INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

CLINICAL CHEMISTRY DIVISION
COMMISSION ON QUANTITIES AND UNITS IN CLINICAL CHEMISTRY*
in conjunction with
INTERNATIONAL FEDERATION OF CLINICAL CHEMISTRY

PHYSICOCHEMICAL QUANTITIES AND UNITS IN CLINICAL CHEMISTRY WITH SPECIAL EMPHASIS ON ACTIVITIES AND ACTIVITY COEFFICIENTS

(Recommendations 1983)

Prepared for publication by
O. SIGGAARD-ANDERSEN ${ }^{1}$, R. A. DURST ${ }^{2}$ and A. H. J. MAAS ${ }^{3}$
${ }^{1}$ University of Copenhagen Hospital, Herlev, Denmark
${ }^{2}$ National Bureau of Standards, Washington DC, USA
${ }^{3}$ University Hospital, Utrecht, Netherlands

[^0]
CONTENTS

```
1. Introduction
2. The extensive and the intensive chemical quantities
3. pH and the active substance concentration of hydrogen ions
4. The partial pressure of gases in solution
5. Osmolality and osmotic concentration
6.
    Appendices
    6.1. List of quantities and units related to the chemical potential and the
        chemical activity of solute and solvent in a solution, and the fugacity
        of a component in a gas mixture
    6.2. List of quantities expressing the stoichiometric concentration of
        the components H+}\mp@subsup{\textrm{H}}{}{+}\mp@subsup{\textrm{CO}}{2}{},\mp@subsup{\textrm{O}}{2}{}\mathrm{ , and Ca}\mp@subsup{}{}{2+}\mathrm{ in blood, plasma, or extracellular fluid
        6.3. List of quantities related to the chemical activity of the components
        H+},\mp@subsup{\textrm{CO}}{2}{},\mp@subsup{\textrm{O}}{2}{},\mp@subsup{\textrm{HCO}}{3}{-},\mp@subsup{\textrm{Ca}}{}{2+},\mp@subsup{\textrm{Na}}{}{+},\mp@subsup{\textrm{K}}{}{+}\mathrm{ , and }\mp@subsup{\textrm{H}}{2}{}\textrm{O}\mathrm{ in human blood plasma
    6.4. Alphabetical index of symbols for kinds of quantities
7. References
```


1. INTRODUCTION

1.1. The IUPAC Conmission on Quantities and Units in Clinical Chemistry has previously published general recommendations on quantities and units in clinical chemistry (7.8, 7.9, 7.10). The present document has been prepared in collaboration with the Expert Panel on pH and Blood Gases of the International Federation of Clinical Chemistry.
1.2. The quantities mentioned in the subsequent paragraphs are all defined and described in more detail in the Appendices. The list of quantities and units (6.1) has a similar format as the authoritative documents, ISO-31, from Technical Committee 12 of the International Organization for Standardization (7.12). The purpose of this list is to make the explicit definitions of the various kinds of activities and activity coefficients available to clinical chemists who are using ion-selective electrodes or certain other physico-chemical analytical techniques.
1.3. The number of different kinds of quantities is very large. This is partly due to a considerable redundancy among the different kinds of quantities, e.g. the similarity of the quantities substance fraction, substance concentration, and molality, which lead, for instance, to three different activity scales and three different activity coefficients for solute B in a solution.

Data reduction is essential in practical clinical work. It is therefore necessary to try to reduce the number of different kinds of quantities that are employed in practical clinical work as much as possible and to try to select those quantities that are of significant clinical value.

So a selection has been made among the many alternative ways of indicating the chemical potential of a component in a system (6.3) and those quantities preferred for clinical use have been indicated by an asterisk. Other quantities listed in the Appendices (e.g. activity coefficients, solubility coefficients, osmotic coefficients) are primarily of interest in the clinical chemical laboratory for purposes of calculation.

2. THE EXTENSIVE AND THE INTENSIVE CHEMICAL QUANTITIES

2.1. The physico-chemical description of a component in a chemical system is based on two quantities:
(1) An extensive quantity: the amount of substance of the component added or removed in the process of formation of the system, positive when added, negative when removed. This quantity is sometimes called the stoichiometric amount of substance of the component in the system, symbol n.
(2) An intensive quantity: the chemical potential of the component in the system, symbol μ. These chemical quantities are analogous to the spatial quantities, volume and pressure; the thermal quantities, entropy and temperature; the electrical quantities, electric charge and electric potential. The products of the extensive and the intensive quantities all represent energy: chemical energy, spatial energy, thermal energy (heat), and electrical energy, respectively.
2.2. The stoichiometric amount of substance of the component (B) in the system is usually divided by the volume (V) of the system, providing the stoichiometric concentration (c) of the component in the system:

$$
\begin{equation*}
c_{\mathrm{B}}=n_{\mathrm{B}} / V . \tag{1}
\end{equation*}
$$

The component added to the system may dissociate or react with other components to form a series of derived components and only a fraction of the original component may actually exist in a free form in the system. It is therefore essential to distinguish between the stoichiometric concentration and the substance concentration of the free form of the component in the system (see 2.3). Sometimes stoichiometric quantities are indicated by subscript (o), e.g. $n_{\mathrm{O}, \mathrm{B}}, c_{\mathrm{O}, \mathrm{B}}$. Concerning the general format for the symbols employed in the present document, see 6.1.1.2 and 6.4.
In clinical chemistry, the term stoichiometric concentration is rarely employed. Instead, the name of the component is modified to indicate inclusion of the various derived forms, e.g. mixtures of a defined chemical component and its derivatives may be denoted by the plural form of the name of the pure unchanged substance, or to indicate the sum of components specified in individual quantities the specification 'total' may be employed (7.9). Examples of such quantity names are given in 6.2.
2.3. The chemical potential of a component in a system is defined as the differential change in internal energy (U) divided by the differential change in the stoichiometric amount of substance of the component, maintaining other independent extensive variables constant, i.e. volume (V), entropy (S), electric charge (Q), and stoichiometric amount of other components (C, D, etc.):

$$
\begin{equation*}
\mu_{\mathrm{B}}=\left(\partial U / \partial n_{\mathrm{B}}\right)_{V, S, Q, n_{\mathrm{C}}, \cdots .} \tag{2}
\end{equation*}
$$

The chemical potential is generally converted to an exponential function, the absolute chemical activity (λ):

$$
\begin{equation*}
\lambda_{B}=\exp \left(\mu_{B} /(R \cdot T)\right) . \tag{3}
\end{equation*}
$$

Chemical activity can only be measured relative to a standard state, for example relative molal activity (a_{m}):

$$
\begin{equation*}
a_{m, \mathrm{~B}}=\lambda_{\mathrm{B}} / \lambda_{\mathrm{B}}{ }^{\ominus} \tag{4}
\end{equation*}
$$

where the standard reference system $\left({ }^{\ominus}\right)$ based on molality is chosen so that $\gamma_{B}{ }^{\ominus} \cdot m_{B}{ }^{\ominus}=\tilde{m}_{B}{ }^{\ominus}=$ $1 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$. Concerning the different standard reference systems, see List $6.1 \$ \$ 6.0-6.3$.
The molal activity may be divided by the molal activity coefficient (γ) to provide the molality of the component in the free unbound form:

$$
\begin{equation*}
m_{\mathrm{B}}=\left(a_{m, \mathrm{~B}} / \gamma_{\mathrm{B}}\right) \cdot \tilde{m}_{\mathrm{B}}^{\ominus} . \tag{5}
\end{equation*}
$$

Substance concentration is obtained by multiplying molality with the mass concentration of water ($\rho_{\mathrm{H}_{2} \mathrm{O}}$):

$$
\begin{equation*}
c_{\mathrm{B}}=m_{\mathrm{B}} \cdot \rho_{\mathrm{H}_{2} \mathrm{O}} . \tag{6}
\end{equation*}
$$

The general practice in clinical chemistry is to report the substance concentration of the (free) component rather than the chemical activity. Exceptions to this rule are the intensive quantities related to the following components:
(1) hydrogen ions, where the intensive quantity is described in terms of pH ;
(2) the blood gases $\left(\mathrm{CO}_{2}\right.$ and $\left.\mathrm{O}_{2}\right)$ which are described in terms of the partial pressure;
(3) water, which is described in terms of the osmolality or the osmotic concentration.

These and related quantities are listed in 6.4 and are discussed below.

3. pH AND THE ACTIVE SUBSTANCE CONCENTRATION OF HYDROGEN IONS

3.1. The quantity pH is defined as the negative decadic logarithm of the molal activity of hydrogen ions:

$$
\begin{equation*}
\mathrm{pH}=-\lg a_{m, \mathrm{H}^{+}}=-\lg \left(\gamma_{\mathrm{H}^{+}} \cdot m_{\mathrm{H}^{+}} / \tilde{m}_{\mathrm{H}^{+}}{ }^{\ominus}\right)=-\left(\mu_{\mathrm{H}^{+}}-\mu_{\mathrm{H}^{+}}{ }^{\ominus}\right) /(R \cdot T \cdot \ln 10) . \tag{1}
\end{equation*}
$$

The molal standard reference system is chosen so that $\gamma_{\mathrm{H}^{+}}{ }^{\ominus} \cdot m_{\mathrm{H}^{+}}{ }^{\ominus}=\tilde{m}_{\mathrm{H}^{+}}{ }^{\ominus}=1 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$. The definition is based on molality rather than substance concentration (7.2). pH is linearly related to the chemical potential of hydrogen ion ($\mu_{\mathrm{H}^{+}}$).
3.2. Chemical potential or activity of ions cannot be determined on a purely thermodynamic basis. This is due to the fact that the effects of an ion cannot be separated from the effects of the accompanying counter-ion, or in other terms, the electro-chemical potential of the ion cannot be separated into the chemical and the electrical component. Such a separation must necessarily be based on a non-thermodynamic convention.
The present convention is based on the assumption that the molal activity coefficient of the chloride ion in dilute aqueous solutions ($I<0,10 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$) can be estimated by means of the Debye-Hückel equation:

$$
\begin{equation*}
-1 g \gamma_{B}=z_{B}^{2} \cdot A \cdot I^{\frac{3}{2}} /\left(1+\alpha \cdot B \cdot I^{\frac{1}{2}}\right), \tag{2}
\end{equation*}
$$

where I is ionic strength, z is charge number of the ion, $\dot{\alpha}$ is ion size parameter, A and B are temperature dependent constants.

