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THE STATE OF THE CRITICAL STATE OF FLUIDS

J. N. H. Levelt Sengers

Thermophysics Division, National Bureau of Standards, Washington, DC 20234

Abstract — A review is given of recent progress in the understanding of
critical phenomena in fluids and fluid mixtures. The topics discussed are:
critical exponent values; the Wegner expansion for corrections to scaling,
and its application in pure fluids and binary liquid mixtures; weak

critical anomalies in binary liquid mixtures; symmetric and asymmetric
tricritical points; interfaces and nucleation.

INTRODUCTI ON

In this lecture some of the accomplishments of the modern theory of critical phenomena will be
discussed. Although I will occasionally draw upon my own work, most of the material for my
talk has been contributed by the participants in my poster session, which has made my task both
easier and more enjoyable.

The topics I want to touch upon include the thermodynamic behavior of near—critical fluids and
fluid mixtures, and the critical behavior of interfaces. The foundation for the treatment of
each of these topics was laid in the past century in three monumental papers by van der Waals:
his thesis on the equation of state in 1873, his generalization to mixtures in 1890, and his
theory of interfaces in 1894. These papers contain a complete description of what is presently
called a "classical" or "mean field" approach to critical phenomena. It was already known in
van der Waals' own days that this classical picture has some essential flaws but it took to
well into the 1960's to remedy this problem. The cause of the trouble is rather easy to
understand. The theory of critical opalescence, developed by Ornstein and Zernike in 1914—
1917, had made it clear that near a critical point long—range density fluctuations are becoming
very likely because of the large compressibility. Imagine now the classical parabolic co-
existence curve. According to a criterion developed by Ginzburg, the classical description
will have to fail at that distance from T where the density fluctuations become comparable
with, and therefore wash out, the densitycdifference of coexisting phases. Fluctuations become
more important the lower the dimensionality; in four dimensions classical theory would still be
valid, but in three dimensions the fluctuations win when the critical point is approached.
This leads to the characteristic flattening of the top of the coexistence curve which makes it
look more like a cubic than a parabola. Since the critical anomalies are due to large—range
fluctuations, not to short—range molecular interactions, these anomalies are expected to have a
nathematical character that is substance—independent. It is described by the term "critical—
point universality" and it pertains to a much wider class of phase transitions than those in
fluids only. Much effort in the past 15 years has been devoted to developing a universal non—
classical description of the critical behavior of fluids, ferromagnets and antiferromagnets.
Some of the results of this effort will be summarized here, and illustrated with examples from
my own work and from the posters.

The extension of the non—classical description to fluid mixtures in the 1970's by Griffiths and
Wheeler led to some surprises that could have been anticipated from the formally—analogous
treatment of thermodynamic anomalies in pressurized superfluid helium in the late 1950's and
early 1960's by Pippard, Buckingham, and Fairbank. Most of the material presented in my poster
session pertains to the subtle anomalies present near the critical line of fluid mixtures, and
roughly half of the lecture will be devoted to this topic. In the area of fluid mixtures, a
thermodynamic curiosity called a tricritical point has been studied in the past decade.
Contrary to a normal critical point, at a tricritical point, where three fluid phases become

simultaneously identical, the difference in properties of coexisting phases grows so rapidly
below the critical point that it cannot be swamped by the fluctuations, so that classical
theory is expected to hold. The interest in this fluid tricritical point derives in no small
manner from the fact that it is a member of a respectable family with two branches, the
symmetric branch and the nonsymmetric branch. Fluid tricritical points are nonsymmetric.
Well—known members of the symmetric branch are the tricritical point in mixtures of superfluid
helium'-4 and helium—3, and the point at which a transition turns from second—order to first—
order in certain antiferromagnets. The theory for the latter case was developed by Landau in
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1937 and has been recently extended to the nonsymmetric case by Griffiths. My poster session
boasts members of each class, which will be introduced and described in this lecture. The
lecture will close with some notes on interfaces and nucleation. In parallel with the devel—
opment of nonclassical thermodynamics, the classical theory of interfaces had to be similarly
modified, which was achieved by Widom and coworkers. A number of interesting developments
followed, some of which are to be sketched in my talk. Those included the prediction of the
divergence of the interface thickness; that of the so—called Cahn non—wetting to wetting phase
transition; and the prediction of the behavior of the surface tension at the non—critical
interface in the vicinity of a critical—point phase transition, which prediction was recently
confirmed, as demonstrated in a poster in my session. I will not be able to restrain myself
from communicating how a conceptual difficulty, that of the subcritical interface becoming
infinitely thick on approach to the critical point, while the gravity—induced density gradient
in the supercritical phase becomes infinitely sharp, has been recently resolved.

The last topic of my lecture, that of nucleation, developed along a similar pattern, in that
the classical Becker—Döring theory of nucleation had to be adapted in order to accommodate the
nonclassical behavior of density, surface tension and diffusion, as these properties enter into
the equations for nucleation rate and droplet growth. The problem in this field has been a
sequence of experiments that all seemed to indicate failure of the Becker—Döring theory in that
the theoretical degree of undercooling seemed too small. Only very recently has this problem
been resolved by an elegant experiment, displayed in the poster session, that carefully sepa—
rates the events of nucleation and of droplet growth.

The seeds planted by van der Waals a century ago have been fertile beyond expectation. They
have grown into a forest in which the new and unexpected is still encountered at every turn of
the road. The paths I will take into this forest will be those clearly marked and laid out by
its founder: fluids, fluid mixtures and interfaces.

CRITICAL EXPONENTS, CRITICAL AMPLITUDE RATIOS, SCALING

Anomalous critical behavior is described by means of power laws. Thermodynamic derivatives
such as the compressibility KT, the expansion coefficient n and the specific heat C in the
pure fluid or the osmotic susceptibility (x/) in a binary liquid diverge sharp'y. We
write KT F±ATY, where AT=T—T , F± the amplitue of the anomaly above (+) or below (—) T
and y tfie critical exponent; y=l n classical theories of the type of Van der Waals, close
5/4 for Ising—like systems such as uniaxial ferromagnets and fluids. Coexisting phases I,
II have the same "fieldlike" properties, such as temperature T, pressure P and chemical
potentials i, i2 ..., but differ in "density—like' properties such as volume V, concentration
x, entropy 5, energy U, dielectric constant c and refractive index n. These differences
approach zero at the critical point. We write x1—x11, pj—p11, etc. = BAT, with 5=1/2 in
classical theory, close to 1/3 in fluids. The relation of a density and the conjugate field on
a path of constant field is characterized by the critical exponent f; for instance:

at T=Tc, with AC=P—PC. In classical theory =3, in fluids it is close to 5.
Finally, there are properties which are predicted not to diverge in classical theory, but which
do show weak anomalies near the critical point. Thus, the specific heat at constant volume CV
and the adiabatic compressibility K in the one—component fluid; Cp, apx, KTx in a binary
mixture, are weakly divergent, which is represented by relations such as CV(A±/n) AT
on the path =pc, with cO.l. The character of the divergence of the correlation length 5
follows from the Ornstein—Zernike theory and is represented as 5=50ATfl, with l/2 in
classical theory, almost 2/3 in Ising—like systems such as fluids. The smallest critical
exponent, n, describes the slight departure from Ornstein—Zernike behavior for the r—dependence
of the correlation function G(r), as rH+fl at the critical point; n equals about 0.03.

