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AUTOMATED ON—LINE ANALYSIS FOR CONTROLLING INDUSTRIAL PROCESSES

Allan H. Smallbone

Applied Research Laboratories, Sunland, California 9lOkO, USA

Abstract - Production economics and the need for continuous survey of the
production process dictate the need for rapid on—line assays. It is
essential to consider all aspects of on-line analysis and automation,
especially in the area of primary and subsequent sampling. More than 50
on-line analytical systems are now in use in a number of industries where
processes can be automatically controlled. Many are operating under

closed loop control. Dry powder processes such as cement, coal, iron ore,
dried slurry, glass kiln feed, etc. can be controlled by automatically
grinding, briquetting and presenting the sample to a Quantometer and by
utilizing the 20 element assay obtained in 30 seconds as the input to
digital controllers. In the cement industry the analysis is used to
control weigh feeder belts and so eliminate the need for blending silos.
It can be shown that the energy savings alone are more than sufficient to
amortize the system in a year. In the mining industry all elements from
Si to U are assayed in slurries. As many as 20 streams are assayed in

10 minutes. All assays are supplied by computer in dry weight percent
including all corrections for pulp density and other elements. Many
solutions can be readily analyzed for elemental concentrations down to
O.25ppm in an on—line mode. Oils can be analyzed for S and blended to
ensure that the percent S in the final blend is correct prior to shipment.
Oil blending systems can drastically reduce the blending and loading time
of containers. Rapid amortization is obtained by reduced time and turn-
around of vessels. Savings are obtained from on—line mining systems by
increased throughput, increased recovery, reduced reagents, reduced
maintenance and total reduced costs.

INTRODUCTION

The analytical chemist was largely responsible for promoting the use of x—ray analysis in the
production control laboratories of practically all of the industrial processes in operation
today. The need for higher recoveries and more production from inferior orebodies placed a
heavy load on the laboratories. The need for better quality and higher purity, both of the
product and the wastes increased the workload still further. This increased workload,
combined with the shortage of analysts, created the need for more and more automated
production analysis and on-i me analysis.

To date the number of laboratory x-ray analyzers is in the many hundreds. In the cement
industry the x—ray analyzer is regarded as, and can be certified as, equal to the analyst in
accuracy and performance. Cement producer's groups have been very instrumental over the
past years in performing comparisons of the various means of analyzing cement products and
in the testing of many involved methods of handling and processing the samples of their
industry. Of course, this is also true of the analysts in the metals industries and in
mining. The x-ray fluorescence analyzer has been well tried and tested on practically all
elements of interest and the techniques developed for analyzing various products have proved
to be very stable and accurate.

In all industries a common problem existed, and that is, is the sample to be assayed
representative of the product? Many varied means of extracting what was hoped to be the
"correct" sample, were developed. Even when the correct samples were determined to have
been extracted, by the time the analytical results were obtained and verified, the informa-
tion was only of historical value.

Many automatic samplers were constructed and operated. These devices efficiently extracted
large volumes of sample, but only a small portion could be usefully analyzed at any one time
due to a lack of analysts to prepare and assay the samples. The next obvious step was to
automate the entire procedure from the sample extraction to the information output.
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In order to prevent the information from becoming Mstory, it was necessary for the overall
time to be short. With the high speed throughputs of modern plants an analysis should not
exceed five minutes in time.

Basically the industries separate into two types of analysis, wet and dry. The wet systems
are primarily in the mining concentrators and analyze flowing slurry. Other wet applications
are solution extraction processes and blending of oils etc. Dry systems are mainly cement,
phosphates, bauxite, and coal etc. Increasing in interest is iron ore, sinter plants and
high volume laboratory samples. Each application of automated analysis has its own problems
and methods of handling samples.

In order to obtain relevant and accurate data, the x—ray techniques developed for use in the
laboratory were adopted. This permitted the systems to be calibrated and tested against
standard analytical techniques developed and used by the analyst. In all systems except oil
blending, more than one element was needed to be analyzed and density variations were always

present as wet and dry specific gravity variations in wet systems and dry specific gravity
variations in the dry samples. The assay of some products necessitates as many as 15
elements to be analyzed to obtain the correct data. As many as 25 streams of flowing slurry
and 6 to 7 dry products are handled by the systems in use today. Although the systems are
composed of standard components a certain amount of customization is necessary, as all
product plants are different. This is true not only of the hardware, but it is also applic-
able to the software that is used in the computer programs.

