(11)

(12)

This equation reveals that for (1/kT) dP/dn > 1 and
fl3 fl2

a result one would expect. In particular for n2 —*0 one
obtains

/ 1 dP

r— IkTdnt
1

1 dP

\ kTdn

F° = — 2n3B.

Identical equations are obtained when one uses a statistical
approach (see appendix 1).

Let us now make use of eqns (9 and 14) in two simple
cases: hard spheres and polymer molecules.

3.2. Hard spheres
For the compressibility we use the accurate, but not

exact equation of Carnahan and Starling.21

dP —1 8 [144)]+

Here n is either n2 or n3 and 4) is the volume fraction of the
spheres

(17)

(7) where u is the sphere diameter.
The second virial coefficient of spheres 2 among

(identical) spheres 3 and the adsorption of spheres 3 on an
(identical) sphere 2 is given in Figs. 4 and 5.

One observes that B2(4)3) levels off at increasing 4)3 and is
reduced to 30% of its value at 4=0 when 4 0.4.

'8' Also the (negative) adsorption is asymptotic to the value
—1, and is about —0.95 for 4) 0.4.

3.3. Polymer molecules
For our illustrative purposes we use the (approximate)

Flory—Huggins theor?2 (although one could use experi-
mental values) for the osmotic pressure (against

(9) solvent, 1).

Fig. 4. Reduced second virial coefficient 2 =
B2/((2/3)iru3) of hard spheres, 2, in the presence of
identical hard spheres, 3, as a function of the volume

(13) fraction, 4,of the hard spheres, 3. With 4 = (l/6)iro33n3,
where 03= hard sphere diameter and n3 = number density

of 3.

Fig. 5. Adsorption, F°, of hard spheres, 3, by an identical
(16) hard sphere, 2, as a function of the volume fraction, 4, of

the hard spheres, 3.

With eqn (6) one finds

(10)

0 0.2 0.4 0.6

'ff3

With eqn (9) it follows that

(14)

(15)

1'3



Polymers at interfaces and the interactions in colloidal dispersions 475

=—[ln(l—v)+ (1_-)v +X12V2] (18)

where Wi is the volume of a solvent molecule, m is the
number of segments in the chains; v the volume fraction of

polymer, and X12 the solvent—polymer interaction parame-
ter, which is taken to be constant here.

Analogously as before one obtains:

2B2(v3) — I3+ l2X12
m2w 1+mv3['I'3+l—2X121

r = (3v3'\ — — ['1t3 + 1— 2X121mv3
—

1 + mv3N'3 + 1 2X121

where I3 = v3(1 — v3)1. Calculated results are given in the
Figs. 6 and 7 for m = 2000 and X12 = 0.45 (moderate
solvent).

Fig. 6. 22 =2B2/(m22w1) of polymer molecules, 2, in the
presence of identical polymer molecules, 3, as a function of
the volume fraction, v3, of polymer 3 ( ). Also in the
presence of different polymer molecules, 3, with 22 =
Y33 = 0.10 and 23 = 0.11 ( ) (see section 5). v3 w3n3,
where (03 isthe volume of a polymer molecule, 3, and n3 the

number density.

It is clear that the damping of the effective interactions
takes place here at much smaller concentrations than for
hard spheres. It is apparently the concentration range
where the individual polymer molecules begin to penetrate
each other.

According to eqn (1) it is an integral of V(r) that
decreases. What does this mean for V(r) itself? For hard
spheres, V(r) is very simple for n3 -0:

V(r)=+oo for 0<r<o
V(r)=0 for rcr.

Because V(r) in the interval 0< r <o does not change
upon adding other spheres, V(r) must become sufficiently
negative in the interval r o to make B2 smaller. (It turns
out, in fact, that V(r) and g(r) become oscillating
functions.)

For polymer molecules V(r) is probably a monoton-
ously decreasing function (if X12 <0.5) for the whole

Fig. 7. Adsorption, F°, of polymer molecules, 3, on an
identical polymer molecule, 2, as a function of the volume
fraction, V3, of polymer 3 ( ). Also in the presence of

different polymer molecules, 3 ( ) (see Fig. 6).

interval r =0 —* x Addition of other polymer molecules
probably also decreases V(r) monotonously.