The results of the modern theory of critical phenomena may be summarized as follows. (a) All
systems with short—ranged interparticle forces and in the same universality class (d,n) spec-
ified by the dimensionalities of the space, d, and of the order parameter, n, have the same set
of critical exponents. (b) Of these critical exponents, only two are independent, the others
follow from exponent equalities such as y=5(—l), which are valid irrespective of the uni-
versality class. (c) Of the corresponding critical amplitudes, again only two are independent
(two—scale—factor universality), the others follow from the so—called universal amplitude
ratios, such as F+/F_, that are the same for all systems within a universality class. (d)
Techniques developed from the renormalization—group approach have yielded accurate values for
the critical exponents and critical amplitude ratios within each universality class.

The renormalization—group results for the critical exponents are summarized in Table 1 for the
n=l, d=3 universality class; the predicted critical amplitude ratios are given in Table 2. The
exponent values derived from seriesexpansion analyses of the Ising model have tended to differ
sufficiently from those given in Table 1 to put the hyperscaling relation (Table 1) in doubt.
At the 1980 NATO Summer Institute at Cargbse, however, close scrutiny of the two methods led to
a resolution of most of the outstanding difficulties, Ref. (4).
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TABLE 1. Critical exponents (n=l, d=3)

Classical Nonclassical
Critical tricritical Ref. (1)

a 0 0 T>T 0.110±0.0045
1/2 T<Tcc

1/2 1/4 0.325±0.0015

y 1 1 1.241±0.0020

f 3 5

1/2 1/2 0.630±0.0015

n 0 0 0.031±0.004

A1 0.498±0.020

exponent equalities: 2—a13(A+l) dv=2—a (hyperscaling)

TABLE 2. Critical anplitude ratios (m=l, d=3)

r/r 4.80

At/A 0.55

1.66

A+F+/B2 0.066

(AkB)Q 0.270

Ref. (2) (3)

The critical—exponent equalities and universal amplitude ratios are all imbedded in the Widom—
Kadanoff scaling laws, Ref s.(S,6) which follow from the hypothesis of generalized homogeneity
near the critical point,Ref. (7). If two independent field variables u, ut are chosen such
that Ut is along the coexistence curve in ub, ut space, uh at an angle to it, and uh, Ut=O at
the critical point, then the thermodynamic potential P(Uh,ut) may be written in terms of a
regular and a scaled part as

P=P (u u)+P (u u)reg h t sc h t

=

f(_h9)
. (1)

Here f, in the class specified by (n,d), is a universal function of the scaled variable
x=(uh/a)/ut3A; k and a are nonuniversal scale factors determining the units of two of the
variables uh, Ut and P5. The scaled potential, psc/ut (A+l)=p5/p_a is a function of
only one (scaled) variable x. A similar hypothesis is made for the correlation length

The form of the scaling function f is known approximately from renormalization—group
calculations. In practice, variants of the linear—model parametric representation of Schofield,
Ho and Litster (8,9) are used. The linear model is of the form

= r(l—b292

uk/a r O(l_®2)

Psc/ak p(C)

order par.: 1(P /ak)/1(Uh/a) = )r (linear model) (2)



440 J. M. H. LEVELT SENGERS

Here p (0) is a universal polynomial quadratic in 02 with coefficients which are functions of
the critical exponents and the universal constant b2. Forms algebraically—closed in terms of
parametric variables are available for all thermodynamic functions of pure fluids and binary
liquid mixtures (Table 3). For a complete listing, see Ref. (10). In ferromagnets, the
variable ut equals TTc, while u equals H, the magnetic field. In fluids, the relation of
ut, uh to the physical variables is of some subtlety and will be discussed in the next section.

TABLE 3. Linear model equation for one—component fluids and for incompressible binary liquids

One—component fluid Binary liquid Parametric expression

Potential

dP(Sp)dT+pd4 —dii2SdT+xdA

Reduced variables

Ap*(p_p )/p 2 p*_l x—x (x=x1) kr0c c c

AT*=(T_T )/T r(l—b202)c c

P*=P/P 2*_42Tc
c

(Ap)*=(Ap)/P G*=G/RTc c

(Sp)*=(Sp)T/P S*=S/R

(Up)*=(Up)/P H*=H/RT
c

Regular and scaled parts

zlA*=A*_A(x ,T*)2A*_A0(T*) ar 0(1_02)c
P*=P0(T*)+Ap*+P* _P2*_Q(T*)FAA*4anon anon

2—n
p* anom akr p(0)anon

E*
G*xAQ(T*)+220(T*)+Ganon
E* 2—ct(Ap)* G akr [02(l-02)-p(0)]anon

S*_O(T*)_xA(T*)+SE*anon
1—ct

akr s(®)anom
(Up)*=_{P0 (T*)_T*P (T*) }+

E*
+p*{40(T*)_T*3(T*)}+(Up)* +x{A0(T*)_T*A(T*)}+Hanon

(Up)* }JE*
1—ct

akr s(0)+anon

+akr2ctf(1_b202)s(0)+02(l_02)_p(0)]

p(0)=pO+p202+p
0-30-b2cty0 P0= s(0)=so+s202 so=(2—a)po

-2-b2ct(20-l)
P2 -

2b2(l-ct)ct s2=(0-3)/2b2ct

p= (2—3)/2ct

restriction:

primes denote

b2(S—3)/[(—l)(l—2S)}

differentiation w.r.t. T*

20(T*), P0(T*), 220(T*) and A0(T*) are
analytic functions of T*, to be approximated

by polynomials

THE WEGNER EXPANSION

The range of validity of the asymptotic scaling laws (1) has been found to be small in fluids
(Refs. (11—15)). Wegner derived the form of the corrections to scaling for the magnetic case
from renormalization—group considerations. The Wegner expansion is of the form

sc au0+U [k0f0(x) + kiu A1f1(x)+,...] (3)

lotsHere f0, f1 ... are all universal functions of the scaling variable x = (uhia)! ui . Each
new term is characterized by a new universal "gap" exponent Ai, and only one non—universal
amplitude k. It follows that the amplitude of the th Wegner correction for different
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thermodynamic properties of a given fluid are all related to each other, only one of them being

independent.

