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ASPECTS OF STRUCTURE IN IONIC SOLUTIONS
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Abstract - Several aspects of model calculations in solution theory are
discussed in connection with three recent developments. These concern the
structural aspects of ion pairing, the indications of lattice structure in
concentrated NiC12 solutions, and the characteristics of solvent—averaged

ion-ion potentials deduced from models in which both the solvent and the
ions are represented in molecular detail.

INTRODUCTION

The theory of structure and dynamics in solutions is now entering a phase of remarkably fast
and widespread development. There is an atmosphere of great excitement because the new
developments promise to resolve the paradoxes and obscurities which delight and charm
solution chemistry experts like us, but which make it so difficult to arrive at unique
molecular interpretations of solution phenomena. As H. S. Frank sid (1) "....there has been
no dearth of ingenious suggestions about what water might be like in order to display this or
that set of properties, (but) it is only recently, by use of new experimental techniques and
by applying data and interpretations from several fields, that it has begun to be possible to
draw useful inferences about what water must be like.. . ." I think that this view of the
problem of understanding water and aqueous solutions equally well indicates the character of
the problems in the wider field of solution chemistry.

Now I would like to discuss three recent theoretical developments which relate to the equi-
librium structure in ionic solutions and which promise to lead from "might be" to "must be".
They are chosen to illustrate the power of the methods that are now available to those who
study the theory of solutions. It should be remarked that unfolding theoretical developments
concerning rate processes in, solution, which are, if possible, even more exciting, have been
described in an important review by P. G. Wolynes (2). We also remark that the primary
source of structural information is experiment rather than theory, but in these solution
problems, perhaps more than in any others, the accurate interpretation of experimental data

depends upon application of theory.

In discussing the theoretical developments I find it helpful to refer to certain classes of
models. The word 'model' now is often used to mean a set of approximations of any kind, so
it is convenient to use the term Hamiltonian model to mean a physical model. The model's
Hamiltonian specifies the forces acting upøn each particle in each possible configuration of
the system, i.e. each set of locations of all of the particles. This may be done at several
levels as sunmiarized in Table 1 (3,1,5). From each kind of model one can calculate the equi-
librium structure of the solution at a level of detail corresponding to the model, also as
indicated in Table 1.

The most widely used measure of structure in fluids is the pair correlation function (3—10)
(or radial distribution function) g..(r). It is defined so that

c./j(r) = c. g..(r) (1)

is the local concentration of particles of species i in a small volume at a distance r from
the center of a particle of species j. Also c.N./V is the bulk or stoichiometric concen-

tration of species i. At small r, one has g.(r)O because the particles each occupy space

from which other particles are excluded, basically because of the Pauli exclusion principle.
Values of g.. greater than unity reflect attraction between i and j, while values less than

unity reflect repulsion. Indeed the potential w..(r) of the average force between i and j in

the fluid is given by the equation
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TABLE 1. Hamiltonian models for solutions

STRUCTURE

LEVEL PARTICLES MECH.a FUNCTIONSb

S , SCHRODINGER NUCLEI,
ELECTRONS

Q 'Y(q,qe

BO, BORN-OPPENHEIMER NUCLEI:
IONS & SOLVENT

C g. (x. ,X" ' )

MM, McMILLAN-MAYER IONS ONLY C g..(r)

H ) ['1' or g] ) NEASURABLE
SOME APPROXIMATION METhOD PROPERTY

aQ: quantum mechanics is required. C: classical mechanics is sufficient.

bit is indicated that the wave function '1' depends upon the coordinates

of the nuclei and the coordinates of the electrons. The remaining

notation is explained in the text.

(r) /kBT
= e (2)

where kB is Boltzmann's constant and T the temperature.

If the functions g.. for all of the species pairs in a fluid are known over a sufficient

range of the state variables, one can calculate the thermodynamic properties (3,6—10). So
forces determine structure through Eq. (2) and the thermodynamic properties are determined by
the structure.

In the case of a solution, the potential w.. is not generally the potential of the force

acting between particles i and j in a vacuum, or even at infinite dilution in the solvent.
Rather it is the potential of the average force between particles i and j in the medium in
which g. is measured. In this case the force is mediated by all of the other particles.