Although B2 decreases upon adding particles of the same
kind, its sign will not alter. One may anticipate, however,
that, say, e.g. a positive B2 may become negative when the
added particles are different. To understand when this may
occur we investigated more closely how V(r) and B2(43)
change due to "volume restriction" and "osmotic" effects.
We will consider a simple model of volume restriction, i.e.
the interaction between hard, spherical particles.

U1(r) = oo for r <a (22)

U1(r)=0 for r>ô
ô(o2+o3). (23)

At n2, n3 — 0 the potential of mean force, V(r), between
particles, 2, is equal to U22(r). How will V(r) change when
n3 is finite (and n2 = 0)? This can be solved in a simple way
if n3 is small. In Fig. 8 it is shown how a particle 3 can only
partially penetrate the space between the pair.

This implies that the thermal impact forces on the pair
from the "outside" are only partially compensated by
those from the "inside".

The pair of particles 2 feels an effective force, K(r),
driving them together. This force is simply to calculate if n3
is so small that seldom more than one particle, 3, interacts
with the pair. In that case K(r) is proportional to n3kT. A
simple calculation shows that

K(r)= _2[1—(r2/a2)]; U2 r 2ã. (24)

The potential of average force is

1

and

(19)

(20)

0.1

2Y7

0.05 0.1 0.15 0.2

-0.03 - 0.05 0.1 0.15 0.2

4. VOLUME RESTRICTION EFFECTS

4.1. Interactions in mixtures of hard spherical particles
Consider the effective interaction of a pair of spheres

of diameter o2 in a dilute suspension of spheres of
diameter o3. The pair potential of two hard spheres (i,j) is
given by

(21)

2o2
V(r)=Jr

K dr = _r&3[i —p +p3]n3kT
p = na; O2I p 2. (25)
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P=nkT

Fig. 8. Interaction of hard spheres, 3, with a pair of hard
spheres, 2. Excluding surface ( ). The arrows
indicate the non -compensated pressure exerted by the
spheres 3 on a sphere, 2. Its component along the
horizontal axis, integrated over the indicated surface area

(f ) gives the effective force K(r).

One observes that V(r) is negative in this interval,
having a minimum value, —?irã3n3kT, at r = a and zero at
r =2. [V(r) =0 for r 2o in this approximation and oofor
r <ã

Equation (25) can be rewritten as

V(r)/kT =— (i +)34)3 [i —p +p3]

where 4)3 = (l/6)lrcr33n3 is the volume fraction of 3.
The second virial coefficient of particles of kind 2

follows by substituting eqn (26) into eqn (1)

2 31 31 t73\
B2(43)=ircr2 L1) I(ci;o'3/cr2)

I(a; u3/cr2) =
[exp {a(i —p +3)} —1]p2 dp

(28)

a(l+)34)3. (29)

Integral, I, must be calculated numerically except for

S =

For example for U3 = cr2, the eqns (27,30) give

B2(4)3) 1TcT2 [1_--4)3]

which is in accordance to the eqns (9, 16).
These equations are valid if n3 is sufficiently small. At

larger n3 the effect of "crowding" of spheres 3 around the
pair has to be taken into account.

A good approximation is provided by the "scaled
particle" theory23 and the Percus—Yevick equation.24

We will not pursue this because Lebowitz and
Rowlinson24 have shown that liquid—liquid phase separa-
tions are improbable in hard sphere mixtures.

Our simple treatment shows, however, the origin of the
effective attraction forces in these systems.

In the next section we will consider how similar volume

restriction effects can play a role in some types of polymer
colloid mixtures.

4.2. Mixtures of hard spheres and polymer molecules
For the interaction of a polymer molecule and a hard

sphere one expects an effective repulsion, partly because a
polymer molecule in proximity to the sphere surface has to
adopt less probable conformations, which decreases the
entropy, and also because of increased local segment
densities (volume restriction and osmotic effects). (We
assume, of course, that no adsorption of the polymer takes
place.) In a theta solvent the "osmotic" effect vanishes.

When the sphere is larger than the polymer molecules,
one could, crudely, assign to the sphere—polymer molecule
interaction a hard sphere repulsion starting at r < o23. We
expect a similar interaction between a polymer molecule
and a pair of spheres.