Renormalization—group calculations give A=O.498 '(Table 1). Although the values of the higher
exponents are still quite uncertain, they appear to be spaced by roughly 0.5, so that the
Wegner expansion is a slowly—converging series. The importance of the confluent singularities
was first recognized by Ahlers (12) in his analysis of the pressure—dependence of the specific
heat of He4 near the A—line in the early 1970's. In fluids, this recognition arose after the

experiments of Balzarini (13) , Hocken and Moldover (14) and Greer (15) showed that only very
close to the critical point do critical exponents in fluids approach the values for Ising—
like systems.

The Wegner expansion is usually applied along selected paths in the space of independent
variables. Well—known examples from the literature are the analysis of the coexistence curve
of sulphur hexafluoride by Ley—Koo and Green (16) , that of the compressibility of xenon from
light scattering by Giittinger and Cannell (17) and that of the coexistence curve of

partially—miscible binary liquids by Greer (15).

The posters of Ewing et al. , Kumaran et al. and Van Dael, Thoen et al. , in my poster session,
apply the Wegner expansion to coexistence—curve properties such as concentration, speed of
sound and dielectric constant of binary liquids. I will discuss these results shortly.

For the case of one—component fluids, we have succeeded in applying the Wegner expansion, Eq.
(3), in the entire space of independent variables uh,ut rather than along specified paths.
This requires a functional form for f1(x) in addition to that of f0(x), Eq. (3). Balfour et
al. (18) proposed a parametric form for f1(x) which gives a derivative which is linear in P
just as that for f0(x) in the linear model, Eq. (2).

In the application to fluids, a decision needs to be made about the relation between the
variables u, ut and the physical variables. The variable uh, the analogue of the magnetic
field h, drives the system away from the coexistence curve in uh, ut space. In fluids u is
chosen as Aptp_p(Pc,T), where is the chemical potential and (Pc,T) the chemical potential at
coexistence below Tc, and on the critical isochore at least asymptotically above Tc. It is
assumed that p(c,T) is an analytic function of T, to be represented by a polynomial in
ATtTTc The variable ut is the analog of TTc in the ferromagnet and drives the system away
from criticality along the coexistence curve in ut, uh space; in Ref. 18 it was chosen as a
linear combination of AT and A. The potential is the pressure P(c,T) and thus the density

and the entropy density s(P/T). These choices and assumptions are all based on
the formal analogy of the ferromagnet and the lattice gas (19), and on the known behavior of
the so—called decorated—lattice—gas models (20) which lack particle—hole symmetry just as real
fluids do. Each of these assumptions requires further modification if Wegner corrections
beyond the leading symmetric one are considered (21,22).

I want to show here some applications of the Wegner expansion that we have recently made in

order to formulate the thermodynamic properties of H20 (23), 020 (24) and C2114 (25) in a range
around the critical point. Especially for H20, a large number of accurate experimental data of
various kinds were available. For the critical exponents, the theoretical values listed in
Table 1 were assumed. Host other model parameters were obtained from a fit to the PVT data for
these substances. The model predictions were then compared with experimental data for other
properties. In Figs. 1—3 we show the agreement of the model with data for C, CV and the speed
of sound of H20. In Fig. 4 a comparison is shown with the speed of sound in ethylene. Note
that C is a sharply—diverging property, CV a weakly—diverging one, and that the speed of sound
goes t zero weakly at the critical point. After some slight adjustments of the temperature
scales of the various experiments for H20, the agreement of the model and high—quality data for
both substances is within the uncertainty of the data. The range of application of the model,
if one Wegner correction is used, is of the order of —1% to +8% in reduced temperature, —35 to
+35% in reduced density from the critical point. The range in which the asymptotic Ising—like
exponents are recovered is very small indeed. If the amplitude of the first correction term in
Eq. (3) is of the order of that of the leading one, for the correction term to be no more than
1% of the leading one the reduced temperature range is to be smaller than l0.

Our work has shown that various accurate thermodynamic data in one—component fluids in a region
up to +8% in temperature, ±35% in density from the critical, appear consistent with a theo-
retical model that incorporates Ising—like critical exponents, mixing of variables and one
Wegner correction term. I will suggest that the same model be used for describing binary
liquid data such as excess enthalpies and volumes.
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Fig. 1. Isobaric specific heat Cp of steam
predicted by a scaled equation fitted to PVT
data. The critical isobar is at 22.064 MPa.
Apart from a small shift in peak location,
which can be corrected by a temperature shift
of 0.05 K (Tc=647 K!) the specific heat is

quantitatively predicted by the scaling
equation with one Wegner correction.
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Fig. 2a. Isochoric specific heat C of steam,
as measured by Baehr et al. along four

isochores (pc=322 kg/m3), compared with the
prediction from a scaled equation fitted to
PVT data, Ref. (23).
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Fig. 2b. A similar comparison for isochoric specific heats measured by
Amirkhanov et al. much closer to the coexistence curve. Apart from a shift
in temperature scale of 0.3 K between PVT and C data, the steep rise of C
close to the phase transition is accurately predicted.
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Fig. 3. The deep minimum in the isothermal speed of sound of steam is
well predicted by a scaled equation fitted to PVT data.
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SPEED OF SOUND

Fig. 4. A scaled ecuation fitted to PVT data
speed—of—sound data within experimental error
the critical point (Tc282.34 K).

of ethylene predicts the
in a substantial range around

SPECIAL DIRECTIONS AND EXPONENT RENORMALIZATION

As pointed out by Griffiths and Wheeler (26), in the case of two independent variables uh and
ut there is one direction in the ub, ut plane that is singled out by the phase transition
itself. The second derivative of the potential taken along this direction diverges at most
weakly, while it diverges sharply if taken in any other direction; second derivatives taken in
any direction diverge more strongly if the path of approach to criticality is along the special
direction than if it is not. Take, as an example, for the one—component fluid the potential
c(P,T) whose second derivatives are the measurable quantities:

— = C
T

The specific heat C, the expansion coefficient ctp and the compressibility KT all diverge
strongly, with exponent y, because both P and T axes intersect the special direction. This is
true for classical and nonclassical behavior. If, however, the derivative of the potential is
taken along the special direction, that is, along the direction of the vapor pressure curve in
the P—T plane, then the second derivative of the potential diverges only weakly, as Cv, with
exponent a; or not at all in the classical case. This special direction, moreover, is con-
fluent with the critical isochore both for classical and nonclassical critical behavior:

1—c . .
-± (dP/dT)vap as T_Tc for a scaled equation. Saying it differently, a second

derivative taken at constant "density" (volume, entropy, etc.) is in fact taken along the
special direction and results in a weak anomaly. Thus, along the special direction:

(3P/3T) , (3P/3T) (dP/dT) as T-T
1-a

s=s v=v yap c
c c

Cvv KS=Sc OSS T_TIa (5)

The critical exponents y, cx by definition describe the strong divergence of the compressibility
KT and the weak divergence of the specific heat Cv along the special path of approach to the
critical point. As pointed out by Griffiths and Wheeler (26), along any other path, such as
that of constant temperature or pressure, these exponents become renormalized, because along
the special path the high near—critical values are reached faster than along other paths. For

example, along the special path the compressibility diverges as TTc or as
because of the relation for the critical isotherm: cH we have, at T=Tc,

KT which means that the exponent is reduced by a factor Pf as compared to the
special direction (Sc1.5). This path renormalization by a factor of PS occurs for both
strongly and weakly—diverging properties, but it does not change the intrinsic character of the

anomaly, (strong, weak, nondivergent).