According to the Bates-Guggenheim convention $\mathfrak{a} \cdot B$ is taken to be $1,5\left(\mathrm{~mol} \cdot \mathrm{~kg}^{-1}\right)^{-\frac{3}{2}}$ at all temperatures and for all compositions of the solutions (7.2).
3.3. The definitive method for pH measurement in dilute aqueous solutions is based on measuring the electromotive force of a cell without a liquid-1iquid junction (without transference), E_{I} :

Ag	$\underset{\mathrm{AgCl}}{\mathrm{Ag}})$
(s)	

dilute aqueous solution
with added Cl^{-}
H_{2}
$(\mathrm{~g})$
$101,325 \mathrm{kPa}$
$\stackrel{\mathrm{Pt}}{(\mathrm{s})}$
(s)
(I)

The calculation function is:

$$
\begin{equation*}
\mathrm{pH}=-\left(E_{\mathrm{I}}+E_{\mathrm{II}}^{\ominus}\right) /\left(R \cdot T \cdot F^{-1} \cdot \ln 10\right)+\lg \left(m_{\mathrm{Cl}}-/ m_{\mathrm{Cl}}{ }^{-}\right)+\operatorname{lg\gamma _{\mathrm {Cl}}}- \tag{3}
\end{equation*}
$$

where $\tilde{m}_{\mathrm{Cl}}{ }^{-}{ }^{\ominus}=1 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} \cdot E_{\mathrm{I}} \stackrel{\ominus}{\mathrm{I}}$ is the standard electrode potential of the $\mathrm{Ag} \mid \mathrm{AgCl}$ half cell ($E_{\mathrm{II}}^{\ominus}=0,21423 \mathrm{~V}$ at $3^{\circ} \mathrm{C}$). $m_{\mathrm{Cl}}{ }^{-}$is measured and $\gamma_{\mathrm{Cl}}-$ is calculated from Eqn. (2). Cl^{-}is added in different amounts and the results are extrapolated linearly to zero molality of added Cl^{-}.
The definitive method is employed for determining the pH in a series of primary aqueous calibration solutions, e.g. the NBS-buffers (National Bureau of Standards, U.S.A.) (7.2, 7.7).

Note:

The standard electrode potential (E^{Θ}) of the $\mathrm{Ag} \mid \mathrm{AgCl}$ half cell is defined as the potential of the cell:

$\begin{align*} & \text { Pt } \tag{II}\\ & \text { (s) } \end{align*}$	$\begin{aligned} & \mathrm{H}_{2} \\ & (\mathrm{~g}, 101,325 \mathrm{kPa}) \end{aligned}$	$\begin{aligned} & \mathrm{HCl} \quad(\mathrm{aq}) \\ & a_{ \pm m}=1 \end{aligned}$	$\begin{aligned} & \mathrm{AgCl} \\ & \text { (s) } \end{aligned}$	$\begin{aligned} & \mathrm{Ag} \\ & \text { (s) } \end{aligned}$

(s)	$(\mathrm{g}, 101,325 \mathrm{kPa})$	$a_{ \pm m}=1$	(s)	(s)

where $a_{ \pm m}=\left(a_{m, \mathrm{H}^{+}} \cdot a_{m, \mathrm{Cl}^{-}}\right)^{\frac{3}{2}}$ is the mean ionic activity which can be determined without any convention for single ion activities. Hence E^{\ominus} is independent of such conventions and pH (Eqn. 3) is dependent only on the convention for calculating $\gamma_{C l}-(3.2)$. Values of E^{\ominus} have been tabulated (7.3).
3.4. The reference method for inorganic aqueous solutions is based on a cell with a liquidliquid junction (III), measuring the cell potential with the unknown solution, $E(X)$, and the calibration solution, $E(S)$:

(III)

The calculation function is:

$$
\begin{equation*}
\mathrm{pH}(\mathrm{X})=\mathrm{pH}(\mathrm{~S})-(E(\mathrm{X})-E(\mathrm{~S})) /\left(R \cdot T \cdot F^{-1} \cdot \ln 10\right), \tag{4}
\end{equation*}
$$

where S is one of the calibration solutions mentioned in 3.3. This equation is generally called the 'operational' pH definition (7.21), but it should not be considered a pH definition in the same sense as the definition given in 3.1.
The reference method is subject to a small variable bias due to a possible difference between the liquid junction potential for the calibration solution and the unknown solution.
The hydrogen gas electrode is unsuitable for biological fluids where the reference method must be based on the glass electrode. The reference method for pH measurement in blood will be described in more detail in a subsequent document.
3.5. In order to standardise the method of reporting quantities in clinical chemistry it has often been suggested that the substance concentration of hydrogen ion should be reported instead of pH . However, in view of the international agreement concerning the pH scale and the reference method for pH measurement (7.21) we recommend the continuing use of the quantity pH also in clinical chemistry.
The 'substance concentration' of H^{+}is often calculated as the antilogarithm of the negative pH value, without taking the activity coefficient of the hydrogen ions into account. If a quantity with the same unit (mol $\cdot 1^{-1}$) as substance concentration of H^{+}is warranted, we recommend reporting the active substance concentration (\tilde{c}) of the hydrogen ions, calculated as:

$$
\begin{equation*}
\tilde{c}_{\mathrm{H}^{+}}=10^{-\mathrm{pH}} \cdot \rho_{\mathrm{H}_{2} \mathrm{O}}{ }^{*} \cdot \tilde{m}_{\mathrm{H}^{+}}{ }^{\ominus}, \tag{5}
\end{equation*}
$$

where $\tilde{m}_{\mathrm{H}^{+}}{ }^{\ominus}=1 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$ and where $\rho_{\mathrm{H}_{2} \mathrm{O}}{ }^{*}$ is the mass density of pure water $\left(=0,993 \mathrm{~kg} \cdot 1^{-1}\right.$ at $37{ }^{\circ} \mathrm{C}$). For example, $\mathrm{pH}=7,40$ (as measured with a pH -electrode); the active substance concentration of hydrogen ion is then:

$$
\tilde{c}_{\mathrm{H}^{+}}=10^{-7,40} \cdot\left(0,993 \mathrm{~kg} \cdot 1^{-1}\right) \cdot \mathrm{mol} \cdot \mathrm{~kg}^{-1}=39,81 \times 10^{-9} \times 0,993 \mathrm{~mol} \cdot 1^{-1}=39,53 \mathrm{nmol} \cdot 1^{-1} .
$$

For many practical purposes the mass density of pure water may be taken to be $1,00 \mathrm{~kg} \cdot 1^{-1}$ in which case the following approximation applies:

$$
\begin{equation*}
\tilde{c}_{\mathrm{H}^{+}}=10^{-\mathrm{pH}} \cdot \tilde{c}_{\mathrm{H}^{+}}{ }^{\ominus}, \tag{6}
\end{equation*}
$$

where $\tilde{c}_{\mathrm{H}^{+}}{ }^{\ominus}=1 \mathrm{~mol} \cdot 1^{-1}$.
3.6. For clinical purposes the pH concept should not be generalized to other ions measured by means of ion-selective electrodes (e.g. $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}$) or to other components in general.
Ion-selective electrodes should be calibrated in a manner analogous to pH electrodes, i.e. on the basis of molal activity $\left(a_{m}\right)$. However, for clinical purposes the results may be reported as the 'substance concentration' of the ion, determined as the molal activity multiplied by an appropriate constant depending upon the ion and the type of biological fluid under investigation. For example, for Ca^{2+} in blood plasma:

$$
\begin{equation*}
c_{\mathrm{Ca}^{2+}}=a_{m, \mathrm{Ca}^{2+}} \cdot \gamma_{\mathrm{Ca}^{2+}}{ }^{-1} \cdot \rho_{\mathrm{H}_{2} \mathrm{O}} \cdot \tilde{m}_{\mathrm{Ca}^{2+}}{ }^{\ominus} \tag{7}
\end{equation*}
$$

where $\tilde{m}_{\mathrm{Ca}}{ }^{2+}{ }^{\ominus}=1 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$. The appropriate constant is

$$
\begin{equation*}
k_{\mathrm{Ca}^{2+}}=\gamma_{\mathrm{Ca}^{2+}}{ }^{-1} \cdot \rho_{\mathrm{H}_{2} \mathrm{O}} \cdot \tilde{m}_{\mathrm{Ca}^{2+}} \tag{8}
\end{equation*}
$$

where $\gamma_{\mathrm{Ca}^{2+}}$ and $\rho_{\mathrm{H}_{2} \mathrm{O}}$ should be the mean values for normal plasma (see List $6.3 \S \S 7.2 .1$ and 8.1.8).
3.7. It has been suggested that the unit bel should be used for the pH quantity in order to 'flag' that the pH value represents the negative decadic logarithm of another quantity (7.16). We recommend restricting the use of the bel (or decibel) to an amplitude or power level difference (7.12). The pH quantity is dimensionless and the value consequently is a pure number. Example: $\mathrm{pH}=7,40$, not $\mathrm{pH}=7,40 \mathrm{pH}$ units, and not $\mathrm{pH}=7,40$ bel.
3.8. It has been claimed that the mean value of a series of pH values should be calculated as the negative logarithm of the mean value of the corresponding hydrogen ion activities: $\langle\mathrm{pH}\rangle=-\lg \left(\left\{\Sigma_{i} 10^{\left.\left.-\mathrm{pH}_{i}\right\} / N\right)}\right.\right.$. We recommend the use of the arithmetic mean of the pH values: $\langle\mathrm{pH}\rangle=\left(\Sigma_{i} \mathrm{pH}_{i}\right) / N$. The arithmetic mean is directly proportional to the mean value of the chemical potentials and it represents the geometric mean of the corresponding chemical activities.