The volume restriction effect has been worked out by
Richmond and Lal for a random flight chain between two
parallel plates (see Appendix 3 and Ref. 40). The pressure
exerted by one polymer molecule confined between two
plates is much smaller than kT when (2rg)2/h2 ' 1, and
much larger than kT when (2r/h2 1, where rg is the
radius of gyration of the chain and h the distance between
the plates. So one would expect that cr23 should be assigned

26 a value 022 plus a number of the order of rg.
Also two polymer molecules may exert a repulsion on

each other (when X12 < 0.5) due to the "osmotic" effect, to
which one, crudely, could assign a hard sphere interaction
at r<o33.

Usually, cr23 > (U22 + cr33), where if22 = cr2, the sphere
diameter. In this way one obtains a model system, known
as the "non-additive" hard sphere model in the theory of

(27) liquids, with the pair potentials:

Even for this system, V(r) is not simple to formulate.
Let us consider therefore the special case when cr33 = 0.
This would resemble a polymer at the theta-point.

(a) Mixtures with cr =0. It will be clear that the
(31) equations of section 4.1. apply, not now restricted to very

small n3.
This opens the possibility for B2 to become negative if n3

is large enough. Some calculated results are shown in Fig.
32 9. One observes, e.g. that for o3/o2 = 2 to 1/4, B2 =0 at

4 0.1—0.3 and B2/(iru23) = —10 at 4 0.8—1.0. The
relatively small variation in these numbers is caused by the
fact that for the larger values of u3/o2, the width of the
potential well increases but its depth decreases and vice
versa.

The absolute values of 4suggest that 10—100% of the
volume of the solution must be occupied by polymer
clouds in order to have a sufficiently negative B2 to give
phase separation.

(b) Mixtures with cr22 = 033 and cr23 = 1.2022. A negative
value for B2 is not a guarantee that phase separation will
occur at higher values of n2. It is therefore of interest that
Melnyk and Sawford23 investigated the case of cr22 = cr33

and cr23 = 1.2cr22 in great detail. From computer simulation

U22 = 00

U22 =0

LI33 = 00

U33 = 0

U23 = 00

U23 = 0

r <022
r 022
r <033
r 033
r <023
r 023.

a -0, when it becomes

I=a[1—s3(1—s+)] (30)

(33)
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2B2(v3) — 722 + I3
m22.o1 —

1 + m3v3(733+1'3)
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Fig. 9. Contribution, 1— 12, to the reduced second virial coefficient, 132 = B2/((2/3)i,o2), caused by component 3, as a
function of the volume fraction of component 3, for several ratios 023/022. (022 = 02; 033 = 0; 023 >0).

and from perturbation theory they found that fluid—fluid = !.TL_i_+ + \. g = +
phase separation takes place with a critical point at n2 = n3

g w v1 (.°i vi
and (n2 + n3)(ir/6)o2 =0.221, i.e. at a total volume fraction (35)
of 22%.

These theoretical considerations suggest indeed that where the y 's are taken constant; m1 =wIwi.
destabilization because of "volume restriction" may Expressed in the X-parameter notation, y = 1— 2Xii,
occur. The absolute values of 4) indicate that relevant 723 = 1+X23 — X12 —

X13. Using the equations of section 3.1
concentrations for the higher molecular weight polymers one obtains (see Appendix 2) the second virial coefficient
would be a few percent or less. of polymer 2,

We will now turn our attention to the "osmotic effect".

5. "OSMOTIC EFFECT"

We wili first look at the simplest case, i.e. a mixture of
(36)

polymer molecules (both of type A/B in solvent). 1+ m3v3(y33 + 'I'3)
Experiments on such mixtures will be reported in section 7.
section 7.

5.1. Mixtures of polymer molecules (37)
We use the theory of Flory and Huggins22'26'27 because of

its simplicity, despite its known shortcomings. For the free
energy of mixing per unit volume, g, of a ternary mixture of
polymer 2, polymer 3 in solvent 1, one has

g/kT = n ln v1 + /3hoi. (34)
38

Here v = naij is the volume fraction of component i
occupying a (constant) volume, w, per molecule. v1 + v2+ which is the familiar result.
v3 = 1. Furthermore, f3 is a free energy excess function (b) when the polymers 2 and 3 are physically identical,
depending on V2 and v3 at constant temperature, T.
Because eqn (34) is used in its differentiated forms, it is 2B2(v3) = 722 +1'3

(39)convenient to formulate the interaction parameters that m22w1 1+ m2v3(y22 + I'3)
occur in 13 bymeans of the derivatives, gij = 32g/dvi3v. We
write, (i = 2,3) in accordance with eqn (19).