At the deepest leyel in Table 1, the Schroedinger level, the Hamiltonian is well known.
Quantum mechanics must be used to calculate the wave functions ' which carry the information
about the structure of the system.

Among the functions one can, at least in principle, calculate at the Schroedinger level is
the Born—Oppenheimer (BO) potential surface, the potential of the forces among the nuclei
assuming that at each nuclear configuration the time-independent Schroedinger equation is
satisfied. We may think of this as the 'electron-averaged' potential. Such an N-body
potential UN may be adequately represented as a sum of pair potentials

UN(l, 2' ) = E
u.(r.) (3)

pairs

where the particle indices in the pair potentials may pertain to monatomic particles or to
molecules; in the latter case the coordinates must in general include orientational and other
internal coordinates as well as the center-to—center distance r... Thus in Table 1 in

13
g..(X., X) the symbol X. denotes the full set of coordinates for particle i.

The program of calculating the BO—level potentials from the Schroedinger level cannot often
be carried through with the accuracy required for the intermolecular forces in solution
theory (11-13). Fortunately a great deal can be learned about liquids through the study of
BO-level models in which the N—body potential is pairwise additive (as in Eq. (3)) and in
which the pair potentials have very simple forms (7—9). Thus for the hard sphere fluid we
have, with osphere diameter,

u(r)°' if r<a

0 if r>a
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while for the 6-12 fluid we have

u(r) = eO[(o/r)2(o/r)] (5)

The 6-12 potential is not quantitatively like the realistic potentials that can be derived by
calculations at Schroedinger level for, say, Ar-Ar interactions. But it requires careful and
detailed study to see how real simple fluids (i.e. one component fluids with monatomic par—
tides) deviate from the behavior calculated from the 6—12 model. Moreover, the structure
factor of the dense 6—12 fluid can be fit with amazing accuracy by the structure factor of a
hard sphere fluid of appropriate density and diameter (7). The structure factor S.j(k) is

essentially the Fourier transform of the pair correlation function: in general we define the
dimensionless structure factor S'(k) as

1/2 2 sin kr
S!.(k) =

(P.Pj) J0 )4rrr dr[r)_l]. kr
+ 1 (6)

where p.N./V is the particle number density for species i. The structure factor is impor-

tant because it is simply related to the density of scattered radiation in a diffraction

experiment (7,8).

The lesson, that drastically simple Hamiltonian models are adequate to generate quite
realistic fluid properties and hence to understand the structure of fluids, can be reinforced
by many other examples. For the present discussion the most important may be the Stillinger-
Rabman series of studies of a BO—level Hamiltonian model for water (1)4).

In a McMillan—Mayer level model (MM—level) for a solution, the particles are the solute par-
ticles (i.e. the ions with positive, negative, or zero charge) (3,15). The ion—ion poten-
tials can, in principle, be generated by calculations in which one averages over the solvent
coordinates in a model at BO level, in which the solvent particles are explicitly repre-
sented. Pairwise additivity (we use overbars for solvent—averaged potentials)

UN(l, 2'' 'N = I
ii..(r.)

(7)

pairs of ions

is not so accurate or realistic as at the BO—level, but inconsistencies due to the neglect of
higher terms have not appeared to date, although recently it has been discovered that the
neglected terms include some long—range interactions (cf. Section Iv).

The simplest model for ionic solutions at the MM—level is the primitive model, (3,16,17)

- HSu.. = u. + e.e./sr (8)
ij ii ij

where u.. is the potential given in Eq. R), with and where c is the dielectric con-

stant of the solvent medium. This is implicitly the model studied by Debye and Htickel, and
in most later studies of ionic solution theory as well. The well known Debye—Huckel result
for the potential of average force,

HS —Kr
w.j(r) = u.. (r) + e.e.e /cr , (9)

where K1 is the Debye shielding length, is not very accurate, even for this model, compared
to some of the later results.