4. THE PARTIAL PRESSURE OF GASES IN SOLUTION

4.1. Partial pressure (p) of a component (B) in a gas mixture is defined as the substance fraction (x) of the component times the pressure of the gas mixture:

$$
\begin{equation*}
p_{\mathrm{B}}=x_{\mathrm{B}} \cdot p \tag{1}
\end{equation*}
$$

Partial pressure is a kind of quantity which strictly speaking only applies to a component in a gas mixture. When applied to gases in liquid solution (sln) we recommend interpreting the quantity as being equal to the partial pressure in an ideal gas mixture ($\mathrm{g}^{\mathrm{id}}(\underset{\mathrm{c}}{ }$)) in equilibrium with the solution, or alternatively, as being equal to the fugacity (\tilde{p}) in a real gas mixture ($\mathrm{g}^{\text {real }}$) in equilibrium with the solution:

$$
\begin{equation*}
p_{\mathrm{B}}(\mathrm{sln})=p_{\mathrm{B}}\left(\mathrm{~g}^{\text {ideal }}\right)=\tilde{p}_{\mathrm{B}}\left(\mathrm{~g}^{\text {real }}\right) \tag{2}
\end{equation*}
$$

Fugacity (\tilde{p}) of a component in a gas mixture is defined as the fugacity coefficient (g) for the component times the partial pressure:

$$
\begin{equation*}
\tilde{p}_{\mathrm{B}}=g_{\mathrm{B}} \cdot p_{\mathrm{B}} \tag{3}
\end{equation*}
$$

Therefore the unit of fugacity is the same as the unit of pressure. For many gases $\left(\mathrm{CO}_{2}, \mathrm{O}_{2}\right.$, N_{2}, etc.) $g_{\mathrm{B}} \approx 1$ when $p<100 \mathrm{kPa}$.
4.2. The partial pressure (fugacity) of a solute (B) in a solution is directly proportional to the rational chemical activity $\left(a_{x}\right)$ of the solute. This relationship is called Henry's law:

$$
\begin{equation*}
p_{\mathrm{B}}=a_{x, \mathrm{~B}} / \alpha_{x, \mathrm{~B}}^{\infty} . \tag{4}
\end{equation*}
$$

$\alpha_{x, B}^{\infty}$ is the rational solubility coefficient for infinite dilution, i.e. for pure solvent. For the solvent (A) the relationship is called Raoult's law, and the proportionality factor is the fugacity of the pure solvent $\tilde{p}_{A}{ }^{*}$:

$$
\begin{equation*}
p_{\mathrm{A}}=\tilde{p}_{\mathrm{A}}^{*} \cdot a_{\mathrm{A}} . \tag{5}
\end{equation*}
$$

4.3. The substance concentration of the component in a solution can be derived from the partial pressure by multiplication with the concentrational solubility coefficient (α_{c}):

$$
\begin{equation*}
c_{\mathrm{B}}=\alpha_{c, \mathrm{~B}} \cdot p_{\mathrm{B}} . \tag{6}
\end{equation*}
$$

For usual clinical chemical purposes we recommend to report the blood gases (CO_{2} and O_{2}) in terms of the partial pressure rather than the substance concentration because of the need for comparison with or evaluation of the composition of the alveolar air.

5. OSMOLALITY AND OSMOTIC CONCENTRATION

5.1. The chemical potential or the activity of water in an aqueous solution is determinative for several 'colligative' properties: water vapour pressure, osmotic pressure, freezing point depression, and boiling point elevation.
5.2. In clinical chemistry the activity (a) of the water is generally expressed in terms of osmolality (\hat{m}), which is defined as the quotient of negative natural logarithm of the rational activity of water and molar mass (M) of water ($\approx 0,018 \mathrm{~kg} \cdot \mathrm{~mol}^{-1}$):

$$
\begin{equation*}
\hat{m}=\left(-1 \mathrm{n} a_{\mathrm{H}_{2} \mathrm{O}}\right) / M_{\mathrm{H}_{2} \mathrm{O}} \tag{1}
\end{equation*}
$$

The unit of osmolality is mol $\cdot \mathrm{kg}^{-1}$ (not 'osmol' $\cdot \mathrm{kg}^{-1}$).
The osmotic concentration (\hat{c}) , formerly called the osmolarity, equals the osmolality times the mass density (ρ) of water:

$$
\begin{equation*}
\hat{c}=\hat{m} \cdot \rho_{\mathrm{H}_{2}} \mathrm{O}^{*} \tag{2}
\end{equation*}
$$

As $\rho_{\mathrm{H}_{2} \mathrm{O}}{ }^{*} \approx 1 \mathrm{~kg} \cdot 1^{-1}$ the numerical value of osmotic concentration (in mol $\cdot 1^{-1}$) practically equals that of osmolality (in mol $\cdot \mathrm{kg}^{-1}$).
5.3. The osmolality is generally calculated on the basis of measurement of the freezing point depression ($\Delta T_{\text {fus }}$) divided by the molal freezing point depression constant ($K_{\text {fus }}$), which is $1,855 \mathrm{~K} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1}$ for aqueous solutions:

$$
\begin{equation*}
\hat{m}=\Delta T_{\text {fus }} / K_{\text {fus }} . \tag{3}
\end{equation*}
$$

It is generally tacitly assumed that the osmolality at the temperature of freezing (of plasma or urine) equals the value at $37{ }^{\circ} \mathrm{C}$. In order to obtain the true osmolality at $37{ }^{\circ} \mathrm{C}$ it is necessary to calculate the value on the basis of vapour pressure ($p_{\mathrm{H}_{2}} \mathrm{O}$) measured at $37{ }^{\circ} \mathrm{C}$:

$$
\begin{equation*}
\hat{m}=\left(-\ln \left\{p_{\mathrm{H}_{2} \mathrm{O}} / p_{\mathrm{H}_{2}} \mathrm{O}^{*}\right\}\right) / M_{\mathrm{H}_{2} \mathrm{O}} \tag{4}
\end{equation*}
$$

where $p_{\mathrm{H}_{2} \mathrm{O}}{ }^{*}$ is the vapour pressure of pure water.
5.4. The reason for using the osmolality in clinical chemistry is that this quantity can be directly compared to the sum of molalities of the solutes ($m_{\text {Solutes }}$), the ratio between the two quantities being the molal osmotic coefficient (ϕ_{m}), which is generally close to unity for biological fluids:

$$
\begin{equation*}
\hat{m}=\phi_{m} \cdot m_{\text {Solutes }} . \tag{5}
\end{equation*}
$$

In other words, for many practical purposes the osmolality may be adequately estimated on the basis of measurements of the molalities of the principal solutes in a solution.
6.1. List of quantities and units related to the chemical potential and the chemical activity of solute and solvent in a solution, and the fugacity of a component in a gas mixture. The list contains the following columns:

6.1.1. Quantity

6.1.1.1. Name: the names refer to the kind of quantity. The full designation of a quantity also requires a specification of the system, and often the component, e.g. volume of a given system, mass concentration of a given component in a given system. A few alternative names are given, e.g. electric charge = quantity of electricity (§ 2.6). Parenthesis indicates a part of the name, which may be omitted if no ambiguity is introduced.
6.1.1.2. Symbol and definition: the symbols refer to 'kind of quantity' and should be italicized. An alphabetical index of the symbols is given in 6.4. As far as possible the symbols are consistent with previous recommendations. For system and component the symbols are always printed in Roman type.
The general format for the symbol of a quantity when the 'kind of quantity' (general symbol Q) and the system (general symbol X) both need specification is either Q^{X} or $Q(X)$. The format Q^{X} is employed when X is a standard reference system $\left({ }^{\ominus}\right)$, pure substance $\left(^{*}\right)$, or a solution of infinite dilution $\left({ }^{\infty}\right)(7.6,7.21)$. The format $Q(X)$ is employed in the present document in other cases. Often specification of the system (X) may be omitted without introducing ambiguity.
Many kinds of quantities need specification of a given component, e.g. partial pressure (p) of a component (B). Generally the component is indicated by a subscript, e.g. p_{B}, and this format is employed in the present document. However, in clinical chemistry the symbol may often be printed on the line without introducing ambiguity, e.g. $\mathrm{pCO}_{2}, \mathrm{pO}_{2}, \mathrm{cH}^{+}, \mathrm{cHCO}_{3}^{-}$.
Notice that the word mixture is used when the components are all treated in the same way. The word solution is used when, for convenience, one of the components (A) which is called the solvent (and may itself be a mixture) is treated differently from the other components (B, C, D, etc.) which are called solutes (7.21).
The SI (Système International d'Unités) defines a set of base units corresponding to a set of base kinds of quantities which are exclusively defined in terms of a reference method of measurement (§§ 1.1-1.6). All other quantities are considered demived quantities which can be defined by means of an algebraic equation containing only base quantities in addition to the quantity being defined.
An attempt has been made to order the quantities so that all definitions are based on previous quantities in the List. The equations are written in terms of the above mentioned symbols. All the definitions in the List are consistent with definitions given in the references although sometimes slightly reformulated.