— m3v3[72 + )43 —2+2'I'3(y23
— y±)]

and similarly for the "adsorption" of 3 on 2 at 4)2=0,

r = (3v3/dv2),, = — m3v3(y23 + '1P3)

1+m3v3(y33+'1P3)

where P1 = v(1 —v1;y+ = ('y22 +733); y— = (722 —733).
To unravel eqn (36) let us look at some limiting cases.
(a) when polymer 3 is absent,

2B2r722l2X12m2 w
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(c) the full eqn (36) shows the same kind of damping
effect on B2 as the eqns (19, 39) do in the denominator. It
also shows that B2 may become negative, if the term
between the brackets is positive. This is so when 723 > y+,
which is equivalent with the condition that X23 > 0, which
seems to be the rule in dilute solutions.

For illustrative purposes we have drawn curves of B2
and I in Figs. 6 and 7 for 722 = y33

= 0.10; 23 =0.11 and
m2 m3 =2000.

Thephysical picture of the interactions can be described
as follows. In a neutral to good solvent, polymer molecules
resist overlap with other polymer molecules, because the
segments exert an effective repulsion on each other, either
explained as separate entropy and energy effects or as an
overall effect of an excluded volume of the segments on the
chain configuration. This is clearly shown by the negative
value of F. Thus if one enforces (by any device, e.g. an
osmotic cell, see section 3) an increase in the segment
density of component 2 in a certain region of the solution,
V, segments of component 3 will diffuse out of V, thus
relaxing the increase in segment density and hence the
applied stress.

This explains the damping effect on B2 and V(r). The
relaxation is less effective for small kinetic units (low m3)
and for small v3. The effects are enhanced when the
effective repulsion between unlike segments is larger than
the average repulsion between like segments (723 > -y+).

The Flory—Huggins equation is rather poor for calculat-
ing a second virial coefficient because it assumes a uniform
dispersion of segments which does not occur at low v2.

In the better theory of Flory and Krigbaum22'28 (for
two-component solutions) the Flory—Huggins equation is
applied locally to the overlap region between two
interacting polymer molecules. In this way they obtained a
B2 that contains the parameter 722 = 1 — in eqn (38),
multiplied by a coil size factor which slowly decreases with
increasing coil size. In a better theory eqn (36) should also
be supplemented with several such factors reflecting the
coil sizes of 2 and 3. When, however, v3 is so large that the
intermingling of the segments of 2 and 3 is more complete, a
single factor reflecting the coil size of 2 alone should be
sufficient to supplement eqn (36).

5.2. Polymer colloids (A —E)with added polymer (A/B)
Also in this case the "osmotic" effect of overlapping

clouds of segments, attached to the particle surfaces, is
characterized (for a low molecular weight solvent) by the
factor 722 = 1— 2X12 multiplied by a factor depending on the
extension and shape of the overlapping segment clouds, as
a function of the interparticle distance.19 So, in principle,
the same mechanism will operate as described in section
5.1., i.e. expulsion of (segments of) polymer 3 from the
overlap region and a decrease of the repelling force
between the particles. When the intermingling of the
segments 2 and 3 is good one could, as a first
approximation, replace the factor 722 by those found in
either (39) or (36).

6. DESTABILIZATION OF POLYMER COLLOII)S

BY ADDED POLYMER

Two mechanisms were proposed in the previous
sections that predict a destabilizing action of polymer
added to a polymer colloid: a "volume restriction"—and an
"osmotic" effect.

Both will occur simultaneously and it is difficult at this
stage to give a quantitative account of their relative
importance. (One must also consider that in itself the

decomposition of the total interaction into two superim-
posable effects is a simplification, that is only justified
when the segment—segment interactions are small.29 We
disagree with Evans and Napper3° that the "osmotic"
effect already encompasses the "volume restriction"
effect. This would mean that at the theta-point a chain
would not resist compression which is clearly not true.)