Generally a small dedicated computer is preferred for such systems. Now with the advent of
microprocessors, practically any computer or system can be interfaced with relative ease.
In order to obtain and maintain maximum efficiency and "uptim&' of the systems, diagnostic
routines are used in many systems. Some are sophisticated enough to notify anyone of a
possible or actual fault and its location, and also to issue instructions as to the method
or procedure for correction of the fault. Increased product safety regulations have also
required that methods of insuring safety are also built into the system and protected by
software. The programs relating to the general operation of the plant, the analysis of the
process control loops are all readily available for rapid change by the operator without the
need for any special programming knowledge.

Now that there are a number of closed loop control systems based on analysis in use in many
parts of the world, it appears that the reasons for their existence and their subsequent
justification are many and widely varied. In general the justifications vary as to
geographical location, the type of product and the available labor force.

DRY SYSTEMS

Laboratory x-ray fluorescence analyzers have now been in use for over 20 years. The major
use has been in production control in all types of industries. Ever increasing use,
advances in technology, new methods of sample handling and preparation techniques have now
produced reliable analyzers capable of analyzing up to 23 elements simultaneously and of
handling hundreds of samples a shift. (Figure 1) Sample collection and preparation is
costly and time consuming. In an attempt to alleviate this problem the analyzers have been
equipped with many various types of automatic sample handlers, allowing the analyst and
operator more time for sample preparation.

As demands for more data and process control advanced, a number of automatic sample systems

were developed. These consisted of a primary sampler delivering the sample to either a
moving belt, a slow rotating wheel or filling metal cups etc. All these systems demonstrated
that more work needed to be carried out in this area. As none of these systems prepared the
sample in a like manner to the standard laboratory techniques, correlation of data was
difficult.
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then the on—line sample would be the raw mix blended prior to the kiln. The manual samples
would be the ingredients of the raw mix, limestone, sand, shale and coal etc. These data
from the manual samples will be obtained on a frequent basis and the results fed into the
computer memory. Each time the analysis of the on-line sample is obtained the computer will
obtain the assay data from this analysis and compare it to the target set points in its
memory. If it is incorrect, either high or low, the computer then decides on which of the
raw mix ingredients to vary according to their individual concentration of each element in
those materials. The analysis of the coal is used to trim the set points as the ash of the
coal after firing can also affect the analysis of the final product (Ref. 1, 2, 3, & 14).

By maintaining or adopting standard lab techniques and methods for the on—line system, then
standard lab accuracies can also be sustained. Typical results are shown below in Table 1

(Ref. 1).

TABLE 1. Accuracy of the powder briquetting system

Static Dynamic Static Dynamic

Si02 .017 .22
SO3

.013 .07

Al203
.008 .09 Na20 .033 .09

Fe203
.039 .07

(203
.002 .01

CaO .025 .33 F .05

MgO .016 .06 hO2 .0014 .006

Static = 1 sample 5 times analyzed
Dynamic = 21 different samples from 1 batch

All samples are taken from the same batch of raw mix sample. In Table 2 the comparison
between the two most common methods of sample preparation are shown. Fusion is used by many
labs as a means of obtaining results free from effects of particle size etc. Briquetting is
generally used as a much faster method and for its repeatability. Due to the exceptionally
fine size of the particles it is seen that the results of the briquetting system are equal
to the best fusion methods. Both methods are the averages of 11 and 21 different dynamically
manufactured and analyzed samples from similar batches of raw mix.

TABLE 2. Dynamic analysis of 10 fusion tablets and 21 pressed briquettes

Fusion PBS Briquettes
%Conc a %Conc a

Si02 22.5 ±0.04 13.29 ±0.028

A1203
4.45 ±0.03 6.87 ±0.023

Fe203
1.51 ±0.04 1.56 ±0.039

GaO 67.30 ±0.15 36.35 ±0.12

MgO 0.82 ±0.02 4.49 ±0.013

SO3
2.01 ±0.014 0.2 ±0.001

Na20 N.D. 0.30 ±0.008

(203
0.46 ±0.005 0.69 ±0.009

hiD2 0.24 ±0.005 0.30 ±0.003

In addition to demonstrating the similarity in techniques, these data in Table 3 also show
that the automatic system prepares samples more consistently than do manual methods. The
briquetting system is also approximately 10 times faster than fusion methods and approxi-
mately 9 times faster than manual briquetting.
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TABLE 3. Dynamic precision raw meal cement

Concentration
21

Made
Manually
Briquettes

21

Ma
Automatically
deBriquettes

% a R.S.D. a R.S.D.