In Table 1 it is indicated that, to deduce the pair correlation functions for a given model
from the Hamiltonian, one employs some approximation method. At the BO or MM level the
simulation methods MD (Molecular Dynamics (7,8,18)) and MC (Monte Carlo (7,8,19)) are very

reliable, as long as all of the technical details are carefully handled, but they are rela-

tively expensive and imprecise. There are many other approximation methods, some mentioned
below, but the most generally useful for the work reviewed here is the HNC (hypernetted chain

integral equation) method (3,7,8).

SECTION II - ION PAIRS

We begin by looking at ion pairing in the context of a corresponding states diagram (Fig. 1)
(20). Here the reduced temperature Tr is given by

Tr = R/b (10)
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Fig. 1. The corresponding states diagram for the ionic fluid (20).
Curve A is the coexistence line estinated for the restricted primitive
model. In the region under the coexistence line the dilute ionic system
on the right is in phase equilibrium with the more concentrated ionic
system on the left. Region B is typical for dilute ionic solutions in
weakly polar solvents while region C is typical for fused salts. The lime
1-1 aq (2—2 aq) is the locus of equilibrium states of a typical 1-1 (2—2)
electrolyte in water assuming that the minimum in the solvent—averaged
pair potential i(r) is near rR1. The curve labelled Bjerrum is the

locus of states in which the ions are 50% paired according to his theory,
while A . is the locus of the conductivity minimum according to themm
usual triple ion theory. The lowermost scale is approximately the
stoichiometric molarity if the ions are spheres with 1L diameter.

where R is the location of the minimum in i(r), and b is the Bjerrum length,

b =
Je+eI/EkBT (11)

where e. is the ionic charge, and e the dielectric constant of the solvent. The reduced par-

ticle number density

= (Lr/3)(p+p)(R/2)3, (12)

is the fraction of the space occupied by the ions, if they have equal sizes. The coexistence
curve in Fig. 1 is a characteristic of ionic media that is not well understood (20).

The Bjerrum line in Fig. 1 is the locus of states where, according to Bjerrum's 1926 theory
(21) for a symmetric binary electrolyte, (e—e) half of the ions are paired and half are
free.

The phenomena related to ion pairs have been studied (21,22,23) using the simplest 1iM-level
model the primitive model, for which the pair potential is given in Eq. (8). If one chooses
Rdt.2, and the other parameters appropriate for a 2—2 aqueous electrolyte at 25°C (or,
equally, for a 1—1 electrolyte with E20) then TO.l5 and it is evident from Fig. 1 that

this isotherm crosses the Bjerrum line. In order to shed further light on this problem we
also have studied the closely related charged soft sphere model, for which the potential is
given by

ii. .(r) B. ..[r.*÷r.*)/r]m + e.e./cr (13)
13 13 1 3 13

with

B.. = A le.e.l/6n[r.*+r.*] (l1)
mJ m 13 1 3

where A is the Madelung constant, 6 the coordination number, and r.* the nominal radius ofm 1
an ion of species i. This term is so constructed that in a close—packed electrically neutral
binary crystal, the nearest—neighbor distance calculated from Eq. (13), with c1, will be

hence these parameters have the significance of crystal radii. For m9, cT8.358,

and r*r*=l.1t7T8, one finds from Eq. (13) that the minimum in (r) is at rR4.2.

Accurate calculations for this soft sphere model show (22) that it gives thermodynamic
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properties and structure that agree closely with the much studied (20,23) primitive model
with diameters R14.2.

Figure 2 shows the osmotic coefficients 4) calculated for primitive and charged soft sphere
models by the HC equation and several other approximation methods. A special technique for
the required fast Fourier transforms was used to get HNC solutions for the soft sphere model
that are accurate in very dilute solutions (21t). It is apparent that the Eq. (8) and (13)
models do agree very closely, judging by the HNC results. The deviation between the soft
sphere and primitive models at very low concentration is attributed to inaccuracy in the
calculation for the latter, which did not employ the new FFT technique.

Fig. 2. Osmotic coefficients 4) for models for a 2—2 aqueous electrolyte
(21). ct is the stoichionetric molarity and K i5 the Debye kappa. The

DELL line is the limiting law for the function plotted. The other
approximations for the primitive model are MSA, the mean spherical
approximation, HS, the IINC approximation, PB, the full Poisson Boltzmann
equation, and B, Bjerrum's chemical model. The HNC approximation for a
charged soft—sphere model is labelled SS. In each case is the
location of the minimum in u+(r).