Both effects increase with increasing molecular weight
and concentration of the added polymer. Quite small
concentrations (order of per cents) should be effective with
high molecular weight polymers. It is not feasible here to
make a general scheme of predictions. In order to make
judgements the following parameters are of importance.
The size of the polymer molecules with respect to the
particle core size and the thickness of the protecting
chains. The surface density of the protecting chains. The
solvent quality with respect to added polymer, attached
chains and particle surface.

Some of these factors are also of crucial importance for
the adsorption of polymer which we assumed to be absent.

Finally we have to remember that other forces like van
der Waals attraction and electric double layer repulsion
may play an important role, especially in aqueous
solutions.

6.1. Experimental evidence
(a) Creaming rate of latex. We have not yet made a

systematic literature search, but we found an older paper
of Vester31 on the increase of the creaming rate of Hevea
latex upon the addition of "strongly" hydrophilic colloids
(several natural plant polymers, as pectin) and also
Na-poly(acrylate).

He found an increased creaming rate upon adding
0.2—1% polymer toa40% latex suspension. The larger sized
polymers (larger [ri]) were most effective. He also obtained
separated phases with a sharp boundary. At smaller latex
concentrations clustering was observed and sometimes the
formation of separated, rather viscous liquid droplets with
a low interfacial tension. All these phenomena were
reversible.

(b) Flocculation of sterically stabilized latex. Recently,
Li—In—On, Vincent and Waite32 found that aqueous latex
dispersions, sterically stabilized by poly(ethylene oxide)
(PEO) chains did flocculate above a certain, critical
concentration of added PEO. The critical concentrations
decreased from 55 to 27% with increasing molecular weight
of the PEO (M3 =200—4000), in accordance with our
prediction. Possibly the damping effect of the added PEO
alone suffices to decrease the steric repulsion effectively,
so that the long range van der Waals forces between the
latex particles will induce flocculation. Also the yi 's
between the segments could be somewhat different
because of the small chain lengths. Osmotic measurements
on high molecular weight PEO with low molecular weight
PEO plus water as membrane-permeable-solvent could
give more insight in these interactions. For the observed
partial redispersion of the latex at still higher concentra-
tions of added PEO we do not have a ready explanation.

(c) Microemulsion with added polymer. We did some
preliminary experiments and mixed a clear 50% mic-
roemulsion of water in benzene (stabilized with oleic acid
and hexanol) with a 2% solution of high molecular weight
poly(styrene) (M3 - 2 x 106) in benzene (containing some
hexanol) and obtained a turbid mixture that separated after
a day into two clear (benzene containing) separated phases
with a small interfacial tension. The smaller, upper phase
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was rather viscous and contained apparently most of the
poly(styrene).

7. LIGHT SCATFERING OF A MIXTURE OF

POLYMER COLLOIDS

Consider a mixture of two polymeric colloids 2, 3, in a
solvent, 1. From the multicomponent theory of light
scattering33 one obtains for the scattering of the mixture
over that of the pure solvent

R9 = (2ir2n2/A04)(1 + cos2 O)kT

IIôn\210c2\ 13n\213c3\x I—) j;:i;L3,1+ ti—) L1
+2

'3c2)\ac3J \3/.L3J,2P1

Here, R9 is the relative scattering (Rayleigh ratio) of the
solution over that of the solvent, n and A0 are the refractive
index of the solution and the wavelength in vacuo of the
light used; c1 is the concentration in mass per unit volume
and p is the chemical potential of component i. 0 is the
scattering angle. This equation only applies for 0—0 and
when multiple scattering is negligable. The last condition
implies either that the refractive indices of the colloidal
particles must be comparable with that of the solvent or
that their dimensions are small with respect to the
wavelength of the light used, which are rather severe
restrictions. There are, however, a number of cases where
this applies (e.g. polymer solutions; latex particles in oil).

