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Abstract — The thermodynamics of several classes of molten salt mixtures
was considered. For the simplest systems, which are bimary molten salt so-
lutions, emphasis was given on the one hand to the correlation of the
excess thermodynamic functions with the physico—chemical features of the
constituting ions and on the other to the concentration dependence of the-
se functions. For higher order systems, emphasis has been placed on the
a priori calculations of the thermodynamic properties of these multicom—
ponent mixtures from these of the binary constituting systems and of the

pure components.

Molten salt mixtures are ionic liquids and hence various categories must be defined.

No ambiguity is involved when the terms binary, ternary (or higher order) systems
are used for molecular or metallic mixtures such as Au—Ag, Au—Ag—Pd. Such a classi-
fication for molten salt mixtures depends not only on the number of components but
also on the number of ionic species of these components
NaC1 — KC1 is a binary common ion system
NaC1—KBr is a ternary reciprocal system.
Another feature of these systems is the charge—symmetry of the ions
NaCl—KC1 is a charge symmetrical mixture

NaC1—CaC12 is a charge unsymmetrical one.
A schematic classification is given in table 1 for charge symmetrical systems and, obviously,
holds also for charge unsymmetrical mixtures

TABLE 1. Schematic classification of molten salt mixtures

Ions System Basic components

3 ions Binary 2 components
+ +

A , B
—

, X .
Common ion AX, BX

+or A ,
—

X , Y . or AX, AY

4 ions Ternary 3 components
+

A ,

+ + —

B , C , X
0. Additive . AX, BX, CX

+ —

orA, X,Y,Z orAX,AY,AZ
+

A ,

+ — —

B , X , Y
.. Reciprocal . Any 3 among AX, BX, AY, BY

5 ions Quaternary 4 components
+

A ,

+ + +
B , C , D ,

—

X
0. Additive . AX, BX, CX, DX

+
A ,

+ + —

B , C , X ,

—

Y
.. Reciprocal . Any 4 amo .ng

+orA, + — —B,X,Y,Z
AX BX CX AY

orAX,AY,AZ,BX,
BY
BY,

CY
BZ

In the following we will first report on binary mixtures and distinguish between charge
symmetrical an unsymmetrical systems. The same procedure will be then followed for higher—
order sytems.
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I - BINARY MIXTURES

a—Charge symmetric systems.
Many experimental thermodynamic data are available for molten salt mixtures ; they were oh—

tamed using mainly the following techniques : cryoscopy (Ref. 1), calorimetry (Ref. 2 & 3),
potentiometry (Ref. 4), vapor pressure measurements (Ref. 5 & 6). The theoretical interpre—
tation of such data should explain the order of magnitude of these thermodynamic quantities
and their concentration dependence.
The ideality reference state used in defining excess thermodynamic quantities was introduced
by Temkin (7) : the ionic melt was described as two interlocking lattices on which cations
and anions were randomly distributed. The total entropy is related to the total number of
possible equivalent and distinguishable configurations in the mixture : for the mixture
AX—BX for instance, this entropy can be expressed as

- R
nA

ln
xA + nB ln x5

where A' B are the number of moles of ions in the mixture and the x's are the ionic frac-
tions defined as

xAnA/nA+nB xBnB/nAnB
the ionic fraction of the common ion X, being equal to unity, does not appear in the previous
equation for entropy nor in the following expressions derived for the chemical potential
of one component (e.g. AX) and its activity

AX = RT ln xA

aAX = XA
Most molten salt mixtures are far from ideal : when two salts are mixed, exchange of ions of
different size induce changes in ionic forces, mainly coulombic and polarization ones. This
was first illustrated by Frland (8) using the simple linear model reported in figure 1.