6.1.2. SI unit

6.1.2.1. Name: only SI units are given in this column. When no unit is given, this indicates that the value of the quantity is a pure number (i.e. quantities of dimension one $=$ 'dimensionless' quantities). Sometimes the number 1 is considered the unit of 'dimensionless' quantities.
6.1.2.2. Symboz: the symbol for the SI unit is given and derived units are defined in terms of the SI base units.

6.1.3. Remarks

This column contains various important equations which are not considered to be definitions but which can be derived from previous definitions (with the exception of the equations for $\mathrm{d} U(\$ 2.1)$ and $K_{\text {fus }}(\$ 8.6)$. Cross references to other paragraphs of the List 6.1 are indicated by the symbol §. The values of various constants were obtained from Ref. 7.21.
In the present international document we prefer the decimal comma as recommended for all languages by ISO (7.12) although the decimal point is generally used in English texts.

6.1.4. References

The references given in the different paragraphs of the List indicate where the given quantity has been previously mentioned. The numbers indicate the appropriate paragraph in the reference. The absence of references in several paragraphs indicates that those quantities have not yet been defined or mentioned by ISO (7.12), IUPAC (7.21), or IFCC (7.8).
6.1. List of quantities and units. For explanation of the columns, see text section 6.1.

6.1	Quantity		Unit	
§	Name	Symbol and definition	Name	Symbol
1.0	number of entities	N		
1.1	length	2	metre	m
1.2	mass	m	kilogram	kg
1.3	time	t	second	s
1.4	electric current	I	ampere	A
1.5	thermodynamic temperature	T	kelvin	K
1.6	amount of substance	n	mole	mol
2.1	energy	$E=m \cdot c^{2}$	joule	$\stackrel{\mathrm{J}}{\mathrm{~m}^{2}} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2}$

2.2	entropy	$S=\int T^{-1} \cdot \mathrm{~d} U$	joule per kelvin	$\begin{aligned} & \quad \mathrm{J} \cdot \mathrm{~K}^{-1} \\ & =\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~K}^{-1} \end{aligned}$
2.3	Celsius temperature	$\begin{aligned} & \theta=T-T_{\mathrm{O}} \\ & T_{\mathrm{O}}=273,15 \mathrm{~K} \end{aligned}$	degree Celsius	${ }^{\circ} \mathrm{C}$
2.4	volume	$V=\tau^{3}$	cubic metre,	m^{3}
			1itre	$\begin{gathered} 1 \\ =\mathrm{dm}^{3} \end{gathered}$
2.4 .1	(partial) molar volume of component B	$V_{\mathrm{B}}=\left(\partial V / \partial n_{\mathrm{B}}\right)_{T, p, n_{\mathrm{C}}, \cdots}$	1itre per mole	$1 \cdot \mathrm{~mol}^{-1}$

2.5 pressure
$p=-(\partial U / \partial V)_{S, Q, n_{B}}$
pascal $\begin{gathered}\mathrm{Pa} \\ =\mathrm{J} \cdot \mathrm{m}^{-3}\end{gathered}$ $=\mathrm{m}^{-1} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2}$
2.6 electric charge;
quantity of electricity
$Q=\int I \cdot d t$
coulomb $\begin{gathered}\mathrm{C} \\ =\mathrm{S} \cdot \mathrm{A}\end{gathered}$

6.1	Remarks	Referen	ces	
§		ISO 31 (7.12)	$\begin{aligned} & \text { IUPAC } \\ & \text { Manua1 } \\ & (7.21) \end{aligned}$	CQUCC EPQUCC (7.8)
1.0	1. Base quantity.	8-2.1	2.3.05	
1.1	1. Base quantity and SI base unit.	1-3.1	2.1 .01	4.1
1.2	1. Base quantity and SI base unit. 2. In the present text \boldsymbol{m} indicates mass, whereas m is molality (§3.3)	3-1.1	2.2.01	4.4
1.3	1. Base quantity and SI base unit.	1-6.1	2.1.12	4.23
1.4	1. Base quantity and SI base unit.	5-1.1	2.6 .05	
1.5	1. Base quantity and SI base unit.	4-1.1	2.4.01	4.18
1.6	1. Base quantity and SI base unit. 2. $N_{\mathrm{B}} / n_{\mathrm{B}}=L=(602,2045 \pm 0,0031) \times 10^{21} \mathrm{~mol}^{-1}$, where L is the Avogadro constant.	8-3.1	2.3 .06	4.6
2.1	1. This definition (the Einstein equation) is the fundamental relationship between the base quantity mass and the derived quantity energy. c is the speed of light in vacuo (in this paragraph only). On the basis of this equation it is possible to derive the following equations for special forms of energy: potential energy $\mathrm{d} E_{\mathrm{pot}}=\vec{F} \cdot \mathrm{~d} \vec{Z}$ (where \vec{F} is force), and kinetic energy $\mathrm{d} E_{\text {kin }}=\vec{v} \cdot \mathrm{~d} \vec{p}$ (where \vec{v} is velocity and $\vec{p}=m \cdot \vec{v}$ is momentum). 2. U is the preferred symbol for internal energy. 3. $\mathrm{d} U=-p \cdot \mathrm{~d} V+T \cdot \mathrm{~d} S+\phi \cdot \mathrm{d} \varrho+\Sigma\left(\mu_{\mathrm{B}} \cdot \mathrm{d} n_{\mathrm{O}}, \mathrm{B}\right)$ (for derivation see textbooks of physical chemistry).	4-19.1	2.4 .07	
2.2		4-17.1	2.4 .06	
2.3	1. $1^{\circ} \mathrm{C}=1 \mathrm{~K}$. 2. Alternative symbol: t.	4-2.1	2.4 .02	4.19
2.4	1. The definition applies for a cube. 2. In the present context the litre is employed as the unit for volume. 3. The capital L has been adopted by CGPM as an alternative symbol for litre to avoid confusion with the number 1.	1-5.1	2.1.11	4.3
2.4.1	1. The molar volume of a pure substance A is: $V_{m}=V / n$. 2. For an ideal gas: $V_{\mathrm{m}}=R \cdot T / p$. $V_{\mathrm{m}} \approx(22413,83 \pm 0,70) \times 10^{-6} \mathrm{~m}^{3} \cdot \mathrm{~mol}^{-1}$ for $T=273,15 \mathrm{~K}$ and $p=101,325 \mathrm{kPa}$. 3. The molar gas constant is $R \approx(8,31441 \pm 0,00026) \cdot \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$. 4. $V=\Sigma\left(V_{\mathrm{B}} \cdot n_{\mathrm{B}}\right)$.	$\begin{aligned} & 8-6.1 \\ & 8-35.1 \end{aligned}$	1.4	
2.5	1. Pressure is often defined as the force perpendicular to a surface divided by the area of that surface. This may give the erroneous implication that pressure is a vector. 2. The non SI unit of pressure, $m \mathrm{mHg}=\operatorname{Torr}(=0,1333 \mathrm{kPa})$, is still widely employed in the clinical literature especially for blood pressure. 3. Alternative symbol: P.	3-13.1	2.2 .19	4.21
2.6	1. The elementary charge is $e \approx(160,21892 \pm 0,00046) \times 10^{-21} \mathrm{C}$. 2. The Faraday constant is $F=e \cdot L \approx(96484,56 \pm 0,27) \cdot \mathrm{C} \cdot \mathrm{~mol}^{-1} .$	5-2.1	2.6 .02	

6.1	Quantity		Unit	
§	Name	Symbol and definition	Name	Symbol
2.6 .1	charge number of component B	$z_{\mathrm{B}}=Q_{\mathrm{B}} / e$		
2.7	electric potential; electromotive force	$\phi=(\partial U / \partial Q){ }_{V, S,} n_{\mathrm{B}}$	volt	$\begin{aligned} & \quad \mathrm{V} \\ & =\mathrm{J} \cdot \mathrm{C}^{-1} \\ & =\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-1} \end{aligned}$
2.8	Gibbs energy	$G=U+p \cdot V-T \cdot S$	joule	$\stackrel{\mathrm{J}}{\mathrm{~m}^{2}} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2}$
2.9 .1	(absolute) chemical potential of component B	$\mu_{\mathrm{B}}=\left(\partial U / \partial n_{\mathrm{B}}\right)_{V, S, Q, n_{C} \ldots} \ldots$	joule per mole	$\begin{aligned} & \mathrm{J} \cdot \mathrm{~mol}^{-1} \\ & =\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~mol}^{-1} \end{aligned}$
2.9 .2	```(absolute) electrochemical potential of component B```	$\tilde{\mu}_{\mathrm{B}}=\left(\partial U / \partial n_{\mathrm{B}}\right)_{V, S, n_{\mathrm{C}} \cdots} \cdots$	joule per mole	$\begin{aligned} & \mathrm{J} \cdot \mathrm{~mol}^{-1} \\ & =\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~mol}^{-1} \end{aligned}$
2.9 .3	(practical) chemical potential of component B	$\psi_{\mathrm{B}}=\mu_{\mathrm{B}}-\mu_{\mathrm{B}}{ }^{\ominus}$	joule per mole	$\begin{aligned} & \mathrm{J} \cdot \mathrm{~mol}^{-1} \\ & =\mathrm{m}^{2} \cdot{\mathrm{~kg} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~mol}^{-1}}^{\text {an }} \end{aligned}$
2.10	absolute activity of component B	$\lambda_{\mathrm{B}}=\exp \left(\mu_{\mathrm{B}} /(R \cdot T)\right)$		
3.0	molar mass	$M=m / n$	kilogram per mole	$\mathrm{kg} \cdot \mathrm{mol}^{-1}$
3.1	mass concentration of component B	$\rho_{\mathrm{B}}=m_{\mathrm{B}} / V$	kilogram per litre	$\begin{aligned} & \mathrm{kg} \cdot \cdot^{-1} \\ & =10^{3} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~kg} \end{aligned}$
3.1 .1	(mass) density	$\rho=m / V$	kilogram per 1itre	$\begin{aligned} & \mathrm{kg} \cdot 1^{-1} \\ & =10^{3} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~kg} \end{aligned}$
3.2	```(amount-of-)substance fraction; mole fraction of component B```	$x_{\mathrm{B}}=n_{\mathrm{B}} /\left(n_{\mathrm{B}}+n_{C}+\cdots\right)$		
3.2 .1	saturation fraction of component B	$s_{\mathrm{B}}=n_{\mathrm{B}} / n_{\mathrm{B}}$ (sat)		
3.3	molality of solute B	$m_{\mathrm{B}}=n_{\mathrm{B}} / m_{\mathrm{A}}$	mole per kilogram	$\mathrm{mol} \cdot \mathrm{kg}^{-1}$
3.4	(amount-of-) substance concentration of component B	$c_{B}=n_{B} / V$	mo1e per 1itre	$\mathrm{mol} \cdot \mathrm{l}^{-1}$