Density. mol/dm3

= yap
3P3T

(4)
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In the case of three or more independent variables, there is, in addition to the directions
along and intersecting with the coexistence surface, a new way of approaching a critical
point, namely along the critical line in the case of three, parallel to the critical space in
the case of more independent variables, Ref.(26). Examples of interest to us are: the super—
fluid phase transition in helium—4 as a function of pressure or in the presence of an admixture

of helium—3; partially miscible binary liquid mixtures under pressure; ternary liquid mixtures;
a fluid in an electric field; the polymerization of sulphur solutions. For classical critical
behavior, the thermodynamics were developed by Ehrenfest: at a coexistence surface, 'density"
variables change discontinuously, whereas at a critical line, these variables are continuous
but their first derivative has a discontinuity. Thus, Ehrenfest predicted finite jumps in
quantities such as C, ct of the superfluid or of the binary liquid mixture at the critical
line. The Clapeyron equation relates the ratio of jumps in entropy and volume to the slope of
the vapor pressure curve. Likewise, Ehrenfest related the jumps in specific heat and expansion
coefficient to the slope of the critical line. Once it was realized in the mid—195O's that the
specific heat of superfluid helium has a logarithmic divergence at the A line, a new approach
to the thermodynamics was required. The thermodynamics of the A line was worked out by Pippard
(27) in 1957 and by Buckingham and Fairbank (28) in 1961. For C to diverge, the entropy
surface of helium must have a vertical tangent all along the A—line. The Maxwell relations
then imply that the volume has a similar vertical tangent. Pippard relations such as that
between the specific heat and the expansion coefficient near the X line

(C/T) - (vo) (dP/dT) (6)

replace the Ehrenfest relations for the jumps in these quantities in the classical (finite—Cp)
case. Griffiths and Wheeler (26) generalized these ideas to the case of critical behavior in
systems with more than two independent variables. Thus, the binary liquid mixture, at critical
concentration, has weakly—diverging specific heat and expansion coefficients related by the
Pippard relation (6).

We noted before three characteristics of the special direction of the first—order transition:
it is approached by keeping one density—like variable constant; second derivatives taken along
this direction diverge weakly rather than strongly; and divergences on paths along this direc—
tion are about 50% sharper than along other directions (exponent renormalization). The direc—
tion along the critical line presents similar characteristics. They can be summarized as
follows: this direction is approached by keeping two density—like variables constant; second
derivatives taken along this direction are nondivergent; and divergences in second derivatives
not taken along this direction are about 10% stronger on paths along this direction than along
other paths in the coexistence surface (exponent renormalization, Fisher (29)). These facts
are readily grasped if one imagines the entropy surface of a binary mixture, constrained to the
coexistence surface, that is, maintained at x=xc(P) asymptotically, as a function of pressure
and temperature, with its vertical slope along the A line. On any path of constant pressure,
the S(T) curve has a similar shape. The only effect that pressure has is to shift the value of
Sc (and of Vc, xc) smoothly, and to modify the amplitude of the anomaly in S. On all paths
intersecting the A line (such as constant pressure or constant temperature paths) the steep
rise in entropy will be encountered: (S/3T)p = Cpx/T and (')Tx = VOpx will diverge as
TTc°. If, however, a path of constant volume is taken, then this path will have to "hug"

the critical line, because along paths intersecting the critical line the volume, just like the
entropy, varies anomalously. Along the critical line, however, entropy, volume and concen-
tration vary smoothly and uneventfully and since derivatives such as (S/T)x are effectively
taken along the critical line they do not diverge:

CVx KSx °Sx -* constant as T—T° (7)

The approach of (P/3T)px to (dP/dT)x is only weak, not strong as in the case of approach to a
first—order curve:

(P/T) (P/T)5 - (dP/dT) as T—TJ° (8)

Since this "hugging" effect is induced by the weak anomalies, it does not occur in the classi-
cal case, and we will not be surprised to find that it is hard to detect in fluid mixtures.

Finally, critical exponents of strongly and weakly anomalous derivatives will be renormalized
on paths in the coexistence surface that are asymptotically parallel to the critical line.
The reason is the same as in the case of the first—order transition discussed before: the high
near—critical values are reached faster on paths parallel to the critical line. The enhance-
ment factor of the critical exponent, however, is smaller than the factor of 1.5 we encountered
before. Here, it is 11(1—a) or about 1.1 and, again, it does not modify the character of the

anomaly (strong, weak, nondivergent).

In Table 4, a list is made of the primary independent variables, the additional field, its
conjugate density, the primary weak anomaly, and some of the weak anomalies it induces, for all
the cases of interest to us here. In Table 5, Pippard relations for these cases of interest
are summarized.
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TABLE 4. Weak anomalies in systems with additional fields

primary
md. vars.

additional
field

conjugate
density

primary
weak anom

induced
weak anom.

Superfluid
helium

fluid in
One-component

electric field

Binary liquid
under pressure

Binary liquid
in electric
field

Partially
miscible

ternary

T

T,P

T,(p1—p2)

T,(p1—pp)

T,(p1—p2)

E
2

P

E2

P3

V

V

c/p

x3

C

CVE2

Cp

C

C
/p,x1,x2

KT

/3E

)v,E2 2)V,T

Px' Txa K

/3(c/p)\
3T 3E2 )x,E x,T

'\
3T)xi/x2,3'33)xi/x2,T

TABLE 5. Pippard relations

Superfluid
helium

One—component
fluid in
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BINARY LIQUID MIXTURES