The results in Fig. 2 also show that the Bjerrum approximation gives as good results as the
much more elaborate non—linear Poisson—Boltzmann equation approximation. The latter deviates
noticeably from the HNC approximation even at extremely low concentrations (214). On the
other hand Monte Carlo results, not shown here, agree very well with the HNC results (25).

With this background for the osmotic coefficient behavior of the models, as investigated in
various ways, we may turn to computed values of structural quantities for the primitive
model. In Fig. 3 we show values of and g at contact (where rER) as functions of ct,

the number of moles of the electrolyte per liter of solution. By DH we mean the approxi-
mation

-Kr
g (r) = exp(±be /r) (15)
++

which, if linearized, corresponds to the limiting law ln = -K and by DHEXT we mean the

approximation

( b —K(r—R) 6gr1 -
exi± r(l+KR)

e 1

which, if linearized, corresponds to the extended DH equation ln = - K/[l+KR]. Looking

first at g(R) in Fig. 3 it is remarkable that DHEXT and even DH are about as good as the

modern approximation EXP (T-lO) judging by agreement with HNC, while Bjerrum's approximation
for g is better yet. Actually Bjerrum calculated only thermodynamic quantities, but it was

recently found to be possible to extract the correlation function

b/r= a/Kpje for r < b/2 (17)



Fig. 3. Values of correlation functions for +— and ++ pairs at contact

(i.e. r=R) for primitive model for 2—2 aqueous electrolytes (22). The
curves are labelled by the approximation used, as described in the text.

by functional differentiation (26). Here K is the Bjerrum mass action
fraction of ions that are paired, by his criteria. Eq. (17) gives the

In view of the remarkable success of Bjerrum's theory judged by the osmotic coefficients as
well as contact values of g÷(r), it is interesting to remark that Eq. (17) shows that g(r)

implied by Bjerrum's theory merely shifts up or down as one changes the concentration, which
enters only through c. This is in contradiction to the prediction of more accurate theory,
according to which g(r) changes shape when the concentration is changed (25,26).

Even at concentrations as low as ct=O.OO1M the various estimates of g_(E) differ by 5 or

lO? (26,27). This fact tends to cloudtheinterpretationofconductivityandotherdatain which
approximations weaker than the ETC have been used. On the other hand, it would be highly
interesting to find an experimental technique that is especially sensitive to g (R), rather
than to correlations at larger distances (cf. Eq. (21) below, and discussion).

The comparison of various results for g÷÷(R), also in Fig. 3, shows a remarkable non—uni-

formity in the ETC estimate. This was first found for the primitive model (23) and then
confirmed (27); it also is found for charged soft spheres (22). However, it turns out to be
a defect of the ETC approximation that gives this enormous enhancement of ++ pairs. As
established by comparison with Monte Carlo calculations, the actual enhancement is much
smaller (22). It is reflected in the curve for the BHNC approximation shown in Fig. 3. For

BHNC ETC
the primitive model BHNC calculation in Fig. 3 it was assumed that .j g.. exp where

sj is a sum of 'bridge graphs' (also called elementary diagrans) calculated by Rossky et.

al. for the soft sphere model (22).

The considerable excess of ++ pairs which the BHNC approximation shows relative to the others
is due to clusters of 3 or ions. This was surmised on the basis of the bchavior of g(r)

as a function of r (25,27) and has been confirmed by Monte Carlo calculations, from which one
can extract 3 point and higher correlations as well as merely pair correlations (22). The
results are shown in Fig. 4, Apparently at O.005M only a relatively small proportion of ++
pairs are due to two cations that are near to each other but relatively far from all other
cations. Evidence for such larger—than—pair clusters at low concentrations has also been
found in some experimental systems (28,29) but this is the first quantitative determination
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2-2 oq., O.005M , MONTE CARLO
CLUSTER POPULATION CLUSTER POPULATION

per 200 ions per 200 ions

monomer tetramer
® 79.716 e—e--e--o 0.0244
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Fig. 1. Cluster populations for 2-2 aq. charged soft sphere model at
ct=O.005M (22). Here a cluster is defined as a group of ions connected

by bonds, where by definition any two ions whose separation is less than
2R are connected by a bond. In this model The population of the
cluster is the average number of such clusters per 100 cations and 100
anions, where the averages were derived by the MC method (22). The
clusters are grouped in pairs which differ only in charge reversal
symmetry. No other clusters were seen in the simulation reported.

of their concentrations in a model system with no specific ion—ion interactions.