The energy of mixing, evaluated from the Coulombic repulsive forces between the cations,
was found negative and expressed as

Ec = - 2e2(d1 -
d2)2/(d1 + d2) (4d1d2)

where e = electronic charge and d with suffix is the interionic distance.
From the same model, Lumsden (9) evaluated the other contributions to the energy of mixing

polarisation (negative) and dispersion (positive). So this rough description of the mixing
process can explain some early results obtained from systematic investigations : for ins-
tance in the case of alkali—metal nitrates Kleppa and Hersh (10) reported that the enthalpy
of mixing of the equmolar mixtures was negative and proportional of the size parameter

l2 = (d1—d2)/(d1d2) , squared as suggested by the previous equation.

More recently during the last decade, computer simulations by the Monte—Carlo method were
carried out (Ref. 11 to 15) in order to investigate the solution structure and the relative
importance of the possible ionic interactions.
These results appear to be not decisive since the excess thermodynamic quantities are obtai-
ned as srrall differences between two large numbers (Ref. 11). Nevertheless, Lantelme and
Turq (15) from numerical simulations of LiBr—KBr melts pointed out the dependence of the
coordination numbers on the nature of the cations (and not only on their relative number
e.g. the concentration of the mixture).
Computations of enthalpies of mixing were also performed from the conformal ionic solution
theory (Ref. 16) (C.I.S.) where the thermodynamic properties of a binary mixture is obtai-
ned from those a reference salt by perturbation methods. These simulations indicated that
the dependence of structure on concentration was not accounted for. Furthermore it appears

that the magnitude (Ref. 11), and even the sign (Ref. 13), of the thermodynamic quantities
is very sensitive to the choice of the pair potential.
Systematic investigations of molten salt mixtures evidenced that the excess thermodynamic
quantities are not symmetrical functions of composition. The enthalpy of mixing, for

+ — + —
Fig. 1 Forland s linear model of the mixing of A X and B X salts.
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instance, is generally expressed by an equation of the form

H = x(l — x) (a + bx + cx(l - x))
where x is the mole fraction of one component and a, b and c are coefficients obtained
by least—squares fit of the experimental data.
The interaction parameter

x = AH/x(l—x)

is a varying function of composition instead of a constant as in the regular solution mo—

del (Ref. 17).
The limiting values of the interaction parameter at x = 0 and x = 1 are of special interest
since they are the partial enthalpies at infinite dilution of both coirponents. In the mix-
ture AX-BX (x = xAX)

lim A = AH
AX

and fin A = All
x--1 BX

Therefore the pareters a andsed ithe equation given for All can be related to physical
quantities (a = AHAX

and b = All — All ), but the parameter c (or other parameters if
higher powers are used for a poynomia fit of AH) has no particlular physical meaning.
Many kinds of polynomial representations of enthalpy of mixing against mole fraction were
proposed (power expensions, Legendre polynomes, centre d variables...). These procedures
provide a useful tool for the representation of the data of a fully investigated system,
but because of their purely empirical origin cannot be used in interpolation or prevision
for mixtures for which data are scare or impossible to obtain experimentally.
We developed a structural model (Ref.. 18) which revealed successful in predicting the con-
centration dependence of the therifodynamic functions and accounting for the deviations from
regular solution behaviour i.e. the order effects within the solution.
This model, "Surrounded Ion Model" (S.I.M.), has the same basic features as that developped

by Guggenheim (19) (separation of the degrees of freedom, quasi—lattice structure of the
liquid and no long—range interactions) but instead of considering the energetic interactions
between pairs of ions we adopted as an elementary entity a central ion in the field of for-
ces of its next neighbours i.e. its two first coordination shells (hence the name "sur—
ronded ion").
All the possible neighbours of a specified ion, ranging from those corresponding to the pure
salt AX to those corresponding to the second component BX, are considered for a description
of the configuration of the solution. A probability and a configurational potential energy
is then ascribed to each so defined "surrounded ion" and hence a partition function can
be obtained.
Two statistical methods (Ref. 19 & 20) were used •to estimate the partition functions of the
solutions and the thermodynamic functions of mixing. Then hypothesis on the variation of the
energies (see note a) allowed to obtain analytical expressions of these functions.