Before discussing some of the results of the six posters in my session that present properties
of binary liquid mixtures (LL) , I will make some remarks about the analysis of the critical
anomalies in binary mixtures. It is generally recognized that the theoretical asymptotic
behavior of binaries is limited to the close vicinity of the critical point. Although this

close—in region is probed in all experiments in my poster session, in most of the experimental
range corrections to scaling are to be expected. The participants in the poster session have
been quite aware of this need and you will find reference to the use of the Wegner expansion in
almost all posters. There are, however, a few complications that have to be faced. The first
one is the choice of order parameter. As was argued forcefully by Scott (30), any choice of
order parameter that is not the one theoretically required will induce correction terms in the
analysis of the coexistence curve, the lowest—order one being proportional to TTc25.
This exponent is lower than any expected from either Wegner corrections or mixing of variables.
Since we do not know a priori what the order parameter is in a binary liquid mixture, this
ignorance presents an essential limitation to the application of the Wegner expansion in
binaries. In the case that enough thermodynamic information is available to try several
choices of order parameter (mole fractions, volume fractions, number densities, etc.) it is
possible to judge how reliably an amplitude of a Wegner term can be obtained. Such informa-
tion, however, is seldom available. A second problem is the extreme sensitivity of the am-
plitude of the Wegner correction to the choice of leading exponent. A third problem is the
effect of gravity that affects the entire range where Wegner corrections are small. This is an
uncontrolled effect because gravitational sedimentation is almost certainly never fully devel-
oped in binary mixtures. In analyzing binary liquid data, it is therefore important to first
make a clear choice of the questions to ask. It is certainly unrealistic to expect to derive

reliable values for the critical exponents, plus the amplitudes of leading and Wegner correc-
tion terms, from an analysis of coexistence—curve properties of a mixture for which even the
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choice of order parameter is ambiguous. In such cases, it is perhaps wiser to strive for a
more limited goal: the demonstration of consistency with a theoretical picture, under the
assumption that the theoretical values of the critical exponents are now more precise than most

experiments can give.

My second remark pertains to the analysis of excess properties. It has been customary to
analyze the excess volume or excess enthalpy of mixing by a power—law analysis of the proper—

ties (2HE/x2), (2VE/x2) on the critical isopleth. Both properties are expected to go

to zero as along this path. Any experimentalist who has tried to derive a value for a
second derivative from his data is aware of how difficult this is. If mixtures of varying
concentrations are made up separately, the systematic errors will preclude the determination of
the second derivative; if the mixture is continuously diluted, there is of course a fighting
chance to retain some accuracy in 32VE/3x2. I would like to suggest here a different approach.
This is to fit the measured values of HE, VE or GE directly to the appropriate scaled expres-
sion at all experimental temperatures and concentrations at which the information is available.
As an example, I will use the simple linear model discussed before (cf. Table 3) for the case
of incompressible binaries. The generalization to compressible binaries goes in steps.
First, the reference values Tc, Xc and Ac are to be functions of pressure. Secondly, the scale
factors a and k are to be functions of pressure. We will assume them to be linear in P.
Thirdly, the excess volume FE is obtained from the relation for the volume V:

(9)

which was obtained by Sengers et al. (33) by transforming the derivative V (32/)T A
to a derivative in which the scaling variables uh,ut are kept constant. The relation 9) is
valid near the critical line. The derivatives (dT/dP), (dA/dP) represent the slope of the
critical line with pressure. For S and x we take the parametric expressions from Table 3. The

pressure—dependence of p at constant ut,uh is solely through the pressure dependence of
a and k. The anomalous part of V, which is VE, therefore consists of three terms; one in r3,
representing the trivial linear dependence on x—xc; one in r'-, which gives rise to the weak
anomaly in the expansion coefficient on the critical isopleth and to the fact that
(22VE/2x2)p,T goes to zero as AT; and one term which behaves as q2, as r20, which is a
confluent singularity of considerably higher order. The parametric expressions for the excess
properties are given in Table 6. The regular "background" terms in G, 5, and H are those
given in Table 3. The background of V is more complex, but it is of the same structure,
V0(T*)+xV1(T*), as that of the other functions. These equations will not be applicable in the
entire concentration range, given the experience that the equivalent relations in one—component
fluids do not extend over more than ±35% in density even in "apparent" or range—averaged
critical exponent values are used. The relations in Table 6 are readily extended to include
a Wegner correction, since the generalization of Table 1 that includes the first Wegner
correction is available in the literature, Refs. (11, 23—25)

TABLE 6. Linear model equations for compressible binary liquid mixtures
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Let me now draw your attention to the material in my poster session. There are two posters
that present excess properties. That of Marsh and Rogers gives the results of measurements of

concentration, excess volume, excess enthalpy, and vapor pressure of nitroethane—cyclohexane;
that of Ewing, Johnson, and McGlashan gives concentration and excess volume of cyclohexane and
methanol, by the use of a continuous—dilution dilatometer. The second poster contains a Wegner
analysis of the concentration on the coexistence curve. In both posters, the question of
extracting the exponent y from the second derivative of VE or HE is encountered. To these two

posters my preceding remarks apply.

Then, there are two posters, that of Van Dael, Mijlemans and Vansteenkiste, and that of Kumaran,
Halpin and Benson, in which the speed of sound is used as a probe in a variety of binary
mixtures. The speed of sound W is related to the adiabating compressibility K5 by

w2 = (10)
p Sx

Since two "densities' are kept fixed when the derivative is taken, the speed of sound is not

expected to diverge. Only its temperature derivative will have an anomaly, Eq. (7). Thus, at
the coexistence curve the speed of sound will reach a finite value that is a function of the
state of the system. That is, it is not an order parameter but a function of the order para—

meter. Therefore, the difference of speed of sound5in coexisting phases will vary asympto—
tically as TTcS, after which the term in TTc2 appears. In the poster of Van Dael et al.
careful analyses of highly—accurate speed of sound data on the coexistence curve in a number of
binaries are presented. The asymptotic S values obtained are in agreement, within their
uncertainty, with the theoretical ones. The correction terms are not negligible for
(TTc)/Tc > 2x104. The theoretical predictions are well confirmed by these data.

In ternary mixtures, the adiabatic compressibility likewise remains finite, but the path of
approach to the critical point, in the coexistence surface at constant overall x2, x3, is
asymptotically parallel to the critical line so that the exponent S becomes renormalized to
/(l—o), Refs. (31,32). Van Dael et al. indeed seem to confirm this predicton: they find
5=0.360±0.01 in the ternary water—ethanol—chloroform. It should, however, be kept in mind that
the theoretical predictions pertain to the zero—frequency limit of the speed of sound. At
nonzero frequency, a critical frequency with accompanying high dispersion, is encountered on an
approach to the critical point. Van Dael and coworkers found this to happen within their
experimental range in several of the systems they studied. This phenomenon, although of
considerable interest, leads to distortion of critical exponent values.