Si02
13.29 0.032 O.2Lf 0.028 0.21

Al203
6.87 0.065 O.9L 0.023 0.33

Fe203

CaO

1.56

36.35

0.033

0.15

2.1

O.kl

0.039

0.12

2.5

0.33

MgO k.149 0.26 0.57 0.013 0.28

SO3

Na20

0.2

0.30

0.006

0.0068

3.0

2.3

0.001

0.008

0.5

2.8

K203

hO2

0.69

0.30

0.003

0.00k9

0.L3

1.65

0.009

0.003

1.3

1.15

Justification ofcontrolof 4y powders
However speed is not the major point of justification for such a system. Consistency and
being able to relate directly to ASTM methods are more important. Real justification comes
from the now proven fact that a raw mix closed loop control system using x—ray fluorescence
and a Powder Briquetting System can produce a more consistent product than a manually
operated or a direct digital control system. Blending control enables new plants to require
only one small blending tank, of '45 minutes supply.

The savings on eliminating the need for two or three large blending silos are enormous.
Energy used to operate the blending silos is many hundreds of kilowatts per hour and could
almost be justification alone for such a system. The capability of more products at a much

tighter specification being consistently produced is a tremendous advantage in present day
markets.

In addition to cement applications the iron ore pellet manufacture can be controlled in a
similar manner by analyzing the bentonite, limestone and iron ore and controlling the balling
mix. This analysis of both on—line and off-line ingredients enables the most economical mix
of bentonite to be used, as this is an expensive ingredient. The end result is a more
consistent product at less expense.

The analysis of coal before leaving the pit head or prior to its use in power plants is also

of great advantage. By analyzing for many elements, the data can be processed by computer
and the final output can be a figure of total ash in the coal prior to firing and an
additional assay of individual elements that would be left in the ash after firing.

There is evidence that in the large volume dry product plants that production control is
moving from the standard assay laboratory towards more a mix of process control as a prime
factor and the batch use of the analyzer as a check unit. This double duty of the x-ray
analyzer enables the unit to be used on a total 2L hour basis. In addition to the 12
automatic on-line samples per hour, some 90 samples per hour can be manually loaded and
assayed without interfering with the closed loop on—line control system.

WET SYSTEMS

Laboratory techniques were as well established for the analysis of slurry as they were for

the analysis of dry powders. Slurry samples were collected, weighed, filtered, dried,
homogenized and a portion assayed. This technique was too time and function consuming to be
copied or adapted. The x—ray fluorescence units were modified to permit flowing streams of
slurry to pass through the x—ray optic analytical plane. It was a logical decision to use
the same type of basic analyzer as used in the laboratory. This resulted in analytical
techniques such as interelement corrections and scattered radiation* corrections for density

being readily adaptable.

*Patent No. 2,897,367, July 26, 1959
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Analysis of s1ury
The first on—line slurry units were commissioned early in 1962, Philips in New Jersey USA,
Anglo American in Zambia and ARL in Montana USA were among the innovators. Since then some
55—60 units from all manufacturers have been placed into operation worldwide. The same
basic principles apply to all systems, that is the analysis is by x—ray fluorescence, the
majority using x—ray tubes as sources of excitation and approximately 8—9 are using radio—
active sources. The x—ray tube units are generally used in single and multistream systems
where more than two elements are assayed in each stream. The x—ray tube units also provide
much better precision and accuracy data at the important lower levels of concentration.
Radioisotopes are used for analyzers of one stream for one element and for units that are
immersed in launders and flotation cells etc. In these units the number of elements analyzed
is generally restricted to two and density variations must be obtained by another unit
installed near the elemental unit. The major problem with insertion units is the density
measurement where entrained air creates errors of up to kO%. Slowing the flow to reduce the
air allows the analysis window area to become contaminated (Ref. 5). These errors in
addition to the lack of sensitivity of radioisotope units at the important low levels of
concentration and the difficulty of correlating the probe data, without interelement correc—
tions, to the actual shift composite sample tend to make these units more of a trend analyzer.