In ionic systems for which TO.l5, as for models for 2—2 aqueous electrolytes, the Bjerrum

theory of ion pairing gives osmotic coefficients and g at contact in quite good agreement

with the HNC approximation, as shown in Figs. 2 and 3. In the HNC approximation, unlike the
Bjerrum theory, nothing is assumed a priori about the structure of the solutions, i.e. about
the classification of the ions into 'paired' and 'free' categories. So we need not assume
that ion pairs are formed to account for the properties of such systems, as indeed was

pointed out by Guggenheim some time ago (30).

Now we ask a further question, namely, is the solution structure implied by the ion pair
theory correct? Of course one implication of the law of mass action applied to the 'free'—
'pair' equilibrium is that for ct>K, where K is the Bjerrum mass action constant, most of

the ions are paired, the more so the higher the concentration. However this is not con-
sistent with the HNC results (27), with recent MC results (25), nor with the conductivity
data for real 2-2 aqueous electrolytes (27). Instead it seems that for c>K the dis-

tinction between free ions and ion pairs tends to fade away, at least for the primitive
model (27).

Another aspect that is outside of the usual ion pair picture is the surprisingly large con-
centration of higher aggregates found in even dilute solutions for the model systems.

(Fig. and references 25,27) Associated with this phenomenon are relatively large values
of g(r) which may play an important role in certain chemical rate processes (27).

These ion pair studies lead to the following conclusion: For ionic systems with T>0.l, a

chemical model based on ion pairing, such as Bjerrum's theory, may lead to erroneous con-
clusions regarding the structures of the solutions even when the fit of the chemical model
to some solution properties is quite good, as in Fig. 2.

SECTION III - FITTING MODELS TO NON-THERMODYNAMIC DATA

The developments described next were stimulated by recent neutron diffraction studies by
Prof. J. E. Enderby and his coworkers (31,32). The data from a single diffraction experi-
ment, after some reduction, yield a linear combination of structure factors (cf. Eq. (6).
We use 5!. rather than S. because there is a small difference between the definition of the

ij ii
structure factor used here and by Enderby
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z l/2 f(k)f(k)[s' (k)-lJ. (18)
1,J 1J 1 J ii

atomic species

In the case of neutron diffraction the form factor f.(k) does not depend upon k but does

depend upon the nuclear structure, so it is different for different isotopes of atomic
species i. Thus from neutron diffraction data for solutions of given chemical composition
but varying isotopic composition one can determine the individual partial structure factors
in Eq. (18). In this way the function S. Ni S(k) in 1.1M NiCl2(aq) was determined

(31) with the result shown in Fig. 5. The dependence of the k—value of the first peak of
S(k) upon NiCl2 molarity also was determined (31) with the result that

k0 2pl/3 (19)

as also shown in Fig. 5. This "Bragg's law" behavior may be taken as a signal of a lattice
structure in the solution (31—33), but there is no corresponding indication in the thermo-
dynamic or transport coefficients of a change in structure to a normal solution below some
critical concentration (3I—36).

4.4 M NICI2

a.

b.
k0,A1

c"3

Fig. 5. a. Ni-Ni partial structure factor as determined by neutron
diffraction (31,32). The location of the first peak is designated k0.

b. Dependence of k0 on cube root of molarity. ———, 'Bragg's law' line.— charged soft sphere model treated by HNC (37). Data points, neutron
diffraction results of Enderby and coworkers (32).