The issue of the Pippard relation is touched upon indirectly in the poster of Siebert, Warowny
and Knobler on nucleation, and directly in that of Thoen, Kindt and Van Dael on the dielectric
constant of binary mixtures. As to the first poster, the trick used in inducing nucleation is
to adiabatically decompress a pressurized binary mixture, thus forcing it to cross the phase
boundary. There are two effects involved: the shift of the critical temperature induced by the
change of pressure, and the adiabatic cooling. The effect on the critical temperature can be
either a raising or a lowering of Tc. The former would seem to be of help, the second counter-
productive, but it has been found that mixtures with (dTc/dP)1 > 0, such as 3 methyl—pentane—
nitroethane, Ref. (34), and mixtures with (dTc/dP) < 0, such as isobutyric acid—water, both
nucleate under adiabatic decompression. This must then be due to the (T/P)5x effect being
large enough to override the effect of a negative (dTc/dP). But let us now consider the

Pippard relation (8). It predicts that, asymptotically, (T/P)s should approach (dT/dP),
so that an adiabatic expansion should have no effect whatsoever Given the fact that adiabatic
expansion has been found to induce nucleation as close as 0.01°C from the critical point, Ref.
(34), we are forced to conclude that the approach of (3T/P)s to (dT/dP)x is so slow that it
is of no practical importance. A similar conclusion was reached by Doiron et al. (36) in
their study of the P—T isochores of helium—3—helium—4 mixtures near the gas—liquid critical
line. The critical isochore appears to cross the dew—bubble curve in the P—T plane at an angle
while the critical line is tangent to this curve at the critical point. Again, although

theory predicts that (T/P) should approach (dT/dP)1, in practice the region where this
happens is experimentally irrelevant. No more than a minor "dip" in (T/P) is visible in
these very careful experiments.

The issue of the weak anomalies and the Pippard relation is also the topic of the poster of
Thoen et al. on the dielectric constant of nitroethane—cyclohexane. These authors are to be
credited for their discovery of an interesting frequency dependence of the low—frequency
dielectric constant in conducting mixtures, Ref. (35). Until this effect was recognized, the
studies of dielectric behavior of binary liquid mixtures were a bizarre array of mutually
conflicting results. I urge you to visit this poster and have the elegant resolution of these
controversies explained. Here I want to discuss the dielectric constant anomaly from the
point of view of thermodynamics. In the recent paper by Sengers et al. (33) referred to
before, the argument was presented that for a binary liquid mixture in an electric field, the
quantity c/p behaves formally analogous to the volume V for a mixture under pressure. That is
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=-( -S(---x(- (11)
p
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where q = p + €E2/2. The theory thus predicts an a—type anomaly for ((c/p)IaT) on the
critical isopleth above Tc, with an amplitude linked to that of the specific heat Cp by
(T/E2): according to the Pippard relations

(Vnp) (4)

- ((/p)'\ (±'\
T \ T jx,E2 \dT /X

the anomalies in Cp, 0Px and (c/p)/T are all connected by factors related to the slope of
the critical line. A test of these relations was performed by Thoen et al., who measured Cp,
the density and the dielectric constant for nitroethane—cyclohexane.

Before summarizing the results of my poster session, I want to make a few remarks about the
weak anomalies and exponent renormalization. The primary weak anomaly in C in one—component
fluids, Cpx in binary mixtures has been unequivocally demonstrated in many experiments. For

reviews, see Refs. (30, 37, 38). The Pippard relations, Table 5, show that the anomaly in the
expansion coefficient has an amplitude which differs from that in C by a factor (dT/dP)x.
Since the pressure effect on the critical line of binary liquid mixtres is small, the
amplitude of °Px must be small. Indeed, there are no more than one or two experiments in which
this anomaly has even been detected, Ref. (39). The compressibility KTx relates to 0Px as
°Px to CPx; the hope to ever see the weak anomaly in KTx is thus very slim indeed.

In summary, the posters in my session demonstrate the general agreement with the results of the
renormalization—group predictions for critical exponents and correction to scaling; and of the
thermodynamics of mixtures as developed by Griffiths and Wheeler on the foundation laid by
Pippard, Buckingham and Fairbank, and Fisher. They also illustrate the following intrinsic
difficulties: (1) the theory assumes the existence of an order parameter which, in practice, is
ambiguous; (2) the critical exponents, because of this ambiguity and because some of them are
derived by twice differentiating experimental quantities, cannot be obtained with an accuracy
even approaching that of the theoretical predictions, and (3) several of the predicted weak
divergences and weak asymptotic confluences are not noticeable in ranges of experimental
interest.

It is the view of this author that because of these ambiguities, most experiments in binary
liquid mixtures cannot prove or disprove the theoretical results of the renormalization group.
At best, a demonstration of consistency can be given. The theory, so far, has passed the test
of consistency with validated data in pure fluids and in binaries.

TRICRITICAL POINTS

A tricritical point in a fluid mixture is defined as a point at which three fluid phases become
identical. If a binary mixture has phase separation in the liquid phase, it will possess two
critical lines, a gas—liquid and a liquid—liquid line. For tricriticality it is required that

these lines meet. This is, according to the phase rule, extremely unlikely to happen. Thus,
tricritical points, if they occur, have to be looked for in mixtures with a minimum of three
components. In four—component mixtures, they can be studied at ambient pressure. This thermo-
dynamic curiosity has come into the limelight recently for two unrelated reasons. The first
one is the prediction that at a tricritical point classical theory should be valid in three
dimensions. The fluctuation cannot become large enough to wash out the difference in pro-
perties of coexisting phases, because the top of the coexistence curve is of the fourth degree
for a classical tricritical point (Table 1). The second one is that a relationship was dis-
covered between this fluid tricritical point and a well—known transition point in superfluid
helium—3/helium—4 mixtures. At this point the second—order X line of the superfluid transition
goes over into a first—order line along which two phases, a superfluid phase rich in helium—4
and a normal phase rich in helium—3 coexist. Blume, Emery and Griffiths (40) modeled this
phase transition by a classical model. If the fictitious field conjugate to the order para-
meter is included in the model, it turns out that three critical lines meet at this point; this
is the origin of the name tricritical point. The tricritical point in helium mixtures is
analogous to those found in several solid—state phase transitions, for instance in certain
antiferromagnets in which an external magnetic field of sufficient strength disrupts the
critical (Ndel) line and turns it into a first—order line. This second—order to first—order
transition has been known for a long time and was first modeled by Landau in 1937.