TABLE 2 : Results obtained from the surrounded ion model (S.I.M.) for the molar

enthalpy of mixing All of binary symmetrical.

Statistical Bragg and
—

Williams (20)

Bragg and
Willian (20)

Guggenheim Guggenheim
(20) (20)

Distribution Random Random Quasichemi— Quasichemical
cal order order

Variation of

energies

Linear Parabolic Linear Parabolic

Enthalpy of
mixing

All=x(l-x)W
Wz(a+P)

All=x(l-x)(A+Bx)
A=z2a+z(2z—l)t3
Bz(3z—l) (a—s)

Numerical
Llx(lx)W/ZRTJ Treatment

Comparison with
previous models

Regular solu—
tion (17)

Pseudo—regular
solution (21)

Quasichemical
(19)

Note a : the energy difference U. between an ion A in the mixture (i.e. with (z—j) ions A

and j ions B as next—nearest neihbours) and an ion A in the pure reference salt AX (i.e.
with z ions A as vext nearest neighbours) is linear when U.ja. It is parabolic when U. =

j(2z—j)n. z and a are respectively the coordination number3and an energy parameter;the3
energetic parameter P is defined similarly for B ions.
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In the more general case (quasichemical order and parabolic energies) the enthalpy of mixing
(as well as the other thermodynamic functions) is not expressed as an analytical expression.
Neverthelesss an analytical solution can be obtained for the two limiting partial enthalpies
which are identical to those obtained with a random distribution

AHAX = A = z2a + z(2z — l)
AHBX = A + B = z + z(2z—i)ct

These values of the limiting enthalpies are used as an initial step of an iterative compu-

ting procedure of AD. Figure 2 reports a typical example of application for the system
LiC1 — CsCl.

Fig. 2 a — Calculated and experimental enthaipy of mixing AH for the
LiCl—CsCl system.
b — Calculated and experimental interaction parameter .H/x(i—x) for the
same system.
Experimental points from Ref. 22, full line curve calculated from S.I.M.

A good agreement can be noticed beteen the experimental and calculated enthaipy curves
(Fig. 2a) . We represented in Fig. 2b the interaction parameter A = AH/x(l—x) versus x
and it can be tested that the model is able to take into account the curvature of this
interaction parameter (i.e. a short—range order). This point is noteworthy since only two
energetic parameters a and with a physical meaning were used instead of three (or more)
empirical coefficients as in polynomial fits of experimental data.

b—Charge—unsymmetrical systems.
The main difficulty in molten salt systems with ions of different valencies lies in the
concentration dependence of the coordination number of each species (Ref. 8, 23, 24). Alrea-
dy the pure components of such mixtures have not the same coordination numbers 2 and 1
respectively for the salts AX2 and BX (Ref. 25 & 26). Therefore a simple substitution model
is irrelevant for such mixtures since electroneutrality is no more preseved.
These charge—unsyumetricai binary systems were examined using the S.I.M. In systems where
the charge—asymmetry effect equally both components (i.e. CaC12—BaC12), the model (Ref. 27)
is easily assimilated to that developped for symmetrical systems. In the case of the mixtu-

res AX2—BX, a more specific description of the mixing process was given (Ref. 28).
Using the same concept of "surrounded ion" and the same basic hypothesis, we postulated that,
in a mixture AX2 — BX, the A ions have as next—nearest neighbours
i) A and B ions in normal position
ii) B ions and vacancies (vacant sites) in interstitial position.
Similarly, the B ions have normal and interstitial nearest neighbours.
The maximum number of configurations resulting from this description yielded for the ideal
entropy of mixing