The precision and accuracy of the on-stream analyzer should be as close as possible to that
obtained with normal lab standards. This applies especially to slurry analyzers as
variations in density, matrix and particle size are factors that can be continually changing
in the process stream and impose a great burden on the analyzer. The use of the x-ray tube
and the simultaneous analysis of up to eight elements and the measurement of scattered
radiation enables each data point to be corrected for interelement effects and compensated
for density and partical size effects. In order to obtain accuracy equivalent to a normal
assay, the methods used to perform the computations are of importance. For example, the
density curve of each stream will differ according to its matrix. In a tailing stream each
element is first corrected for density and some degree of particle size variation by using
the scattered radiation technique. Then each corrected element is used in the interelement
correction equation. It is also important to consider and determine the order in which the
elemental coefficients are used in the equation--incorrect placement will mean incorrect
results. A different density curve would be used for a feed or a concentrate stream and
those correction equations would also differ from each other. The maximum intensity
permitted by the use of x-ray tubes is an advantage when some slurry streams may be as low as
5 to 10% solids of low elemental concentrations, as this is of course only 5 or 10% of the
signal that would be obtained in a dry assay.

Samj] ing systems
One common problem that exists for all on-stream analyzers is where should the stream be
assayed, how to extract the sample and how to maintain homogeneity once it is collected,
then how to maintain it in motion. Over the past lL-l5 years many different types of
samplers have evolved. They fall into two categories, moving samplers and fixed samplers.
Moving samplers have a great number of problem areas in their construction and operation.
The cost is high, maintenance is a major problem, as the ore is naturally abrasive, the
sample cutter blades wear rapidly, changing the character of the sample for particle size
and density. On a moving sampler the speed of the cutter through the product stream is very
critical. As wear progresses the cutting speed varies and the sampler is able to falter,

resulting again in sample inaccuracies.

Extensive tests on sampler accuracies which were conducted in Zambia at the time of the
installation of the first multiple on—stream slurry analyzer confirm these problems with

moving samplers.

Static samplers placed directly in a predetermined position in the stream are subject to
attrition and change to a greater degree than the moving samplers. However they are
relatively inexpensive and can be changed frequently in a few minutes. As there are no
moving parts the maintenance is reduced considerably and variable factors such as speed of
cutting, blade shape, sample impingement etc. are eliminated. Thief type samplers inserted
into the throat of a pump are very effective and can also be used to eliminate the need for
an additional pump and sump. Each on—stream system will have its own customized sampling
plan, depending on the plant and its needs. It is clear, from extensive tests covering
several years, that the sampling accuracy of the static samplers when compared to moving
samplers installed on the same process lines is equal to or more consistent than the optimum

moving sampler (Ref. 5).

Homogeneity of sample is a matter of selecting the optimum site and then ensuring that the
sample is kept in a state of continuous motion. Flow rates should generally be a minimum of
75 liters per minute, less than this results in excessive pumping pressure, small lines and
excessive sanding. It is preferred to use plastic or rubber pipes in order to obtain long
slow bends, avoiding all sharp bends and horizontal runs for the sample transport lines.
Many installations are equipped with tertiary samplers which extract a sample for the
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In addition, continuous inventory can be carried out and tota's of pounds of reagent per day,
pounds of reagent per ton, kilowatt hours of the ball mill, time for ball mill bearing
lubrication and other equipment maintenance in hours to go before shutdown etc. can all be
memorized, summed and printed out weekly or monthly.

Approximately 1/3 of the total installations are now operating under full closed loop control.
In other words a centralized control is now readily available where all data is used to
produce maximum recovery from the ore irrespective of feed rate or grade.

Just if icat ion of controlli ngslurrypcesses

Costs of these systems range anywhere from $70,000 to $500,000. Even the largest system yet
installed has recovered its cost in less than six months. The results are not easy to
quantify in terms of the system alone due to the fact that as soon as good data become avail-
able, then operators tend to use it to improve the metallurgy as well as improving the

circuit efficiency to produce even better recovery (Ref. 6, 8, 9, 10, 11, 12, 13, 14, 15 & 16).

