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Abstract — This paper describes the application of nultipoint regression
methods to a variety of situations that involve nonlinear kinetic data,
and illustrates advantages that can be achieved with these data—processing
methods. Examples include kinetic procedures that are virtually indepen—
dent of variations in experimental parameters such as temperature, pH,

reagent concentration, etc., kinetic procedures that have substantially
increased linear ranges, procedures that can resolve two—component
mixtures such as unconjugated and conjugated bilirubins or the H and M
subunits of lactate dehydrogenase, procedures that can compensate for sub-
strate inhibition in the quantitation of enzyme activity, and procedures
that have the potential to yield linear (not "linearized") calibration
curves in competitive binding inununoassays. Data are presented to
illustrate most of these points.

INTRODUCTION

Although it has become common practice in recent years to use the method of least squares
(1,2) to process data that vary linearly with time, there have been relatively few applica-
tions to clinical problems of these regression methods to process data that vary non-
linearly with time. Some of the more common situations that involve nonlinear time—dependent
data include reactions that follow first—order or Michaelis—Menten kinetics as well as the
so—called lag phases in enzyme catalyzed reactions. These situations occur with sufficient

frequency, or experimental procedures are designed to avoid them sufficiently often, that
they merit explicit attention. This paper describes applications of nonlinear regression
methods to selected situations, and discusses some of the potential advantages of the

resulting procedures.

APPLICATIONS OF NONLINEAR REGRESSION METHODS

Several applications of nonlinear regression methods to nonlinear kinetic data are presented
here as illustrative examples.

First—order processes
The application of nonlinear regression methods to process single—component, first—order,
kinetic data has resulted in a procedure that is virtually independent of variations in
parameters such a pH, temperature, activators, inhibitors, and enzyme denaturation that can
influence rate constants; applications to two—component systems have resulted in procedures
that permit the quantitative resolution of individual components without a separation step.

Single—component samples. Figure 1 illustrates an approach used to process first—order,
single—component data (3,L). Absorbance vs. time data collected early in the process are
fit to a first—order model in a manner such that predicted values of the initial absorbance,
A0, the final absorbance, A, and the pseudo—first—order rate coflstant, k, are obtained for
each individual sample. Thus, the absorbance change, AA = A - A0, that would be obtained if
the reaction were to proceed to equilibrium is 9btained without the need to wait until
equilibrium is established. In addition, the dA value obtained for each individual sample is
predicted on the basis of the first—order rate constant that applies for the measurement
conditions associated with each sample. There are advantages associated with each of these
features, and both are illustrated below.
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Fig. 2. Effects of relative enzyme activity on the relative error for
initial rate and regression kinetic methods. Reprinted with permission

from Clin. Chem., 25, 1598 (1979).

In experiments with the hexokinase/glucose—6—phosphate dehydrogenase coupled reaction system
for quantitation of glucose p4), activities and concentrations of hexokinase, glucose—6—
phosphate dehydrogenase, NAD+, and ATP were all varied from 50% of a predetermined set of
suitable concentrations to 150% of the reference values, and the effects of these variations
on errors observed for a conventional initial—rate and the proposed regression method were
evaluated. Results are shown in Fig. 2. The linear plot ranging from errors of —50% to
+50% corresponds to the initial—rate approach; the flatter curves with most values less than
5% error correspond to the regression method (L). Clearly, the regression method is very
insensitive to these rather drastic changes in enzyme activity and reactant concentration
while the more traditional initial rate approach is very intolerant of the changes.

The reason for this insensitivity to experimental conditions is illustrated in Fig. 3 which
shows experimental data and fitted curves for two sets of conditions. Although initial
rates are very different, extrapolated values of final absorbance values are about the same.
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Fig. 3. Blank corrected absorbance vs. time data for glucose at two
values of relative enzyme activity. t — experimental, relative activity
of 0.75. o— experimental, relative activity of 1.50. — fit of data to
first—order model. Reprinted with permission from Clin. Chem., 25, 1581
(1979).
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Fig. 4A. Response curve for the enzymatic quantitation of TO mg/dl urea.
experimental data; — fitted data. With permission (5).

Fig. 14B. Response curve for the enzymatic quantitation of 100 mg/dl of
urea. .... experimental data; — fitted data. With permission (5).