AS = — RL2x in x' + (1 — x) in (1 — x')l
in this expression x =

xAX are Temkin's ionic fraction and x' Foriand's equivalent ionic

fraction, respectively

X = A'A +
nB

x'= 2nA/2nA +
nB

It should be emphasized that many expressions have been proposed for the ideal entropy of
mixing of a charge—unsymmetrical mixture (Ref. 7, 29, 30). The previous expression is
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identical to that proposed by Frland (29).
As previously for symmetrical systems, we obtained the partition function of the solution
and then the thermodynamic functions of mixing in both cases of a random distribution and
of a short range order.
We reported in the following some examples of application of this model. It must be empha-
sized before that most systems AX2—BX have typical features the enthalpy of mixing and,
in a more marked way, the interaction parameter A = AH/x(l—x) exhibit an
extremum in the vicinity of x = 0.33. Polynomial expression up to fifth power are generally
used to account for the concentration dependence of the enthalpy of mixing

All = x(l — x) La
+ bx + cx2 + dx3j

and, as discussed above, no particular meaning is to ascribe to the a, b, ... d coefficients.
Here again only two parameters were sufficient to represent the enthalpy data of such sys-
tems. As previously, these two energetic parameters were deduced from the limiting partial
enthalpies of both components. The comparison of the results obtained with the S.I.M. bet-

ween symmetrical and unsymmetrical binary systems suggested the following formal analogy.

Symmetrical system unsymmetrical
All AH/(l+x)
x —i
A = AH/x(l—x) , AH/(l+x)/x'(l—x')

Such a correspondance was used for the system SrC12—NaCl (see figure 3)

-H/1+X
X'(l-X')

kcalmol1
1,0

0,5 b

0,5

0,5 XSrI2

Fig. 3 SrCl2—NaC1 system
a — Calculated and experimental interaction parameter AH/x(l—x) versus x
b — Calculated and experimental equivalent interaction parameter
AH/(l+x)x'(l—x') versus x'
Experimental points from Ref. 31, full line curve calculated from S.I.M.

in the lower part (a) we reported the interaction parameter given by Østvold (31) as a po-
lynomial expansion : the well—marked curvature suggested an order effect in the solution
This point was rather refuted by Lumsden (9) from the analysis of the phase diagram. We
reported in the upper part of figure 3 (b), the 'equivalent' interaction parameter defined
above as AH/(l+x)x'(l—x') against the equivalent ionic fraction x' and a straight line was
obtained in agreement with a random distribution of ions.

In figure 4, we reported examples of unsymmetrical systems where a short—range order
did exist and a good agreement was obtained between estimated and experimental values of
both enthalpies of mixing and equivalent interactions parameters.



Fig. 4 Calculated and experimental equivalent enthalpy AH/(l+x) and
parameter AH/(l+x)x'(l—x') versus x' open circles from Ref. 31 black
from Ref. 48 are experimental values ; full line curve is calculated

As for symmetrical binary systems, some theories were developed to predict the order of
magnitude of the excess thermodynamic quantities.
The Frland model, already discussed for charge—symmetric mixtures, was used (Ref. 31) to
illustrate the mixing process of the two salts AX.) and BX ; the charge in Coulomb repulsion
energy of next—nearest neighbour cations AE was tound equal to

AE = e2Ll/2d1
-

2(d1-d2/d2(d1+d2)J
where e = electronic charge and d with suffix is the interionic distance.
The principal variation in this equation is in the term (d1—d2). The first term on tt right
hand side is constant for a given univalent solvent, while the second term is roughly pro-

portional to
Davis (32, 33) evelopped the Conformal Ionic Solution Theory (C.I.S.) for unsymmetrical
systems. According to Davis the molar excess Gibbs energy or enthalpy interaction parameter
developped to the first order in kill have the form

A = AH/x(l—x) = T A(x,z,-t,v) + B(x,z,T,\)S12
Both A and B are universal functions of the reduced temperature, r, and volume, ,