6.1	Remarks	References		
§		$\begin{aligned} & \text { ISO } \\ & (7.12) \end{aligned}$	IUPAC Manual (7.21)	CQUCC EPQUCC (7.8)
2.6 .1	1. Q_{B} is the charge of one B elementary entity (molecule, ion).	8-41.1	2.7.02	4.4
2.7	1. ϕ is preferred for inner electric potential. Other symbols: V (in the present context $V=$ volume), E (preferred for electromotive force).	5-6.1	2.6 .07	
2.8	1. $\mathrm{d} G=V \cdot \mathrm{~d} p-S \cdot \mathrm{~d} T+\phi \cdot \mathrm{d} Q+\Sigma\left(\mu_{\mathrm{B}} \cdot \mathrm{d} n_{\mathrm{B}}\right)$.	4-19.4	2.4 .12	
2.9.1	1. Only differences in μ_{B} can be measured (§2.9.3). 2. $\mu_{B}=\left(\partial G / \partial n_{B}\right)_{p, T}, Q, n_{B}, \cdots$ This equation is often preferred as the definition. 3. Notice: $z_{\mathrm{B}} \neq 0 \Rightarrow \mathrm{~d} Q \neq 0$. Hence μ_{B} cannot be measured for an ion unless a non-thermodynamic convention is adopted (see Section 3.2). 4. μ_{B} is proportional to the electric potential (E) of an ideal electrode for component $\mathrm{B}: \Delta \mu_{\mathrm{B}}=\boldsymbol{z}_{\mathrm{B}} \cdot F \cdot \Delta E$	8-17.1	$\begin{aligned} & 2.4 .25 \\ & \text { A.I. } 1 \end{aligned}$	
2.9 .2	1. Notice that Q is not constant. 2. Only differences in $\tilde{\mu}_{\mathrm{B}}$ can be measured. 3. $\tilde{\mu}_{\mathrm{B}}=\mu_{\mathrm{B}}+z_{\mathrm{B}} \cdot F \cdot \phi$. 4. See also introductory section 3.2.		2.7 .05	
2.9 .3	1. The symbol ψ is tentative. 2. The standard reference system (${ }^{\ominus}$) may be indicated by subscript (compare relative activity): ψ_{A} (§6.1.1), $\psi_{x}, \mathrm{~B}(\S 6.1 .2), \psi_{m, \mathrm{~B}}(\$ 6.2), \psi_{c, \mathrm{~B}}(\$ 6.3), \psi_{p, \mathrm{~B}}(\$ 6.4)$. 3. $\psi_{\mathrm{B}}=R \cdot T \cdot \ln \alpha_{\mathrm{B}}$ (where α_{B} is relative activity).		Ref. 7.1	
2.10	1. Only the relative λ_{B} can be measured (§§ 6.1.1,6.1.2, 6.2, 6.3, 6.4).	8-18.1	$\begin{aligned} & 2.4 .26 \\ & \text { A.I. } 1 \end{aligned}$	
3.0	1. The name 'dalton' is sometimes used as unofficial unit: 1 dalton $=1 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$.			
3.1		8-11.2	2.3.12	4.8
3.1 .1	1. The mass density of the solvent A equals the mass concentration of A in pure $A: \rho(A)=\rho_{A}{ }^{*}$.	8-11.1		
3.2		8-15.1	2.3 .07	4.13
3.2.1	1. (sat) indicates the system saturated with B at constant $T, p, n_{\mathrm{C}}, \cdots$. 2. Capital S is used as the symbol of saturation fraction in the physiological literature.			
3.3	1. A is the solvent. 2. In the present text the m is preferred as the symbol for molality whereas m indicates mass. The symbol b is favoured by ISO/TC 12 as an alternative symbol. In clinical chemistry the symbol b is employed for catalytic activity concentration. 3. $m_{\mathrm{B}}=x_{\mathrm{B}} /\left(x_{\mathrm{A}} \cdot M_{\mathrm{A}}\right)$.	8-16.1	2.3.10	4.12
3.4	1. $c_{\mathrm{B}}=M_{\mathrm{B}} \cdot \rho_{\mathrm{B}}$. 2. $c_{B}=m_{B} \cdot \rho_{A}$. 3. The symbol [B] is often employed for c_{B}.	8-13.1	2.3.11	4.11

6.1	Quantity		Unit	
S	Name	Symbol and definition	Name	Symbol
3.5	ionic strength	$I=\frac{1}{2} \cdot \Sigma\left(z_{\mathrm{B}}{ }^{2} \cdot m_{\mathrm{B}}\right)$	mole per kilogram	$\mathrm{mol} \cdot \mathrm{kg}^{-1}$
3.6	partial pressure of component B	$p_{B}=x_{B} \cdot p$	pascal	$\begin{aligned} & \mathrm{Pa} \\ & =\mathrm{m}^{-1} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2} \end{aligned}$

4.0.1 activity coefficient of solvent A
$f_{A}=\left(\lambda_{A} / x_{A}\right) / \lim _{x_{A} \rightarrow 1}\left(\lambda_{A} / x_{A}\right)$
or of component A
(in a mixture)
4.0.2 rational activity coefficient of solute B
$f_{x, B}=\left(\lambda_{B} / x_{B}\right) / \lim _{x_{A}+1}\left(\lambda_{B} / x_{B}\right)$
4.1 molal activity coefficient of solute B
$\gamma_{B}=\left(\lambda_{B} / m_{B}\right) / \lim _{x_{A} \rightarrow 1}\left(\lambda_{B} / m_{B}\right)$
4.2 (substance) concentrational activity coefficient of solute B
4.3 fugacity coefficient of component B (in a gas mixture)
$y_{B}=\left(\lambda_{B} / c_{B}\right) / \lim _{x_{A} \rightarrow 1}\left(\lambda_{B} / c_{B}\right)$
$g_{\mathrm{B}}=\left(\lambda_{\mathrm{B}} / p_{\mathrm{B}}\right) / \lim _{p \rightarrow 0}\left(\lambda_{\mathrm{B}} / p_{\mathrm{B}}\right)$

6.1	Remarks	Referen	ces	
§		$\begin{aligned} & \text { ISO } 31 \\ & (7.12) \end{aligned}$	IUPAC Manual (7.21)	CQUCC EPQUCC (7.8)
3.5	1. Sometimes ionic strength is calculated from substance concentration (symbol I_{c}). It is preferable, however, always to define ionic strength on the basis of molality.	8-45.1	2.4.29	
3.6	1. Partial pressure applies to a component in a gas mixture; when applied to gases in liquid solution the quantity strictly speaking applies to a hypothetical ideal gas phase in equilibrium with the liquid. The name (gas) tension has been suggested for this kind of quantity, and also the name vapour pressure. See also introductory section 4.1 . 2. The capital P is used as the symbol of partial pressure in the physiological literature.	8-19.1	A.I. 5	4.22
4.0.1	1. λ_{A} / x_{A} may be interpreted as an 'absolute' activity coefficient while f_{A} is a relative activity coefficient. A similar remark applies in $\S \S 4.0 .2,4.1,4.2$, and 4.3. 2. $f_{A}=\left(\lambda_{A} / \lambda_{A} *\right) / x_{A}$. 3. $\lim _{\chi_{A} \rightarrow 1} f_{A}=f_{A}^{*}=1$ (where $*$ indicates pure substance).	8-22.1	$\begin{aligned} & 2.3 .31 \\ & \text { A.I. } 7 \\ & \text { A.I. } 14 \end{aligned}$	
4.0.2	1. $\lim _{x_{\mathrm{A}} \rightarrow 1} f_{x, \mathrm{~B}}=f_{x, \mathrm{~B}}^{\infty}=1$ (where ${ }^{\infty}$ indicates infinite dilution).		A.I. 11	
4.1	1. $\lim _{x_{A} \rightarrow 1} \gamma_{B}=\gamma_{B}^{\infty}=1$ (where ${ }^{\infty}$ indicates infinite dilution). 2. $\gamma_{B} / f_{x, B}=x_{A}$. 3. For ions in dilute aqueous solutions γ is a function of I and the hydration number h according to the Debye-Hückel theory and the Stokes-Robinson hydration theory (7.4, 7.20): $\begin{aligned} \ln \gamma_{\mathrm{B}}= & -(\ln 10) \cdot z_{\mathrm{B}}^{2} \cdot A \cdot I^{1 / 2} /\left(1+\alpha \cdot B \cdot I^{1 / 2}\right) \\ & +h_{\mathrm{B}} \cdot M_{\mathrm{H}_{2} \mathrm{O}} \cdot \hat{m}-\ln \left(1+M_{\mathrm{H}_{2} \mathrm{O}} \cdot \Sigma\left(m_{\mathrm{B}} \cdot\left(1-h_{\mathrm{B}}\right)\right)\right), \end{aligned}$ where A and B are temperature dependent constants: $A=0,5215\left(\mathrm{~mol} \cdot \mathrm{~kg}^{-1}\right)^{-1 / 2}$ and $B=3,305 \mathrm{~nm}^{-1} \cdot\left(\mathrm{~mol} \cdot \mathrm{~kg}^{-1}\right)^{-1 / 2}$. $\dot{\alpha}$ is the ion size parameter (a length). \hat{m} is the osmolality (§8.1). $h_{\mathrm{Cl}^{-}}=0$ by the Bates-Staples-Robinson convention (7.4). 4. A strong electrolyte B dissociating in solution into cations C and anions D according to $\mathrm{B} \rightarrow \nu_{C} \cdot \mathrm{C}+\nu_{D} \cdot D \text {, i.e. } \lambda_{B}=\lambda_{C}{ }^{\nu_{C}} \cdot \lambda_{D}{ }^{\nu_{D}}$ is described in terms of 'mean ionic' quantities, indicated by subscript \pm, e.g.: Analogous definitions and equations apply for $x_{ \pm B}, f_{x \pm \mathrm{B}}$, $a_{x \pm \mathrm{B}}(\$ \S 3.2,4.0 .2,6.0 .2)$ and $c_{ \pm B}, y_{ \pm \mathrm{B}}, \hat{c}_{ \pm \mathrm{B}}, a_{C \pm \mathrm{B}}$ (§§ $3.4,4.2,5.2,6.2$).	8-24.1	$\begin{aligned} & 2.4 .32 \\ & \text { A.I. } 11 \end{aligned}$	
4.2	1. $\lim _{x_{A} \rightarrow 1} y_{B}=y_{B}^{\infty}=1$ (where ${ }^{\infty}$ indicates infinite dilution). 2. $\gamma_{B} / y_{B}=\rho_{A} / \rho_{A} *$.		2.4 .33	
4.3	1. $\lim _{\mathcal{p} \rightarrow 0} g_{\mathrm{B}}=1$.		A.I. 6	