That fluid tricritical points and these "symmetric" tricritical points (called this way because
the behavior is unchanged if the sign of the fictitious ordering field is reversed) are
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analogous is not all that easy to see. Griffiths (41) showed that if unsymmetric terms are
added to the classical model that was used for the superfluid tricritical point, the charac—
teristic topology of a fluid tricritical point results. It is more complicated than I have
suggested, and can only evolve from a situation in a binary when two critical lines, emerging
from the respective pure—fluid critical points, are interrupted at a lower and an upper cri—
tical endpoint on a line of three—phase coexistence. The role of the third component is to
shrink this three—phase line to zero, so that the two critical lines blend into one. In the
language of van Konynenburg and Scott (42) , who generated almost all known phase diagrams of
binary mixtures with the Van der Waals model, the tricritical point happens at the transition
of type IV to type II behavior. Contrary to the symmetric tricritical points, the unsymmetric
one in a three— or four component fluids has no fictitious fields: in principle, all physical
fields are experimentally accessible. In practice, however, this advantage is lost because it
is not the fields but rather the conjugate densities that are studied by the experimenter; in
terms of densities, the tricritical point is extremely complex. In the frontier study of a
four—component mixture by Lang and Widom (43) the three independent composition variables were
sampled over the entire extent of the three—phase region at a number of temperatures. This
work permitted a test of the classical theory, with the result that the classical exponents
1.5, 1 and 0.5, predicted to characterize the shrinking of the three—phase region, were con—
firmed within a fairly large experimental uncertainty. The experimental situation brightened
considerably ihen Griffiths and coworkers (44) formulated so—called sum rules, which involve
the osmotic susceptibilities of coexisting phases. One such sum rule says that the square
root of the susceptibility of the middle phase is equal to the sum of the square roots of the
susceptibilities of top and bottom phases or, alternatively, that the correlation length of the
middle phase equals the sum of those of top and bottom phases. In principle, such a sum rule
can be tested by angle—dependent light scattering at one temperature, near the tricritical one
at which three phases are present. No sampling seems necessary. In attempting to do this,
Ref. (45), however, we encountered severe difficulties due to the fact that the intensity of
scattered light is only proportional to the osmotic susceptibility, but that the proportion—
ality factor, (c/9i)2 with i the order parameter, varies strongly from phase to phase in a way
that can only be predicted if all compositions are known. This problem is not encountered if
the sum rule is tested for the correlation length. It is, however, very difficult to determine
the correlation length with good precision from angle—dependent light scattering. The tests of
the sum rules for the square root of the susceptibility (corrected for the variable value of
c/) and the correlation length for the Lang—Widom mixture were that the rule was violated in
such a way that the value for the middle phase fell about 20% below the sum of those in the
other phases. Van Dael and coworkers ascribe these, and other departures from classical
behavior that they noted by their measurements of the speed of sound, to the nearness of the
critical end points where nonclassical behavior should prevail, Ref. (46) and poster.

A new phase in the research was opened when Scott, Knobler and coworkers (47) realized that a
tricritical point can almost be reached in a binary, and that it can be reached in an almost—
binary. The trick was to find, in mixtures of component A with a component B1, B2,.. .from a
homologous series, a component B which forms a type IV, while component B÷1 forms a type II
mixture with A. The A—Br mixture will then have a very small three—phase region which is quite

close to tricriticality. A typical example is ethane/eicosane. By mixing some Bi+l into B,
the tricritical point can actually be reached. Since the B components may be two high—mole-
cular—weight alkanes, while A is methane or ethane, the heavy alkanes will occur in almost
identical proportions in each of the phases and act as if they were "almost" a single com-
ponent, so that the system is called a quasi—binary. Four—dimensional vision is no longer
required if the thinking about tricritical points is done in quasi—binaries. Although it may
seem a disadvantage that these systems have to be studied under pressure, the contrary is true.
In a variable—volume cell these systems can be readily manipulated, with two field variables, P
and T, accessible.

Studies of almost—tricritical binaries and of tricritical quasibinaries are reported by

Specovius, Goh, Knobler and Scott in my poster session. I encourage you to hear their results;
in addition, they may have a report on their first results of a test of the Griffiths sum rules
by a light scattering experiment that they are carrying out in collaboration with Kumar and
Cannell.

I am delighted to report that my poster session also contains an example of a symmetric tn—
critical point. I am referring to the poster by Wheeler on the polymerization of sulphur
solutions. Let me first remind you that liquid sulphur polymerizes at a temperature of 159°C,
at which the closed rings of eight sulphur atoms open up to an open—chain radical that is
capable of joining an existing chain. The Scott—Magat extension of the Flory—Huggins polymer
solution theory to mixtures of different chain lengths was the basis for the Tobolsky—Eisenberg

treatment of the polymerization of pure liquid sulphur. The transition, although not inf i—
itely sharp, is close to being a second—order phase transition. Scott (48) extended the
Tobolsky—Eisenberg treatment to sulphur in solution. By diluting the sulphur by a solvent, the
temperature of polymerization is increased, so that a critical line is generated. After the
system is sufficiently diluted, it will split into two phases, one rich in sulphur and poly—
menized, the other poor in sulphur and not polymerized. The situation is quite similar to that
in helium—3/helium—4 mixtures, with the temperature direction reversed, but this was realized
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only recently. Unaware that he was treating what is presently called a tricritical point,
Scott developed the classical theory and predicted the various phase diagrams for different
solvents, in good qualitative agreement with the data.

Then arrived the renormalization—group approach and the notion of universality classes.
DeGennes showed the formal analogy of the polymerization process and the magnetic model for the
n—component spin in the limit n - 0. Wheeler, Kennedy and Pfeuty (49) applied this model to
liquid sulphur, and shortly afterwards, Wheeler and Pfeuty (50) extended these results to
sulphur solutions by introducing an additional interaction parameter. They solved the model in
the classical or mean—field approximation, predicted the phase diagram, and discovered that it
contains a tricritical point. They demonstrated the complete equivalence of their results with
those Scott obtained in 1965.

INTERFACES

In this section I will sketch some recent developments in the theory and experiments on fluid
interfaces.

In the classical theory of the interface by van der Waals (51) the free—energy cost of creation
of an interface was set proportional to the square of the density gradient. The free—energy
gain in creating the interface is obtained because of the bulk free energy of the two—phase
system is lower than that of the corresponding system constrained to remain homogeneous. The
resulting density profile is such that half the free energy gain is used to pay the cost of the
interfacial energy. Since the gain in free energy due to phase separation diminishes near the
critical point, but the cost of the gradient remaining relatively steady, the interface has to
become less sharp, and its thickness must diverge. Van der Waals already demonstrated that on
approach to the critical point, in the case of a classical free energy, the interfacial tension
disappears as TTc, with =l.5. He was also aware that the experiments indicated a con—
siderably lower value, c=l.23—l.27, cf. Ref. (52). Fisk and Widom (53) developed the non—
classical counterpart to the theory of surface tension of van der Waals. The Fisk—Widom theory
is still a square—gradient theory, but the free energy is assumed to have the non—classical
form given by the scaling laws. The coefficient of the gradient—squared term was assumed to be
constant. This is equivalent to the assumption that the critical exponent n equals 0. The
critical exponent was shown to beequal to

c y + 23 —

while the interface thickness was shown to diverge at the critical point as the correlation
length C, that is as With the best values of the critical exponents (Table 1), we
find o1.26l, which is in the center of the experimental range established by van der Waals in
1893, cf. Ref. (52), and has been corroborated by all high—quality modern experiments. The
divergence of the interface thickness was confirmed by experiments on light scattering from the
interface.