An advantage of not having to wait for reactions to reach equilibrium is illustrated with
data for the enzymatic quantitation of urea with urease. Figures A and B show data
obtained (5) for a low and a high concentration of urea with a prototype of a coimnercial
instrument (DACOS®, Coulter Electronics, Inc.). The dotted curve represents experimental
data and solid curve represents results predicted with a program similiar to that described
earlier (n). At the higher urea concentrations, there is inadequate NADH to react with all
urea present, and the A vs. t plots cease changing before all urea has reacted. The lower
curve in Fig. 5 shows the effect on the calibration plot; it bends toward zero slope at
the higher concentrations. However, the regression fit of A vs. t data (Fig. ) data during
the early part of the reaction extrapolates the absorbance change to the full value that
would be achieved if sufficient NADH were added to react with all urea present. The
effect of the extrapolation procedure on the calibration curve is illustrated in Fig. 5; the
linear range is extended to an absorbance change of almost four absorbance units. Because
few if any photometers are capable of measuring absorbances accurately over such a wide
range, it would not be practical to use sufficient NADH to react with this wide range of
urea concentrations and accordingly, the regression method extends the useful range of the
method. The only requirement is that the reaction obey pseudo—first--order kinetics.
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Fig. 5. Calibration curves for urea without and with extrapolotion
procedure. With permission (5).
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Two-component samples. For samples that include two (or more) components that undergo
similar first—order reactions, nonlinear regression methods can be used to quantify the
individual components provided the rate constants for the components differ 'oy a factor of
two or more. For example, it has been shown (6) that for appropriate conditions, unconju—
gated and conjugated bilirubin react with p—diazobenzenesulfonic acid at different rates; at
PH 7.5k, and other controlled conditions (7), rate constants for unconjugated and conjugated
hilibrubins have values of k — 11.3 s and kc 3.3 s, respectively. Thus, a single
response curve that is characteristic of these two simultaneous first—order processes can
be resolved in terms of each individual process. Experiments with prepared mixtures of the
two forms of bilirubim gave the following regression data for unconjugated, conjugated, and

= 0.99 xT - )4.3 pmol L-1 with Syx = 13 pmol L-

Yc = 1.05 xT + .8 inol L1 with Syx = 1)4 pmol L1

y = 1.01 xT + 7.2 pmol L1 with Syx = 12 pmol L1

total bilirubin where y and x are the concentrations (pmol/L) found and added, respectively,
and Syx is the standard error. All plots are linear with reasonalbe scatter (Syx) about the
least—squares line. When perfected, such a procedure could help avoid the need for two—step

or separation procedures.

First—order/zero—order
It is judged that several situations such as progressively inhibited enzyme reactions, lag

phases in coupled enzyme reactions, and antibody/antigen (inimunoassay) reactions involving
enzymes as the label may result in simultaneous first—order/zero—order processes. One
example involving lactate dehydrogenase is used to illustrate how such systems can be
resolved and some advantages that might result.

Lactate dehydrogenase subunits. It has been shown (8,9) that under controlled conditions,
the inhibition by pyruvate of the activity of the heart (H) and muscle (M) subunits of LDH
follows pseudo—first—order kinetics with different rate constants for the two subunits

(eg. kH = 0.7 s- and kM = l.)4 s- (9)). Thus, it is expected that if one of the subunits
were mixed rapidly with pyruvate and NADH, the response should be that of combined first—
order (inhibition) and zero—order (catalytic reaction) processes, and a fit of the data to a
model for parallel zero— and first—order processes should permit computation of the initial
(uninhibited) rate. Furthermore, if a mixture of H and M subunits were mixed rapidly with
pyruvate and NADH, the response should be characteristic of the mixture, and it should be
possible to use an appropriate model to resolve the mixture quantitatively.

Figure 6A is an A vs. t response curve for the 11)4 subunit mixed rapidly with pyruvate and
NADH and Fig. 6B is a similar data set with the fit to a combined first—order/zero—order
model superimposed. The horizontal (scatter) plot represents differences between observed
and predicted A vs. t data scalled to standard deviation units (scale at right). There is
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Fig. 6A. Response curve for H)4 lactate dehydrogenase subunit. Reprinted
with permission from Anal. Chim. Acta, 127, 23 (1981).

Fig. 6B. Rsponse curve for 11)4 subunit with fit to first—order/zero—order
model superimposed. Horizontal plot represents residuals scaled to
standard deviation units. Reprinted with permission from Anal. Chin. Acta,
127, 23 (1981).
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excellent agreement between observed and fitted data; most of the residuals are scattered
about zero and most are within the ± 2 sd. units (95% confidence level). Similarly good
fits were obtained for the M) subunit and mixtures of the two subunits.