From a survey recently taken of almost half of the current installation, it is shown that
recovery of the products increases by 1%-i 1/2% more than before installation, in some cases
the feed grade had fallen off or remained the same. Reagent control resulted in still more
savings. It varies according to the size of the concentrator and it ranges from $10,000 to

$50,000 per year (Ref. 6, 8, 9, 10, 11, 12, 13, 14, 15 & 16). Personnel are becoming harder
to find and training costs to run a concentrator are increasing. These systems are capable
of assisting in those areas where manpower is difficult to obtain and retain. The main
benefit is derived from the consistency of operation of the control loops irrespective of the
human variables. It is a well known fact that many operators and shift supervisors have
their own pet way of 'training' a plant until it conforms to their version of maximum output.
These variations can now be smoothed out with the result being greater recovery output for
less manual effort and a stable concentrator.

Justification for any concentrator is not easy to put on paper. The lack of trained manpower
is common, but their value varies from place to place. In addition the cost of reagent also
varies depending on the ore and extraction method. Table 14 shows the overall effect of a
PCXQ in percent recovery increases in various concentrators and the total approximate savings
allocated to increased recovery, reduced comsumption of reagent and manpower savings.

TABLE 4. Increased recovery of major products using process control in concentra-
tors

% C
Before

oncentrat ion
After Diff. %

Value

$

Nickel 8.1k 9.67 1.53 --

8.21 8.67 .45 --

Copper 24.0 24.8 .8 1433,000

20.0 214.0 14.0 --

214.0 25.1 1.1 588,000

19.9 20.9 1.0 106,500

Zinc 52.0 52.9 0.9 710,000

52.7 53.1 o.k ——

52.2 53.5 1.3 48,000
*Value varies according to tonnage output

As the controls become more simplified and unified, the ratio of analytical and control
instruments to the total plant cost will increase at a fairly constant rate. The rising cost
of instrumentation will be offset by the ongoing reduction in personnel and plant size. All
plant operating changes or modifications to the process will be via the keyboard or a switch
which automatically operates the keyboard. The changes will be faster, simpler and much more
predictable due to the increase of measuring points and data.

Controlling the process by computers and automation now permits the smelter to demand that
the concentrators remove unwanted contaminants before smelting the ores. In some instances
calcium, silica and magnesia or other troublesome elements can be readily analyzed and
subsequently removed in the flotation process. Removing unwanted elements enables the
smelter to extend the life of the reverberatory furnaces and assist in the control of
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Oil sample system
The major problem as in other on—line systems is the sample. In this case it is a very heavy
thick oil, almost a tar. The oil is normally heated by steam tracing to make it flow and
pump readily. A sample of 23 liters/hour is extracted from the main process by valving and
supplied to the analyzer. The temperature and pressure of the sample through the flow cell
are regulated at 80°C ±5°C and 0.70 Kg/cm2. The entire sample conditioning system of the
analyzer is also steam traced. At this temperature the analysis could vary significantly
and the barometric pressure variations become more significant. Automatic compensation
factors for these two major variables are built into the circuits in addition to the numerous
diagnostic and safety routine features. An automatic system ensures that the system cannot
be started or switched on until the units have been air purged and it is safe.

An analysis can be obtained every 100 to 300 seconds as desired (Figure 6) (Note a). The
result is used to control the blend of two or more oils to ensure that the total amount of
% S is just less than the maximum stipulated by law or contract. Standardization of the
system against NBS oils or similar oil standards can be carried out by operating two built-in
switches. By standardizing before and after a loading and assaying one or two chemists check
samples, ensures correct blending and maximum savings.

QN LINE ANALYSIS
SULFUR IN OIL

Justification for oil blending control
The potential savings on a super tanker could be as high as $300,000.
mix could involve 20 to 30 hours at a delay cost of $300 an hour plus

shipment (Ref. 18).

Unloading an incorrect
the extra losses in

In a desulphurization plant the cost of reducing the sulphur level is approximately $0.50 to

$0.75 a barrel per 1% sulphur (Ref. 19 & 20). In plants of 50,000 barrels a day this
represents a significant savings. Assuming the level is 0.1% sulphur over specification this
is $2,500 to $3,750 a day. At high throughputs the job of the chemist is almost impossible,
but an on-line analyzer can supply accurate data every two minutes without problems. The
chemist would still be required for check samples and for testing the homogeneity of the
standardization samples.