The second modern development was the prediction, by Cahn (57), of a surface—tension phase
transition from non—wetting to wetting. This transition should occur at a noncritical inter-
face at some distance in temperature from the point where two fluid phases become identical. A
typical example is a binary liquid near its critical point —— call the coexisting phases 6 and
y, and the corresponding surface tension o. The noncritical phase a might be the wall of the
vessel or the vapor phase. The argument, equally valid for classical and nonclassical critical
behavior, is that °3v disappears as T_TcH while the difference between and Gg goes to
zero no faster than [T—T . Assume that is the larger of the two. As soon as

> o, the 6 phase will have to wet the noncritical interface, because the balance of

forces 0ay' 006, 03y can no longer be maintained along a line of contact between the three
phases with nonzero contact angles. In practice, the wetting—nonwetting phase transition has
not yet been demonstrated to occur by changing the temperature. In binary liquids where
wetting of the vapor by the bottom phase has been observed, the wetting persisted until a
liquid phase froze. The transition to incomplete wetting has, however, been induced by addi-
tion of a third component, Ref. (54). The theory of the behavior of the three surface tensions

006, 03y and was first worked out by Widom and coworkers (55) for the particular case of
three—phase equilibrium near a tricritical point. Later, the theory was generalized by Khosla
and Widom (56) to any noncritical phase a in the presence of near—critical 6, y phases.
The theoretical predictions are the following: (1) on the critical isotherm, the surface
tension of the (one—phase) (fy) phase with respect to the noncritical a phase varies as
xxc6; (2) on the critical isopleth, the three surface tensions: 0av0c' °a3°c' below Tc,
and c 6y°c above Tc, have a common tangent if plotted as a function Of temperature, and an
anomalous contribution of the form Tc_T1 with different amplitudes for the three phases; (3)
finally, near Tc, 03y0ay0a3' which is ultimately, a consequence of the fact that there is
only one order parameter, Refs. (55,57). The first test of these laws, by Khosla and Widom
(56), revealed a departure from the common—tangent rule that the authors suspected to be an
artifact. Recent very precise sets of surface tension data in two binaries, one with an upper,
another with a lower consolute point, obtained by UcLure and Pegg, are displayed in the poster
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session. These measurements confirm the prediction of the common tangent that was left in
doubt by the Khosla—Widom experiments.

The last topic regarding interfaces is a conceptual difficulty that arises when the theory of
the diverging interface thickness below Tc, Ref. (53), is confronted with the theory of gravity
effects in the supercritical phase, Ref. (58). For convenience, let us consider a one—component
fluid. Because of the large compressibility, a density gradient develops according to the
relation p/z=gp2K. This gradient will become sharper and sharper as the critical point is
approached from above, while the density profile of the subcritical interface will get thicker
and thicker as it is approached from below. Obviously, there is a piece of the puzzle missing.
Very recently, Sengers and van Leeuwen (59) have resolved this difficulty by observing that in
the field of gravity neither the correlation length nor the interface thickness can grow to
infinity, nor can the density profile in the supercritical phase become infinitely sharp. The
correlation length can not grow beyond the point that local fluid properties would vary
considerably over the height E. The very fact that fluid properties are correlated over length

implies that sharp variations over distances smaller than cannot occur. Sengers and van
Leeuwen introduced these nonlocal effects into the supercritical fluid by the same device of a
square—gradient term in the free energy that van der Waals had employed below Tc and under the
restriction of =O, just as in the Fisk—Widom theory, Ref. (53). They showed that in the field
of gravity the correlation length, compressibility and the density profile "saturate" at a
finite temperature above the critical point (a few tenths of a millidegree) and remain steady
during the passage through Tc until a temperature slightly below Tc is reached. Thus, two
apparently conflicting predictions have been reconciled by the use of the tool of the square—
gradient theory passed to us by van der Waals.

NUCLEATION

The classical theory of nucleation of Becker and DUring makes it plausible that at a given
degree of supersaturation of a vapor, only spontaneous fluctuation of a size at least as large
as a critical radius will be able to grow. This critical radius is strongly dependent on the
degree of supersaturation, and, as a consequence, an observable rate of nucleation occurs
almost abruptly as the degree of supersaturation is increased. If the classical theory is
applied near the critical point, it is found that the degree of supersaturation, if measured as
fT, the amount of undercooling below the saturation temperature T0, is a virtually constant
fraction of TcTc. A refinement of the theory to incorporate non—classical critical behavior
was performed by Langer and Turski (60), with the result that although an increase in the
degree of supercooling fT/(TTc) was predicted on approach to the critical point, the increase
was too weak to be of much practical consequence. A large number of experiments in
near—critical one— and two—component fluids, however, showed considerable increases in the
degree of supercooling, as much as a factor 2 beyond the Becker—DUring limit. Binder and
Stauffer (61) suggested that this apparent increase in nucleation rate might in fact be due to
a decrease in nucleation Arowth which is expected to occur because of the slowing—down of the
coefficients of thermal diffusivity and of diffusion. A recent paper by Langer and Schwartz
(62) works out the different stages of the process of nucleation and droplet growth in metic-
ulous detail. The experimentalist does not observe the onset of nucleation; rather, he sees a
late stage of the process of nucleation and growth. In none of the experiments claiming
disagreement with the Becker—DUring theory had these two stages been separated.

Such a separation of nucleation and growth was recently achieved by Knobler and coworkers (63)
in binary liquid mixtures. A poster in my session reports their results. The means by which
this separation is achieved is a so—called double—quench. In previous publications (64)
Knobler and coworkers had introduced and refined the pressure—quench technique, by which a

binary liquid mixture is forced to enter the metastable region by a sudden release of pressure.
To introduce nucleation, the pressure drop is adjusted so that the mixture enters the narrow
"window" where droplets of critical size are formed. The system is then quenched again, to
enter a part of the metastable region where there is no further nucleation but where the
droplets can grow. Knobler and coworkers report in their poster that their recent observations
of these two different regimes agree in detail with the predictions of the Langer—Schwartz

theory.

SUMMARY

Having reviewed some significant achievements and new insights that have been obtained in the
past few years in the theoretical and experimental study of critical phenomena in fluids, I
hope I have been able to convey to my audience that any area of this century—old field of
physics has recently yielded new phenomena and new ideas, once it was restudied with care. My
choice of topics has in no way been exhaustive; I simply used the material presented in the
poster session and the additional information my contributors provided me as a guide, and was
delighted to see to what lovely places it took me.
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