Let us now consider the (important) special case where
0, so that the light scattering of this component is

masked. Then eqn (40) can be written as follows

(2ir2n2/A04)(1 + cos2 0) c2/R9

1

(aP Ii+23n13c3/c9c3\
1_i

ij 3c2I,31.,L 8n/8c2
(41)

with (aP/dc2),36 = c2(ap2/ac2),311.
Thus by choosing component 3 and A0 so that 9n/9c3 0,

one may determine the otherwise inaccessible quantity,
(aP/ac2),l,L, directly, and by choosing another A0 for which

dn/dc3 is different from zero one may also, in principle,
determine the "adsorption" 8c3/ac2 as well. We will
this on a system containing poly(styrene)(PS,2) and
poly(isobutylene)(PIB,3)in toluene. The dn/dc of PIB 0.

7.1. Experiments
I will show some of our experimental work performed by

Dr. van den Esker for his thesis.34 Full details will be
published elsewhere.35 The following polymer pairs were
used in toluene:

(I) PS(MW = 0.194 x 106) + PIB(M = 0.156 x 10)
(II) PS(MW = 0.526 x 10) + PIB(M =0.670 x 106)
(III) PS(MW = 2.40x 10) + PIB(M =2.44x 106).

(40) The mixtures showed phase separations.
Abinodal at 21°C is shown in Fig. 10 for pair II. Figure 11

shows a light scattering experiment (Zimm-plot) at
v3 = 0.0100 and A0 =436 nm, where dn/dc3 0.

The slope of the 0 = 0 line, which is proportional to the
second virial coefficient of PS in PIB, is large and negative
in accordance with the fact that the mixture shows phase
separation at higher PS concentration (see Fig. 10) and as
expected from our discussion in section 5.1.

At the point where the extrapolated line crosses the
horizontal axis, the light scattering becomes very large
(critical opalescence). At the corresponding c2, (aP/ac2)31,
goes to zero. From similar Zimm-plots at other PIB-
concentrations one thus may obtain a collection of v2,
v3-pairs where (3P/ac2)3, = 0. They constitute the
so-called spinodal curve, of which a few points are given in
Fig. 10. In our notation of the free energy of mixing, eqn
(34), the spinodal is given by

g22g33 =

where gij = 02g/ôv9v.
Using the eqns (35), this gives

/ v2+v3 1 \/ v2+v3 1722++ 11Y33++\ Vi m2v2/ \ v mv3

(42)

= (23+±!f2. (43)V1 /

Fig. 10. Binodal (0) and spinodal (V)points in the system PS(II)-PIB(II) — toluene.Critical point(S); t = 21.0°C.

PAC Vol. 48, No. 4—0

PS(ll) — PIB(U)

0.01

0 0.03 0.04
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_'c2 (1+cos2e)106
excess —1

Re moig

Fig. 11. Zimm-plot of PS(II) in PIB(II)+toluene; v3 = v(PIB) 0.01; dnldc3 0; A0 =436 nm; K =
2ir2n2(dn/dc2)2/(A04NAv).RO" =R0(comp. 1 + 2 + 3)— R0(comp. 1 + 3).

This makes it possible to obtain values for 723 when the
spinodal compositions are substituted and 722 and 733 are
given. Results are shown in Table 1. An equation similar to
(43) can be formulated for the binodal in which phase
compositions must be substituted. It turns out, however,
that this procedure is much less accurate. In this way the
light scattering method is superior.

From Table 1 one observes that the values of 723, like
those of y+ and y, depend on the molecular weights which
shows a deficiency in the Flory—Huggins formulation.

The second virial coefficients as a function of the
PIB-concentration are plotted in Fig. 12. Values calculated
from eqn (36) with the corresponding yq's at the critical

concentrations are also shown. One observes that the
decrease of A2 is indeed larger for the higher molecular
weight pairs, and for larger v3, although the latter
dependence is not quantitative. Comparison with the lower
curve in Fig. 6 shows that we are in the range just below the
horizontal axis. Kuhn, Cantow and Burchard36 and Kuhn
and Cantow37 reported second virial coefficients of PS in
benzene containing masked PMMA over a large concen-
tration range. The shape of the A2 vs v3 curves is indeed
similar as that of the lower one in Fig. 6.