To elucidate the molecular significance of these data we have studied MM-level models based

upon Eq. (13), charged soft sphere models, with the parameters adjusted to correspond to
NiCl2(aq). The HNC approximation method is not reliable at the high concentrations of

interest here, so we also have applied the MC method to the sane models. It transpires that
the structure factors calculated by the two methods are in close agreement which is strong
evidence that both methods are quite accurate.

These simple models give the first peak in S(k) and the concentration-dependence of k0 in

rough agreement with Fig. 5 (37). However our efforts (38) to refine the model to get good
agreement with the experimental S÷÷(k) in Fig. 5 have failed in a way that is most readily

explained by assuming that the latter is significantly in error, even in the limited k range
under the first peak.

The structural conclusion of these studies is that whether or not one wishes to ascribe the
data in Fig. 5 to a lattice structure is a matter of taste. Strictly speaking, a lattice
structure implies sharp lines in S+(k) as a result of the long—range order. Therefore the

term quasilattice is sometime used to discuss the actual situation in NiCl2(aq). But

S(k)

0.5

Enderby et. ol.

0 2 3

- -
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whatever a quasilattice is, it is formed from the normal or Debye-Huckel structure of an
ionic solution with no hint in the thermodynamics that there is a phase transition, first
order or even higher order, as expected if there is a difference in syinnietry between the
normal and quasilattice structures. An explicit definition of a quasilattice would imply
definite characteristics in the three—point and higher correlation functions which are
accessible in the model calculations when the MC simulatiom method is used, as illustrated
for another system in Fig. )4 One could them see whether the soft—sphere model results meet
these additional criteria. Unfortunately the only such explicit formulation of a quasi-
lattice structure seems to be that due to March and Tosi (33). Simce it assumes substantial

immer—sphere coordimatiom of Cl by Ni2+ im these solutions, im contradiction to the
structural (32,39) and NMR (LO) data, it does not seem to merit further consideration.

It seems interesting to notice that the partial structure factor as defined in Eq. (6)

depends upon g.j(r) the integral

5: r2 g.j(r) sirkr . (20)

Depending on k the integral is more or less sensitive to g..(r) in the r-range corresponding

to close ij pairs. Thus it is natural to compare it with the information that may be
obtained from

k.= 4wr2dr (r) ..(r) (21)

where k.. is the coefficient of some spectral or kinetic effect that is associated with a
iJ

close ii pair and k. . (r) is the corresponding "local" or operator form. For example, k11
13 2,Ne

may be the infrared absorption coefficient of H2 in a mixture of H2 with Ne or it may be the

rate constant of the reaction

TLi(m) + Ni2 - 7Li(m') + Ni2 (22)

where m+m' represents a change in the nuclear spin state of the lithium ion which may occur
when it comes near the paramagnetic nickel ion (41). In both these examples there is

reasonably accurate theory for the local coefficient k.(r) as required because one needs to

know its r-dependence quite accurately in order to use experimental data for k.. to learn
.+ .2+. 13

about the structural quantity g.j(r). In the case of the Li -Ni interaction in water one

learns, by comparing model calculations based on Eq. (21) with experimental data for the T1

of the TLi, that for the LitNi2"1 interaction has a sufficiently large repulsive

core so that one, if not both of the ions must keep their hydration layers intact during a
collision (41).
In this section we have briefly summarized two cases in which experimental data for non—
thermodynamic coefficients can be combined with model calculations to characterize MM-level

potentials. This procedure is complementary both to that discussed in the following Section,
in which MM—level potentials are calculated from BO—level models, and to earlier work in
which MM-level models were parameterized by comparison with thermodynamic data for the
solutions (4,5,41).

SECTION IV - MM FROM 30

There have already been a number of fascinating studies of MM-level potentials as derived
from BO—level models either by simulation (42—44,12) or by more analytical methods (45-50).
These are calculations of considerable technical difficulty but in at least two cases (42 and

46, 44 and 49) there is good agreement between the simulation and analytical results for a
given model. In such cases we may be confident that we know the structure at the
MM level generated by the BO—level model, but to know whether the latter is realistic one
requires also comparison with experimental data for relevant real solutions.