Østvold (23) studied the dependence of the limiting interaction parameter A0 on the distance

parameter l2 = d1—d2/d1d2
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= li (AH/x(l—x)) = f(512) (x =
XAX

for the alkali halide—alkaline earth halide mixures. A rather "weak" connection was obtai-
ned between experimental data and the Davis theoretical equation postulating that the li-
miting interaction parameter A0 varies linearly with
Nevertheless, by plotting the enthalpy interaction parameter,A , versus for systems
where either an alkali halide or an alkaline earth halide is a common salt a better agreement
was obtained between theoretical predictions and the experimental results (figure 5 to figu-
re 8)
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Fig. 5 to 8 (reproduced from Ref. 31).
Interaction parameter, AH/x(l—x), in the alkali—alkaline earth chloride
(bromide) mixtures versus the distance parameter, l2' at X = 0.333.

2

The first remark on these results is that the C.I.S. theory seems to be of restricted appli-

cability to binary asymmetrical mixtures. Moreover, as underlined by Papatheodorou (4) this
theory does not predict any explicit concentration dependence of the interaction parameter.
Rather than taking into account only the distance parameter for correlation with the enthal—
py of mixing, we thought were realistic to attempt to find the influence of both sizes and
charge—asymmetry AX2—BX.
We showed previously, from the S.I.M., that for such mixtures an "equivalent" interaction
parameter A' should be considered rather than the usual interaction parameter A

A' = AH/(l+x)x'(l—x')
where x' is the ionic equivalent fraction of the ions A.
On the other hand, it was shown that the definition for one given ion of its ions potential
(Ref. 34&35)

I.P. = z/r
allows to take into account both its size (r= ionic radius)) and its charge (z=valency).
Therefore, the enthalpy of mixing, or any excess therrrcdynamic quantity, should be related
to the difference of the ionic potentials AlP

AlP =
z1/r1

—
z2/r2



Kleppa (36) plotted the interacticn parameter A0 versus this difference of the ionic poten-

tials for the systems AX —
MX2

reported in figure 9. Two straight lines were obtained which
means that the chloride and bromide systems on the one hand and the fluoride systems on the
other hand verified the theoretical prediction, but independently.

For the same systems, we represented in figure 10, the equivalent interaction parameter A'
versus the difference of the ionic potentials AlP. _________________________

j ] r r

It can easily be seen that the use of an equivalent interaction enables a generalization
of the previous results since all experimental data are on a single straight line.

II - TERNARY A5.D HIGHER - ORDER SYSTEMS

Thermodynamic models of ternary or higher order systems are mostly aimed to the a priori
estimation of the functions of mixing from those of lower order systems.

a — Charge — symmetric system.
Additive ternary systems have been examined using the C.I.S theory (Ref. 37). The thermody-
namic functions, obtained from expansion up to the fourth order, include terms representing
the thermodynamic properties of the three binary component systems and also ternary terms.
Surprisingly these "ternary" terms are obtained from the binary data ; the order of magni-
tude of ternary interactions being within the experimental uncertainty, definitive compari-
sons with experiment is rather difficult.
The S.I.M. was extended to this class of mixtures (Ref. 38). As for binary system, this

model appeared as a generalization of previous models ; ternary regular solution, quasi—
egular solution. In the more general case, the thermodynamic functions can be obtained
from a numerical iterative process. But, due to the previous remark, in most cases the

properties of the ternary system can be evaluated only from those of the binary systeirs.
Figure 11 shows as an example the enthalpy of mixing of a section of the ternary mixture
AgC1—LicL—KC1. Experimental values were obtained from direct calorimetry (Ref. 39) and
calculated values yielded by the equation

AH =
XAgXLi Ag(Li) +

(l_XLi)Aj(Ag)i
+ XAg [XAg A(Ag) + (l_XAg)Ag(K)1
+

XL. L Ai(K) + (l_)A(Li)J
where the X'5 are ternary ionic fractions and AH.(.\ the limiting partial entropy of the
i- chloride in the j-chloride.
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Fig. 9 Plot of the interaction parameter X0
versus the difference of ionic potentials
for the systems AX—MX2 (reproduced from Ref.