They found that the v3-values at which A2 =0, v3(a2 =
0), increase with M3, the molecular weight of PMMA, in
accordance with eqn (36). The relation is not quantitative,

iö' K2 +
200 C2

crñ2 g cm3

Table 1. Second virial coefficient, A2 = B2NAvM22, of PS in PIB + toluene, as a function of the volume fraction, v3, of
PIB. v2 (spin.) if the volume fraction of PS where the light scattering goes to infinity. 'y23is the parameter of the PS/PIB

interactions. 7+ = 3(722 + 733), y=3(722 — 733)

System v3 x 102
—2A2X104

(mol cm3 g2)
v2x102
(spin) 723 -y+

0 —9.80

PS(I) 1.32
1.91

1.21
3.54

1.88
1.41

0.138
0.134

+

PIB(I)

2.431
2.43
3.02
3.53

5.10
7.26
8.36

1.231
1.12
0.85
0.68

0.134
0.137
0.141

0.101 0.033

PS(II) 0 —7.52

+ 1.OOt
1.30

3.14
4.08

0.62t
0.48

0.104
0.105

0.086 0.030

PIB(II) 2.00 4.90 0.36 0.108

PS(II1)

0
0.30
0.441

—4.86
1.00 0.46

0.241
0.077

0.072 0.030
+ 0.41

0.51

1.38
1.88

0.27
0.22

0.079
0.079

PIB(III) 0.60
0.68

2.46
3.20

0.16
0.13

0.081
0.083

tCritical concentrations.
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Fig. 12. Second virial coefficient, A2 = B2NAVM22, of PS in PIB + toluene. From left to right: system III, II, I.
V3 = v(PIB).

however. Equation (36) predicts that approximately:
v3(A2 =0) - M31,whereas they found v3(A2 =0) M3°72.
They also observed that v3(A2 = 0) is independent of M2,
the molecular weight of PS, which is in accordance with
eqn(36), but also with out expectation (see section 5.1) that
an improved theory will give the same result if v3 is large
enough.

We also attempted to measure the adsorption of PIB on
PS, F = (3c3/3c2),,3,, by performing light scattering
experiments at A0 = 546 nm where 3n/0c3 is small but finite
(= +0.08cm3/g) (see eqn (41).

We found rather large, negative adsorptions of F —2 to
—3 gram PIB per gram PS for all three pairs. Values
calculated from eqn (37) are also negative but about 50%
smaller in magnitude. This conclusion is based on the
rather inaccurate value of on/ac3.

7.2. Concluding remarks
We have found that light scattering experiments can give

very useful information on the osmotic compressibility of
one polymer component at constant chemical potential of
the other polymer component and in principle also about
the adsorption of one component on the other if one of the
components can be chosen in such a way that the light
scattering is (nearly) masked.

This could also be applied on, say, (cross linked) latex
particles in an non-polar liquid of nearly the same refrac-
tive index (to reduce secondary scattering) containing a
(nearly) masked polymer component. We are planning
such experiments in the near future, in order to test our
theoretical predictions about the destabilizing effect of
added polymer on the dispersed latex.

Acknowledgement—We thank Dr. G. J. Roebersen for performing
some of the calculations. We are also indebted to Miss H.
Miltenburg for typing the manuscript.
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APPENDIX 1

Second virial coefficient and radial distribution function
The second virial coefficient is given by the eqn (8)

B2 = f [1— e_V(]4irr2 dr. (Al-i)

Here V(r) is the potential of average force, i.e. the work that has to
be done (isothermally) tobring two particles 2 (at n2—O embedded
in identical particles, 3, plus solvent, 1) from infinity to a distance
of separation r (between their centers). V(r) is closely connected
with g(r), the radial distribution function, as follows8

e"°'T = g(r). (Ai-2)

B2 =— f [g(r) — l]4irr2 dr. (Al-3)

In our case where the properties of 2 and 3 are identical (except
for a marking) there is only one g(r), which depends on
n =n2+ n3. The integral in eqn (Al-i) is connected with the
isothermal compressibility of the whole system according to the
theorem of Omstein and Zernike38 which states that

l+n f{g(r)_i]4iTr2dr
dn,

Jo =kT. (A1-4)

Substituting this equation into eqn (Al-3) gives for n = n3

B2=--1l _kT]2n3 L
(Al-5)

which is identical with eqn (9). A similar derivation follows for F.
The average number density of particles, 3, around a fixed value for
2, is for n2—O

n3g(r) = n3 e_v((T. (Al-6)

The integrated deviation of this number density from the average
one, n3, is i'°,

= n3 f (e_T— l)4irr2 dr.
Jo

Comparing this with eqns (A1-2, 4) gives

(A1-8)

which is identical with eqn (14). A similar reasoning was used by
Benoit et al.39 to calculate B2 of deuterated PS in PS.