6.1	Quantity		Unit	
§	Name	Symbol and definition	Name	Symbol
5.1	```active molality of solute B```	$\tilde{m}_{\mathrm{B}}=\gamma_{\mathrm{B}} \cdot m_{\mathrm{B}}$	mole per kilogram	$\mathrm{mol} \cdot \mathrm{kg}^{-1}$
5.2	```active (substance) concentration of solute B```	$\tilde{c}_{\mathrm{B}}=y_{\mathrm{B}} \cdot c_{\mathrm{B}}$	mole per 1itre	$\begin{aligned} & \quad \mathrm{mol} \cdot 1^{-1} \\ & =10^{3} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~mol} \end{aligned}$
5.3	```fugacity; active partial pressure of component B (in a gas mixture)```	$\tilde{p}_{\mathrm{B}}=g_{\mathrm{B}} \cdot p_{\mathrm{B}}$	pascal	$\begin{aligned} & \mathrm{Pa} \\ & =\mathrm{m}^{-1} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-1} \end{aligned}$

6.0.1 (relative) activity of solvent A or af a component a (in a mixture)
$a_{A}=\lambda_{A} / \lambda_{A}{ }^{\ominus}$
$x_{A}{ }^{\ominus}=1$
6.0.2 (relative) rational activity
of solute B

$$
\begin{gathered}
a_{x, \mathrm{~B}}=\lambda_{\mathrm{B}} / \lambda_{\mathrm{B}}{ }^{\ominus} \\
f_{x, \mathrm{~B}}{ }^{\ominus} \cdot x_{\mathrm{B}}{ }^{\ominus}=1 \\
a_{m, \mathrm{~B}}=\lambda_{\mathrm{B}} / \lambda_{\mathrm{B}}{ }^{\ominus} \\
\tilde{m}_{\mathrm{B}}{ }^{\ominus}=1 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}
\end{gathered}
$$

6.1 (relative) molal activity
6.1.1 hydrogen ion exponent; pH

$$
\mathrm{pH}=-1 g a_{m, \mathrm{H}^{+}}
$$

6.2 (relative) (substance-) concentrational activity of solute B
6.3 (relative) baric activity of component B (in gas mixture)

$$
\begin{aligned}
a_{c, \mathrm{~B}} & =\lambda_{\mathrm{B}} / \lambda_{\mathrm{B}}^{\ominus} \\
\tilde{c}_{\mathrm{B}}^{\Theta} & =1 \mathrm{~mol} \cdot 1^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& a_{p, \mathrm{~B}}=\lambda_{\mathrm{B}} / \lambda_{\mathrm{B}}^{\ominus} \\
& \tilde{p}_{\mathrm{B}}^{\Theta}=101,325 \mathrm{kPa}
\end{aligned}
$$

6.1	Remarks	References		
		$\begin{aligned} & \text { ISO } 31 \\ & (7.12) \end{aligned}$	IUPAC Manual (7.21)	COUCC EPQUCC (7.8)
5.1	1. The symbol \tilde{m} was chosen in analogy with the symbol \tilde{p} for fugacity (§5.3). 2. Sometimes this quantity is called the molal activity, but it should be distinguished from relative molal activity ($\$ 6.1$) which is dimensionless. 3. $\lim _{x_{A} \rightarrow 1} \tilde{m}_{B}=m_{B}$.			
5.2	1. The symbol \tilde{c} was chosen in analogy with the symbol \tilde{p} for fugacity (§5.3). 2. Sometimes this quantity is called the concentrational activity, but it should be distinguished from relative concentrational activity (\$6.2) which is dimensionless. 3. $\lim _{x_{A} \rightarrow 1} \tilde{c}_{B}=c_{B}$. 4. $\tilde{c}_{\mathrm{B}} / \tilde{m}_{\mathrm{B}}=\rho_{\mathrm{A}}{ }^{*}$.			
5.3	1. The symbol \tilde{p} is preferred in this context. An alternative symbol is f. 2. Fugacity is defined for a component in a gas mixture. When applied to gases in liquid solution the quantity strictly speaking refers to a hypothetical gas phase in equilibrium with the liquid. It follows that the partial pressure (\$3.6) and the fugacity of a component in a solution are identical. See also introductory section 4.1. 3. $\lim _{p \rightarrow 0} \tilde{p}_{\mathrm{B}}=p_{\mathrm{B}}$.	8.20 .1	$\begin{aligned} & 2.4 .27 \\ & \text { A.1. } 6 \end{aligned}$	
6.0.1	$\begin{aligned} & \text { 1. } \alpha_{A}=\lambda_{A} / \lambda_{A} * \text {. } \\ & \text { 2. } \alpha_{A}=f_{A} \cdot x_{A} \text {. } \end{aligned}$		$\begin{aligned} & \text { 2.4. } 30 \\ & \text { A.I. } 8 \end{aligned}$	
6.0.2	1. $a_{x, \mathrm{~B}}=f_{x, \mathrm{~B}} \cdot x_{\mathrm{B}}$. 2. $a_{x, \mathrm{~B}} / \tilde{m}_{\mathrm{B}}=M_{\mathrm{A}}$.		A.I. 12	
6.1	1. $a_{m, \mathrm{~B}}=\tilde{m}_{\mathrm{B}} / \tilde{m}_{\mathrm{B}}{ }^{\ominus}$. 2. This is the activity generally employed in clinical chemistry for an ion in solution when using ion-selective electrodes. 3. For a strong electrolyte B, the standard reference system is defined by $\tilde{m}_{ \pm B}{ }^{\ominus}=1 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$ (see $\S 4.1$ remark 4). $\text { It follows that }={ }^{\nu_{C, B}}=a_{m, \mathrm{C}}{ }^{\mathrm{C} \cdot a_{m, \mathrm{D}}}{ }^{\nu_{\mathrm{D}}}=a_{m \pm \mathrm{B}}\left(\nu_{\mathrm{C}}+\nu_{\mathrm{D}}\right)$ (from §§ 6.1, 5.1, 4.1). Analogous remarks apply in $\S 6.0 .2\left(f_{x^{ \pm B}}{ }^{\ominus} \cdot x_{ \pm \mathrm{B}}{ }^{\ominus}=1\right)$ and $\S 6.2\left(\tilde{c}_{ \pm B}{ }^{\ominus}=1 \mathrm{~mol} \cdot 1^{-1}\right)$.	8-23.1	A.I. 12	
6.1 .1	1. Sometimes pH is considered the name of the quantity rather than the symbol. 2. The reference method for pH measurement is based on the use of a hydrogen-ion-responsive electrode, a reference electrode, and a bridge solution of concentrated KCl of a molality not less than $3,5 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$. Reference solutions with known pH have been described. See also introductory section 3 .		10	
6.2	1. $a_{C, B}=\tilde{c}_{\mathrm{B}} / \tilde{c}_{\mathrm{B}}{ }^{\ominus}$.	8-23.1	A.I. 12	
6.3	1. $a_{p, \mathrm{~B}}=\tilde{p}_{\mathrm{B}} \tilde{p}_{\mathrm{B}}{ }^{\ominus}$. 2. Fugacity, \tilde{p}_{B}, is used more generally than relative baric activity, $\alpha_{p, B}$.			

| 6.1 | Quantity | | Unit | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| § | Name | Symbol and definition | Name | Symbol |