Particularly interesting for students of ionic solutions in non—aqueous solvents, particu-

larly ion pairing phenomena, is the work of Valleau, Patey, Weis, and Levesque (42,46) con-
cerning a BO—level model in which hard spheres with dipoles at their centers comprise the
solvent while the ions are represented by charged hard spheres of the same size. If we
assume 3 diameters for the spheres then this is a model for a 1—1 electrolyte in a solvent
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with dielectric constant c 9.6, hence a system with TO.O5. Their results are repre—

sented in Fig. 6. Compared to the primitive model with c 9.6, the present model shows far
stronger +- attraction when the two ions are very close together. Clearly in the range
3<r<1 there is not room for a solvent molecule between the two ions so the ion—ion inter—
action is poorly shielded by the solvent. The extra repulsion, as much as 3kBT compared to

the primitive model, between the ions in the range 4<r<5 is more surprising. It may be
noted that it is opposite in sign compared to what one would expect from the much—discussed
dielectric saturation effects! It may be thought of as a consequence of the tendency of the
dipolar solvent particles to stick to the ions. Finally, when the space between the ions
exceeds only about one solvent diameter then the primitive model is a good approximation!

3

Fig. 6. Solvent-averaged potential for charged hard sphere ions in a
dipolar hard sphere solvent (46). MC approximation by Patey and Valleau
(42) and LHNC approximation by Levesque, Weis, and Patey (46). Also
shown are the primitive model functions for solvent dielectric constants
9.6 and 6.

Comparison with some classical results makes it seem likely that the deviations from the
primitive model in Fig. 6 are exaggerated compared to real systems. Thus in terms of
Bjerrum's association constant, generalized to apply to any model,

rb/2
K =

FiR exp(-i) 4irr2dr (23)

[where b58 is the Bjerrum length, given in Eq. (11), R=3, and F is the conversion factor
to recover K for the usual molarity scale] one finds by a crude numerical integration that

10—1 .the potential in Fig. 6 leads to K8xl0 M while Bjerrum's theory applied to the corres-

ponding primitive model [sane R and b] gives K2xl05 M1. In fact, to force the primitive
model to agree with the larger value of K, one would have to reduce R by a factor of two.
However it seems to be very well established that when ion diameters are deduced from
measured ion pair association constants, especially in low—dielectric solvents, the resulting
diameters quite realistic; they are not too small by a factor of two (51).

It is not known at this time what features of the hard sphere model should be changed to make
it more realistic, although it may be suspected that replacement of the hard cores by soft
cores, as in the change from Eq. (8) to Eq. (13), would have a big effect. This would be a
very significant result because, until now, the difference between hard cores and realistic
soft cores has been neglected in discussions of the physical chemistry of ionic solutions in
low dielectric solvents.

Finally we turn to more recent studies by Patey, Weis and Levesque (52) for the same type of
model, dipolar hard sphere solvent particles and charged hard sphere ions, but now with
finite ion concentrations. These results have been obtained only by applying truncated
versions of the HNC approximation to the BO—level models, so there is some uncertainty as to
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Aspects of structure in ionic solutions 1287

whether they accurately represent the models, but it is especially interesting to discuss
them because they illustrate a physical effect which has been clearly formulated only
recently (50,53). We begin with an examination of the osmotic coefficients for the three
models studied with T=O.9l (their i), 0.65 (their ii), and 0.19 (their iii). As they point

out, values of Tr or equivalent ratios do not serve very well to characterize their models;

for more details their paper should be consulted. However, in Fig. 7 we show a certain free
energy function they obtained, and for comparison, what is found for various real solutions
in water. The electrolytes in the figure are quite typical, except for those conpared to
T=O.l9. For this case one wants a 1—1 electrolyte with large ions, but in such systems

there seem to be well—known specific interactions, as illustrated by the large difference

between BuNBr and (HOC2H1)14NF. The function plotted

ll/3p+(ct4)/ct (21)

is the one given by LWP (52). Here 11 is the osmotic pressure, the osmotic coefficient,
and c the stoichiometric molarity of the salt. It is the derivative of the left

side, at fixed solvent concentration, that is given by LWP while the derivative on the right
hand side, at fixed total pressure, has been calculated from literature data. Comparison of
the two sets of curves does suggest that the models studied by LWP are not very realistic or
else that the difference between fixed solvent concentration and fixed pressure is drastic.
Nevertheless it is interesting to examine the structures they find, as illustrated for some
examples in Fig. 8.

p._n
'-'op+ ,c

0.65

l.0

KCI

—_Bu4NBr

—uS00.5

0.5 .0 MOLAR

Fig. 7. Partial free energy functions for models and for aqueous
solutions. The solid curves, labeled with T, are from LWP (52).