It is apparent from Figs. 6A and 6B that the initial velocity, V, is much higher than the

steady—state velocity, after the inhibition process has gone to completion. Figure (
is a plot of initial and steady—state velocities vs. concentration for the M subunit. The
steady—state velocity is only about )40% of the true initial velocity, indicating that many
so-called "optimized procedures" that quantify steady—state rates and do not take inhibition
into account have very large errors associated with them. For the H1 subunit, the steady—
state velocity is only about 15% of the initial velocity (V55 0.15 Vi).
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Fig. 7. Comparison of initial and steady—state velocities for H lactate
dehydrogenase subunit. — initial velocity; — steady—state velocity.

Several mixtures of the H and H subunits were evaluated (9) by the regression method. The
least—squares data are

= 0.97 xH + 0.21 umol with 5yx = 0.7k nmol and r = 0.99k

= 0.98 xM + 0.01 nmol with S = o.6 nmol L1 and r = 0.997

and

= 1.01 xT — 0.66 nmol with 5yx = O. nmol and r = 0.998

where y11, and represent amounts of heart, muschle and total (H + M) found in the
mixtures and xH, xM, and xT represent amounts added.

Other applications. It is highly probable that the lag phase in many coupled enzyme
reactions follow combined first—order/zero—order kinetics, and that procedures such as this
could be used to better study these lag phases and perhaps exploit information contained
therein. Thus it could be possible to understand and utilize a feature of enzyme reactions
that at the present time creates more problems than useful information.

Another more general and potentially more useful possibility involves homogeneous inmuno-
assays. The traditional approach to inmunoassays is to permit antibody—antigen reactions to
proceed to equilibrium, and to base the final result on the equilibrium conditions. Because
equilibrium concentration are frequently nonlinear functions of initial concentrations,
calibration plots from such procedures are nonlinear and complex functions such as the
logit—log transformation are used to "linearize" the data. However, because initial rates
frequently vary linearly with initial concentration, procedures bases on kinetic aspects of
antibody-antigen reactions rather than equilibrium conditions offer better opportunities for
linear responses. The regression methods described above should be applicable to such
systems with the first—order model being applicable to systems that are monitored directly
by some suitable physical property (absorbance or fluorescence) and with the first—order/
zero—order model being applicable to systems in which the antibody-antigen reaction is
monitored by the activity of an enzyme label. Preliminary data in our laboratory for one
system (10) confirm that the nonlinear regression method yields linear calibration plots
whereas a more conventional two-point, fixed—time method yielded nonlinear calibration
data (10).
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Michaelis—Menton kinetics
A traditional problem associated with the use of kinetic data to quantitate substrates in
enzyme catalzyed reactions is the need for the Michaelis constant to be much larger than
substrate concentration (KM >> c) so that the reaction will be pseudo-first—order in sub—
strate concentration. Using nonlinear regression methods similar to those discussed above,
it is possible to alleviate this problem to a substantial extent. The procedure is to fit

rate (Ak/At) and absorbamce using Vmax, KM, and C as fitting parameters. Preliminary
results in our laboratory with uricase used to quantify uric acid via the change in absor—
bance at 280 nm give linear results between 6 x l06 and 8 x l05 mol/L. Considering a
value of the Michaelis constant of about 3 x 105 mol/L for uricase, it is apparent that
more traditional kinetic methods would yield a nonlinear relationship for concentrations in

this range.

SUMMARY

In the traditional approach to the quamtitation step in clinical chemistry, much effort is
usually devoted to adjusting procedures to yield linear response curves. Although this was
a desirable and perhaps even necessary aim when data were collected and processes primarily
by manual methods, it is not so desirable or necessary with the current trend toward the use
of computers to mechanize data—acquisition and data-processing steps in quantitative proce-
dures. It is shown above that not only cam nonlinear data be processed as readily as linear
data, but that substantial advantages can be appreciated via the use of nonlinear data. As

examples, the insensitivity to experimental parameters demonstrated by data in Fig. 2, the
extended linear range illustrated by data in Fig. 5, the ability to resolve two—component
mixtures such as unconjugated and conjugated bilirubins or the H and M subunits of lactate
dehydragenase, the ability to quantify true initial rates for LDH (Fig. 7), and the ability
to obtain linear calibration data for uric acid concentrations that approach and exceed the
Michaelis constant for uricase all depend upon the exploitation of the nonlinear character-
istics of response curves. We have prliminary data to suggest that the use of nonlinear
data to obtain initial velocities of antibody—antigen reactions may permit one of the major
problems associated with these procedures, namely the insensitivity to antigen concentration
at high concentrations, to be alleviated. Thus, a feature of data sets that was viewed as
a nemisis with manual data—processing methods can be used to substantial advantage with
mechanized data-processing methods, and it is believed that these methods merit more
attention from clinical chemists and clinical instrument manufacturers.
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