6.1	Remarks	References		
§		$\begin{aligned} & \text { ISO } 31 \\ & (7.12) \end{aligned}$	IUPAC Manual (7.21)	CQUCC EPQUCC (7.8)
7.0	1. $\alpha_{x, \mathrm{~B}}=\alpha_{x, \mathrm{~B}}^{\infty} / f_{x, \mathrm{~B}}$, where $\alpha_{x, \mathrm{~B}}^{\infty}$ refers to infinite dilution. 2. $\alpha_{x, \mathrm{~B}}^{\infty}=\alpha_{x}, \mathrm{~B} / \tilde{p}_{\mathrm{B}}$. 3. For the solvent $\mathrm{A}: \alpha_{x, \mathrm{~A}}=\alpha_{x, \mathrm{~A}}{ }^{*} / f_{\mathrm{A}}$, where $\alpha_{x, \mathrm{~A}}{ }^{*}=1 / \tilde{p}_{\mathrm{A}}{ }^{*}$.			
7.1	1. $\alpha_{m, B}=\alpha_{m, B}{ }^{\infty} / \gamma_{B}$. 2. $\alpha_{m, B}{ }^{\infty}=\tilde{m}_{B} / \tilde{p}_{B}$.			
7.2	1. $\alpha_{C, B}=\alpha_{C, B} / y_{B}$. 2. $\alpha_{c, B}^{\infty}=\tilde{c}_{B} / \tilde{p}_{B}$.			
8.1	1. M_{A} is molar mass of the solvent A . 2. The unit is not 'osmol' $\cdot \mathrm{kg}^{-1}$. 3. $\tilde{p}_{A}=\tilde{p}_{A} * \cdot \exp \left(-\hat{m} \cdot M_{A}\right)$, where $\tilde{p}_{A} *$ is vapour pressure (fugacity) of pure solvent.			
8.2	1. $\Sigma_{\mathrm{B}} m_{\mathrm{B}}$ is the molality of all the solutes. 2. $\Sigma_{B} m_{B}=\left(1-x_{A}\right) /\left(x_{A} \cdot M_{A}\right)$. 3. $\lim _{x_{A} \rightarrow 1} \phi_{m}=\phi_{m}{ }^{\infty}=1$.	8-24.2	A. I. 13	
8.3	1. $V_{A} *$ is molar volume of pure solvent A. 2. The unit is not 'osmol' $\cdot 1^{-1}$. 3. $\hat{c}=\hat{m} \cdot \rho_{\mathrm{A}} *$. 4. Currently called 'osmolarity' because 'molarity' was formerly used for substance concentration.			
8.4	1. $\Sigma_{B} c_{B}$ is the substance concentration of all solutes. 2. $\Sigma_{B} c_{B}=c_{A} \cdot\left(1-x_{A}\right) / x_{A}$. 3. $\lim _{x_{A} \rightarrow 1} \phi_{c}=\phi_{C}{ }^{\infty}=1$. 4. $\phi_{C}=\phi_{m} \cdot \rho_{A} * / \rho_{A}$.			
8.5	1. $T_{\text {fus }}{ }^{\infty}$ is the freezing point of pure solvent.			
8.6	1. It can be shown that $K_{\text {fus }}$ is related to the specific enthalpy of melting, ΔH_{w}, and the freezing point, $T_{\text {fus }}$, of the solvent: $K_{\text {fus }}=R \cdot T_{\text {fus }}{ }^{2} / \Delta H_{\mathrm{w}}$. 2. For aqueous solutions: $K_{\text {fus }}=1,855 \mathrm{~kg} \cdot \mathrm{~K} \cdot \mathrm{~mol}^{-1}$.			
8.7	1. $K_{\text {fus }, c}=K_{\text {fus }} / \rho_{\mathrm{A}}{ }^{*}$.			

8.8 1. Π is that pressure difference between the solution and
the pure solvent (A) which provides the same chemical potential of the solvent in the solution and in the pure solvent.
2. Integration, assuming $V_{\mathrm{A}}=V_{\mathrm{A}}{ }^{*}=$ constant, gives the van't Hoff equation: $\quad \Pi^{A}=-\left(\mu_{A}-\mu_{A}{ }^{*}\right) / V_{A}{ }^{*}=R \cdot T \cdot \hat{c}$.
9.1 1. $n_{\mathrm{H}^{+}}$is amount of substance of added H^{+}(stoichiometric amount of H^{+}). In order to maintain electroneutrality, H^{+} must be added together with an indifferent anion (e.g. Cl^{-}) or in exchange for a cation (e.g. Na^{+}).
2. Other independent variables are constant, usually T, p, n_{B}, \cdots. Occasionally μ_{B} rather than n_{B} is considered the independent variable, e.g. pCO_{2} rather than $n_{\mathrm{CO}_{2}}$. This must be clearly specified, because the value of B will be different when either n_{B} or μ_{B} is constant.
3. $\mathrm{d} n_{\mathrm{H}^{+}}=-\mathrm{d} n_{\text {Base }} ; \quad-\lg a_{m, \mathrm{H}^{+}}=\mathrm{pH} ; \quad B=\left(\partial n_{\text {Base }} / \partial \mathrm{pH}\right)$.

6.1	Quantity		Unit	
§	Name	Symbol and definition	Name	Symbol
$\begin{aligned} & 9.1 \\ & \text { (cont.) } \end{aligned}$				
9.2	buffer value; volumic buffer capacity (for hydrogen ion) (in a solution)	$\beta=B / V$	mole per 1itre	$\begin{aligned} & \quad \mathrm{mol} \cdot 1^{-1} \\ & =10^{-3} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~mol} \end{aligned}$
9.3 .1	(partial) molar buffer capacity of solute B	$B_{m, B}=\left(\partial B / \partial n_{B}\right)$		
9.3.2	(partial) specific buffer capacity of solute B	$B_{\mathrm{w}, \mathrm{B}}=\left(\partial B / \partial m_{\mathrm{B}}\right)$	mole per kilogram	$\mathrm{mol} \cdot \mathrm{kg}^{-1}$
10.1	stoichiometric number of component B (in a chemical reaction)	ν_{B}		
10.2	equilibrium constant (for a chemical reaction)	$K_{\alpha}=\Pi_{B}\left(a_{B}\right)^{\nu_{B}}$		
$10.3 .1$	molal equilibrium product (for a chemical reaction)	$K_{m}=\Pi_{\mathrm{B}}\left(m_{\mathrm{B}}\right)^{\nu_{\mathrm{B}}}$		$\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right)^{\Sigma \nu_{\mathrm{B}}}$
10.3 .2	concentrational equilibrium product (for a chemical reaction)	$K_{C}=\Pi_{B}\left(c_{B}\right)^{\nu_{B}}$		$\left(\mathrm{mol} \cdot 1^{-1}\right)^{\sum \nu_{B}}$
$10.3 .3$	baric equilibrium product (for a chemical reaction)	$K_{p}=\Pi_{B}\left(p_{B}\right)^{\nu_{B}}$		$(\mathrm{Pa})^{\Sigma \nu_{B}}$

6.1 Remarks	References		
§	$\begin{aligned} & \text { ISO } \\ & (7.12) \end{aligned}$	IUPAC Manual (7.21)	CQUCC EPQUCC (7.8)

9.1 4. The quantity has been defined for H^{+}only, although similar (cont.) quantities would apply for other components.
9.2 1. For V constant: $\beta=\left(\partial c_{\mathrm{O}}, \mathrm{H}^{+} / \partial 1 \mathrm{~g} a_{m}, \mathrm{H}^{+}\right)=\left(\partial c_{\text {Base }} / \partial \mathrm{pH}\right)$.
2. Donald D. Van Slyke first defined this quantity. The name 'slyke' is sometimes used as an unofficial unit: 1 slyke $=1 \mathrm{~mol} \cdot 1^{-1}$.
9.3.1 1. Other independent variables are constant.
2. $B_{m, B}=\left(\partial \beta / \partial c_{\mathrm{O}}, \mathrm{B}\right)$.
3. For a H^{+}binding group at $\mathrm{pH}=\mathrm{p} K_{a}: \quad B_{\mathrm{m}, \mathrm{B}}=0,576$.
4. $\mathrm{B}=\Sigma_{\mathrm{B}}\left(B_{\mathrm{m}}, \mathrm{B} \cdot c_{\mathrm{B}}\right)$.
9.3.2 1. m_{B} is mass of added B .
2. Other independent variables are constant.
3. $B_{\mathrm{W}, \mathrm{B}}=\left(\partial \beta / \partial \rho_{\mathrm{B}}\right)$.
4. $\beta=\Sigma_{\mathrm{B}}\left(B_{\mathrm{W}}, \mathrm{B} \cdot \rho_{\mathrm{B}}\right)$.
10.1 1. Base quantity (\approx number of entities, $\$ 1.0$).
2. $0=\Sigma_{B}\left(\nu_{B} \cdot B\right)$ symbolizes a chemical reaction.
3. $v_{B}<0$ for reactants, $\nu_{B}>0$ for products.
4. Equilibrium of a chemical reaction is characterized by:
$0=\Sigma_{B}\left(\nu_{B} \cdot \mu_{B}\right)$ or $0=\Pi_{B}\left(\lambda_{B}\right)^{\nu_{B}}$.
10.2 1. The chemical reaction is $0=\Sigma_{B}\left(\nu_{B} \cdot B\right)$.
2. a_{B} refers to the equilibrium system.
3. The value of K_{a} depends on the choice of activity scale (choice of standard reference system), e.g. for solutes $a_{x, \mathrm{~B}}, a_{m, \mathrm{~B}}$, or $a_{c, \mathrm{~B}}$.
4. $\Delta G_{\mathrm{m}}{ }^{\ominus}=\Sigma_{\mathrm{B}}\left(\nu_{\mathrm{B}} \cdot \mu_{\mathrm{B}}{ }^{\ominus}\right)=-\Sigma_{\mathrm{B}}\left(\nu_{\mathrm{B}} \cdot\left(\mu_{\mathrm{B}}-\mu_{\mathrm{B}}{ }^{\ominus}\right)\right)=-R \cdot T \cdot \ln K_{a}$
where $\Delta G_{\mathrm{m}}{ }^{\ominus}$ is called the molar standard Gibbs energy of reaction.
10.3.1 1. Often hybrid equilibrium products are employed for practical purposes, e.g. calculation of $c_{\mathrm{HCO}_{3}^{-}}$from pH and $p_{\mathrm{CO}_{2}}$: Reaction: $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$.
10.3.2 $K_{\text {hybrid }}=10^{-\mathrm{pH}} \cdot c_{\mathrm{HCO}_{3}^{-}} / p_{\mathrm{CO}_{2}}$,
$K_{a}=a_{m, \mathrm{H}^{+}} \cdot a_{m, \mathrm{HCO}_{3}^{-}} /\left(a_{m, \mathrm{CO}_{2}} \cdot a_{\mathrm{H}_{2} \mathrm{O}}\right)$.
The relationship between the two is:
10.3.3 $K_{\text {hybrid }}=K_{\alpha} \cdot \alpha_{m, \mathrm{CO}_{2}}^{\infty} \cdot a_{\mathrm{H}_{2} \mathrm{O}} \cdot \rho_{\mathrm{H}_{2} \mathrm{O}} / \gamma_{\mathrm{HCO}_{3}^{-}}$.
K_{α} and $\alpha_{m, \mathrm{CO}_{2}}{ }^{\infty}$ are temperature dependent constants.
$a_{\mathrm{H}_{2} \mathrm{O}}$ varies with the total concentration of solutes.
$\rho_{\mathrm{H}_{2} \mathrm{O}}$ varies primarily with the concentration of macromole-
cules (e.g. proteins and lipids).
$\gamma_{\mathrm{HCO}_{\overline{3}}}$ varies with the ionic composition of the solution (ionic strength).
6.2. List of quantities expressing the stoichiometric concentration of the components $\mathrm{H}^{+}, \mathrm{CO}_{2}, \mathrm{O}_{2}$, and Ca^{2+}.
Alternative names are shown, indicating that different names for the components may be employed.