APPENDIX 2

Osmotic compressibility in polymer mixtures
(a) We have to formulate the osmotic compressibility,

(aP/an2),10, =

in terms of the free energy of mixing per unit volume, g = G/V, as
given by the Flory—Huggins eqn (34) where V =
co1N1 + w2N2 + w3N3, with constant w, for an incompres-
sible system.

(b) Consider the process of adding w2 dN2 cm3 of comp. 2 and
simultaneously substracting Wi dN1 cm3 of comp. 1 (at constant
N3) so that V remains constant. The chemical potential for this
process is:

= (IXIL2IO2) — (/i/Wi) (A2-2)

component i. Whereas the l.h.s. of (A2-2) is equal to (0g/342),3
g2, we have for the chemical potential of the exchange process,

g2 = (i/2IW2) — (j'/o'). (A2-3)

(c) Then one may write

= w2(3g2/av2)13 =
co2(3g2/9v2)83 (A2-4)

where the condition: t1, j2 are constant, is replaced in the
exchange process by: g2 is constant. Further2°

(0g213v2)93 = g22 — g3/g33 (A2-5)

where g, = (a(0g/av)3/t9v1) = a2g/8v3v, i =2,3. Substituting
the eqns (35) into (A2-5) leads then with eqn (8) to eqn (36).

APPENDIX 3

Polymer molecules between two flat plates
Richmond and Lal°° calculated the free energy of a single

polymer molecule with radius of gyration, r8, confined between
two parallel plates separated by a distance h, and the pressure
exerted by this molecule on the plates. They give explicit
equations for two limiting cases (2rg)2/h2 t 1 and (2r9)2/h2 1 1.
The (Helmholtz) free energy, F, of N independent molecules can
be written as follows

(F/kT) =N ln (N/V) + Nf(h) (A3-l)

where V = h.A, A = area of the plates and

f(h) = 22T"2(2r9/h), for (2r9)2 - h2 (A3-2)

f(h) ln (v.2/8) + ir2(2r8/h)2, for (2r9)2 h. (A3-3)

The pressure is given by

P/kT = —(aF/kT8V)NA = (N/V)(l — h dfldh) (A3-4)

which is positive for both formulations of f. In our case, however,
we are interested in the pressure on the plates when the molecules

(Ai-7) are in equilibrium with a reservoir of molecules with chemical
potential, t . This can be found as follows,
(a) The chemical potential between the plates is

=(aF/aN),. = {ln (N/V) +f + i}kT (A3-5)

and outside the plates (f = 0),

= {ln n" + 1}kT (A3-6)

where n" is the number density outside the plates. At equilibrium
p",thus

NI V = n"e'. (A3-7)

Then, from eqn (A3-4), we find the pressure from the molecules
(A2-i) between the plates

P/kT =ne(i — h dfldh). (A3-7)

From this we substract the pressure, P = n"kT, exerted on the
outside,

(P —P)/kT = n" [e(l —h df Idh) — 1]. (A3-8)

For small f, eqn (A3-2), one finds

(P —P)IkT _nf2. (A3-9)

where t is the excess chemical potential (of mixing) of Observe, that this pressure (difference) is negative, which means

Thus,

and
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the plates feel an effective attraction, in accordance with the (aPIah),. = (0P/ah)N — (aP/aN)h(a,.,/ah)N(a,,/aN)h'
"volume restriction" effects found earlier. For large f, e in eqn (A3-11)
(A3-3) becomes very small so that

all at constant A. From the eqns (A3-1) and (A3-4),

(P —P")/kT--*—n. (A3-1O) h(3P/kT3h)A = (N/V)[h2(df/dh)2—2h df/dh — h2d2f/dh2].
(A3-12)

(b) A more formal route goes as follows. Calculate (aP/9h)A, The same equation follows upon differentiation of eqn(A3-8) after
from h.