Note a: With acknowledgements to British Petroleum Co. Ltd.
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The major savings or justification in oil analysis is not personnel, but accuracy in delivery
to a specification, time in loading a ship and saving of dock fees.

Computer control of the blending system is a relatively simple step. Viscometers, flow meters
and temperature and pressure indicators would be computer inputs together with the percent
concentration of S. Mass flow and a continuous analysis of the blend every two minutes would
provide a good specification record of the loading.

A programable calculator or a microprocessor would be adequate in both capacity and cost for
such an application. As the system is a slow batch control, the program could be easily
changed to accommodate various size ships, different grades and types of oil etc. without the
need for an experienced programer.

SUMMARY

Automation and process control are slowly but surely increasing in the number, size and
complexities of installations. The supplying industries are maintaining an equal pace with
the new equipment and more importantly, improved techniques in both analysis and methods
provide a means of achieving these complex controls whi le maintaining simplicity.

A decade ago the reasons for process control were few, mainly better recovery and reduced
costs. At present the list of reasons now includes large personnel turnover, loss of oper-

ating skills, energy savings, pollution control, reduction of environmental impact, more
consistent bookkeeping, more complex ores to deal with, lower grade orebodies, scarcity of
analysts, integration of mass flow controls to provide a better overall picture of the process.
Undoubtedly, more reasons will be added but at present automated analysis for controlling the

process is certainly becoming the analysts number one helper.

Such systems do not just happen, they are the result of some 20 or more years of experience
in various fields and in order for present day systems to be successful it is considered
essential that the expertise available should be used or at least consulted. The benefits can
be huge, and if all factors are correctly considered in the beginning, then the end result can
be very rewarding in both financial and operational aspects.

REFERENCES

1. A.G. Cooper and R.J. Pospisil H, "A Fully Automatic Raw Mix Control System", IEEE

Conference, Montreal, May 1975.
2. J.A. Roggers and M.A. Yannone, "Reduce Cost by Blending Process Design with Control

Technology".
3. A.H. Smallbone, "An Automatic Sample Handling and Briquetting System for On—Line Analysis

of Powders by X-Ray Fluorescence", Pittsburgh Conference, March 197k.
k. C.W. Moore, "A Survey of X—Ray Analyzers as Applied in the Cement Industry", IEEE Cement

Conference, Arizona, May 1976.
5. S.K. Kawatra, CanadianJ. Spectroscopy 21, No. 1, 5—10 (1976).
6. K.V. Konigsmann, "On-Stream Analysis at Mattagami Lake Mines", May 1973.
7. P.W. Dart and J.A. Sand, "Benefits to be Expected from a Real Time Measurement of Particle

Size", CIMM Symposium, Quebec City, August 1973.
8. K.V. Konigsmann, CIMM Bulletin, March 1976.
9. C.L. Lewis et al, C1MM Bulletin, February 1969.
10. D.A. Hinckfuss and N.W. Stump, Paper No. 7 Adelaide Regional Conference, AJMM, 1971.
11. H.B. Fowler et al, "Instrumentation and Process Control at Frood Stabie Mill", ISA

Conference, October 1970.
12. G.W.E. Pettersen, ISA Transactions 1k, No. 1, 78—88 (1975).
13. M.P. Amsden et al, J.So.African st._Minjj & Meta1lygyj 53—63 (1972).
1k. A.H. Smailbone, "Design, Installation and Operation of X—Ray Process Control Systems for

Mining and Other Industries", ISA Mining & Metallurgical Symposium, Toronto, June 1973.
15. J.G. Paterson et al, "Computer Control of the Flotation Processes at Clarabelle Mill",

Canadian Mineral Processors, Ottawa, January 1973.
16. H.W. Smith, Mining Eng., 33—35 (197k).
17. A.H. Smallbone and E. Davidson, "Determination of Low Z Number Elements in Oils, Slurries,

and Solution", Pittsburgh Conference, March 1972.
18. Private Communication, C.F. Gamage, ARL Luton, England (1975).
19. W.L. Nelson, Oil & Gas J. (1973).
20. W.L. Nelson, Oil & Gas J. (1973)