The dashed curves are experimental data for (c)/c for aqueous
solutions. Bu1NBR and X14NF (here XHOCH2CH2-) are 1-1 electrolytes with

big ions and so with nominally large T, perhaps as large as 0.91. For

KC1 (aq) we estimate Tr 0.5 while for CuSO14 (aq) we estimate Tr 0.15

(cf. Fig. 1).

For the +— effective pair potential w÷eff (described below) we see minima in Fig. 8 corres-

ponding to contact ion pairs and solvent separated ion pairs while smaller deviations from
primitive model behavior are exhibited by the ++ pair potentials. Of course it is a
challenge to try to obtain results like these for more realistic BO—level models and to try
to correlate the results closely with experimental data relating to contact and solvent
separated ion pairs and their rate processes. These strong features in the effective pair
potentials can be accommodated in MM—level models of the type presently studied. Mainly one
needs enough information, either from BO—level model calculations as in LWP or from experi-
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mental data as in the preceding section, to put these consequences of the solvent structure
into the models.

Fig. 8. Effective pair potentials (52). Solid curves, calculated by LWP
(52) for T=O.9l model at 1M electrolyte concentration. Dashed curves;

primitive model pair potentials for calculated .

The very new feature that is illustrated by the LWP calculations is that the effective pair
potentials, such as those in Fig. 8, are dependent upon the ion concentrations. Thus the
effective pair potentials [not the w..(r) in Eq. (2fl referred to here have been defined by

Adelnan (53) in terms of the direct correlation functions in a way which corresponds to

having exact pairwise additivity (cf. Eq. (7))

— — eff
UN(l, 2' 'N = w. (r..)

at any one concentration, but the are functions of concentration. If, for example, we

keep only three point component potentials (l5,5!) abs(]32) then the effective pair

potential would be formulated as

w(l,2) = Ub(l,2) +
Psjuabs(l,3,2) d(3) (25)

which is indeed dependent on ion concentrations. In Ub(],3,2) an ion of species a is at

location 1, one of species b is at location 2, and one of species s is at location 3. The
new result is that the concentration dependence extends even to r=°°, where one surely has

eff
w. e.e/cr
ii ii p

where is the dielectric constant, which evidently must be concentration dependent (52,53,

55). Furthermore, this 6 corresponds to what one may deduce from dielectric measurements at

finite frequencies (52,56). However it is still not so clear how to extract c from such

experimental data (2). Nevertheless in Fig. 9 we compare the LWP result for C with values

based upon experimental dielectric measurements (57). We see that the scale of the theoret-
ical and experimental concentration dependence of is about the same, but that the pro-

nounced curvature at small concentration, particularly for the T=O.9l model, has no counter-

part in the typical experimental data.

The theory of c sketched above implies that e rather than (i.e. c for the pure solvent)

should appear in Eq. (8) or (13) in realistic models. Therefore the effect described here is
potentially very important. It will be interesting to see how this observation will be con-
sistent with the evidence that the non—pairwise terms in UN of Eq. (7) do not seen to have an

important effect on the thermodynamic excess function. For example, Wood, Reilly, and
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Robinson show that the osmotic coefficients of mixtures of more than three species of ions
can be predicted accurately on the basis of data for single electrolytes and common—ion
mixtures (i.e. three—ion mixtures) (58). Their results imply that pairwise additivity at
the MM level is quite accurate.

80

70

25

20

5

Fig. 9. Dielectric constant of ionic solution. Solid curves, labelled
with T, are from LWP (52). Dashed curves are experimental data for

aqueous solutions from Pottel (57).
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