36).
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2 AX

1

xY
AHM

kJol1 o

—1

-2

AY
XB

-

Fig. 11 Molar enthalpy of mix—
ing of the ternary mixture Fig. 12 Composition square of Fig. 13 Experimental (Ref. 46)
AgCl—LiCl—KC1 (kjcl/XAgC1 the reciprocal ternary system and estimated values of enthal—

1/1). Experimental points from A,B//X ,Y pies of mixing of one diagonal

ref. 39, dotted line calculated of the Lit, Rb//F,SO
from SIM. mixture.

A good agreement can be observed between experimental and estimated values.
Reciprocal ternary and quaternary molten salt mixtures were also investigated using the S.I.M
(Ref. 40 & 41). ÷
The composition of a reciprocal ternary mixture A ,B lIE ,Y is conveniently plotted on a
composition square as shown in figure 12.

The horizontal axis is the cationic mole fraction x n mA nB and the vertical axis is
the anionic mole fraction x = n in + n (where n.Bis te number of moles of ion i). The
SIM has been applied (Ref. 9) i te prsent case1and the thermodynamic properties of the
ternary reciprocal mixture were obtained. The molar enthalpy of mixing, for instance, relati-
ve to the components AX, B)( and BY, is given by

AR=xx AR +x AR +x AR +x AR
A Y o A AX-AY B BX-BY X AX-BX

+ xY AHAY_BY + xAxBxXxY
A

where the x. are the ionic fractions and AR is the enthalpy variation for the exchange
reaction between the pure salts

0

AX ÷ BY — AY + BX

The binary terms such as ARAXAY are the enthalpies of mixing in the binary sub—systems at
the composition given on the square figure 12.
The factor A is a non—random term and is composition independant

A = -(AR)2/2zRT
where the coordination number z is commonly taken as z = 6.
We have tested the validity of the equation obtained for the enthalpy of mixing on several

reciprocal systems of alkali halides (Ref. 2) and of alkali nitrates and halides of hydro—
xydes (Ref. 42)
Similar expressions for the thermodynamic functions of mixing have been obtained from the
C.I.S. theory (Ref. 43 & 44). + + + — —

Quaternary reciprocal systems such as A ,B ,c lix ,Y , are much more complex since they
include six pure salts and nine binary common—ion mixtures. A complete experimental study
being rather time—consurring, if not impossible, it was of interest to obtain estimates of
the thermodynamic functions. We obtained (Ref. 41), from the S.I.M., expressions which
included binary interactions arising from the nine common—ion systems and also the properties
of tI'e pure salts through the possible exchange reactions.

b — Charge—assymetric systems.
Ternary and quaternary additive systems will not be discussed here.
For ternary reciprocal mixtures, no rigoros thery exist at this time. We showed (Ref .45)
that the thermodynamics of the system (A +B +X +Y ) can be deduced from results obtained
for symmetrical systems of the same class. Using the concept of equivalent salt" intro-
duced by Lumsden (9) as

AY05
= 0.5 (A2Y) + + - -

the ternary assymetrical system reduces to the fictitious symmetrical mixture (A +B +X +Y0 ).

Expressions for the thermodynamic functions were then obtained established for symmetricar
reciprocal system from the S.I.M.. Similar equations were obtained from an empirical extension
of the C.I.S theory. These results were compared with experimental calorimetric results
obtained for reciprocal mixtures of alkali fluorides and sulphates (Ret. 46. — ——
An example is given in figure 13 for the reciprocal ternary mixture Li , Rb hF S04

XI(CI
05

BX

BY
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the experimental and calculated enthalpies of mixing were compared for the diagonal
Rb SO4 — LiF. A fairly good agreement can be observed between the calorimetric

vaTue (Ref. 46 and those a priori estimated from the S.I.M.

The calculations of the equilibrium phase diagrams of some of these systems provided another
satisfactory test of the model (Ref. 47).
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