6.2 §	System	$\begin{aligned} & \text {-Component(s) } \\ & \text { (specification), } \end{aligned}$	kind of quantity	Symbol	Typica numeri value	Unit	Remarks	Determination
1.1	Ecf -	Hydrogen ion (titratable),	substance concentration	$c_{\text {th }}{ }^{\text {(Ecf }}$)	-1,6	$\mathrm{mmol} \cdot 1^{-1}$	Ecf = extracellular fluid \approx blood + interstitial fluid. For purposes of calculation, Ecf in adults may be represented by a model: Ecf $=1 \mathrm{aB}+2 \mathrm{aP}$, i.e. arterial blood diluted 3 fold by its own plasma. Titratable means free + bound.	Titration of the model Ecf with strong acid or base to plasma- $\mathrm{pH}=$ 7,40 at $p_{\mathrm{CO}_{2}}=5,33 \mathrm{kPa}, \theta=37^{\circ} \mathrm{C}$, and constant $s_{\mathrm{O}_{2}}$ (equal to that of arterial blood).
1.2	Ecf -	Base (H^{+}-binding groups),	substance concentration difference	$\left.\Delta c_{\text {Base }}{ }^{(E c f}\right)$	+1,6	$\mathrm{mmol} \cdot 1^{-1}$	This quantity equals the former quantity with opposite sign. Trivial names: Base excess (BE) of the extracellular fluid, or standard base excess (SBE).	
2.1	P-	Carbon dioxide (total),	substance concentration	$c_{\text {tCO }}$	25,6	$\mathrm{mmol} \cdot 1^{-1}$	$\mathrm{P}=\text { plasma. }$ Total CO_{2} comprises: CO_{2} (free dissolved), HCO_{3}^{-}and CO_{3}^{2-} (and ion-pairs including these), $\mathrm{Pr}-\mathrm{NH}-\mathrm{COO}^{-}$(carbamino$\mathrm{CO}_{2}$).	Acidification of plasma, extraction of CO_{2} into gas phase, and measurement of CO_{2} in the gas phase, e.g. by gas-mass spectrometry.
2.2	P-	Carbonate + carbon dioxide,	substance concentration	$c_{\mathrm{tCO}_{2}}$	25,6	$\mathrm{mmol} \cdot 1^{-1}$	This name is given in Ref. 7.9. Carbonate here means $\mathrm{CO}_{3}^{2-}+\mathrm{HCO}_{3}^{-}+$ $\mathrm{H}_{2} \mathrm{CO}_{3}$.	
3.1	$\mathrm{aB}-$	Oxygen (total),	substance concentration	$c_{\mathrm{tO}_{2}}$	9,4	mmol $\cdot 1^{-1}$	$\mathrm{aB}=$ arterial blood. Total oxygen comprises: O_{2} (free dissolved) $+\mathrm{HbO}_{2}$ (haemoglobin-bound O_{2}).	Oxidation of haemoglobin to hemiglobin, extraction of O_{2} into a gas phase, and measurement of O_{2}
3.2	aB -	Dioxygen (free +Hb -bound),	substance concentration	$c_{\mathrm{tO}_{2}}$	9,4	mmol $\cdot 1^{-1}$	This name is given in Ref. 7.9. Trivial name: oxygen content.	in the gas phase, e.g. by gas-mass spectrometry.
4.1	P -	Calcium (total),	substance concentration	$c_{\text {tCa }}$	2,5	$\mathrm{mmol} \cdot 1^{-1}$	Total calcium comprises: Ca^{2+} (free ionized) + Ca (bound).	Gas-mass spectrometry or atomic absorption spectrometry.
4.2	P-	$\begin{aligned} & \text { Calcium(II) } \\ & \text { (Ca, total), } \end{aligned}$	substance concentration	$c_{\text {tCa }}$	2,5	mmol $\cdot 1^{-1}$	This name is given in Ref. 7.9. II is the oxidation state in Stock notation.	

6.3. List of quantities related to the chemical activity of the components $\mathrm{H}^{+}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{HCO} \overline{3}, \mathrm{Ca}^{2+}, \mathrm{Na}^{+}$, K^{+}, and $\mathrm{H}_{2} \mathrm{O}$ in human blood plasma
Among the many different ways of indicating the chemical activity of a given component (8 possibilities are shown for H^{+}: §§l.l.l to 1.1 .8) the one preferred for practical clinical application is marked by an asterisk.
In the case of measurements in whole blood or serum by means of ion selective electrodes we recommend to use a fixed value for the concentrational activity coefficient (y) unless special circumstances warrants consideration of variations in ionic strength or mass concentration of water. The typical values given refer to normal arterial plasma (P) at $37^{\circ} \mathrm{C}$, and the values are mutually consistent.

$\begin{aligned} & 6.3 \\ & \$ \\ & \hline \end{aligned}$	Syst	Component,	kind of quantity	Symbol	$\begin{aligned} & \text { Numerical } \\ & \text { value } \end{aligned}$	Unit	Determination		$\begin{aligned} & \mathrm{Cf} . \\ & 6.1 \S \end{aligned}$
$1 \cdot 3 \cdot 3$	P -	Albumin,	molar buffer capacity (for H^{+})	$B_{\mathrm{m}, \mathrm{Alb}}$	8,0		Determined as the slope of β as a function of $c_{\text {Alb }}$.		9.3.1
$1 \cdot 3.4$	P -	Protein,	specifịc buffer capacity (for H^{+})	$B_{\text {w, Pr }}$	0,11	$\mathrm{mol} \cdot \mathrm{kg}^{-1}$	Determined as the slope of β as a function of ρ_{Pr}.		9.3.2
2.1.1*	P -	Carbon dioxide,	partial pressure	pCO_{2}	5,33	kPa	Measured with a $p_{\mathrm{CO}_{2}}$ electrode.		3.6.5
2.1 .2	P -	Carbon dioxide,	active substance concentration	$\widetilde{c}_{\mathrm{CO}_{2}}$	1,32	$\mathrm{mmol} \cdot 1^{-1}$	$\tilde{c}_{\mathrm{CO}_{2}}=p_{\mathrm{CO}_{2}} \cdot \alpha_{c}, \mathrm{CO}_{2}{ }^{\infty}$.		5.2
2.1 .3	P -	Carbon dioxide,	substance concentration	${ }^{\text {c }}{ }{ }_{2}$	1,22	$\mathrm{mmol} \cdot 1^{-1}$	$c_{\mathrm{CO}_{2}}=p_{\mathrm{CO}_{2}} \cdot \alpha_{c}, \mathrm{CO}_{2}$.		3.4
2.2 .1	P -	Carbon dioxide,	concentrational solubility coefficient	$\alpha_{c}, \mathrm{CO}_{2}$	0,225	$\mathrm{mmol} \cdot 1^{-1} \cdot \mathrm{kPa}^{-1}$	$\alpha_{c}, \mathrm{CO}_{2}=\alpha_{c}, \mathrm{CO}_{2}{ }^{\infty} / y_{\mathrm{CO}_{2}}$. An empirical equation gives slightly ${ }^{2}$ higher values (7.1, 7.19): $\begin{aligned} & \lg \left\{\alpha_{c}, \mathrm{CO}_{2}\right\}=1 g(0,230) \\ & \\ & \text { where }\left\{\alpha_{c_{c}} \begin{array}{l} \left.\mathrm{CO}_{2}\right\} \end{array}\right\}=\alpha_{C}, \mathrm{co}_{2} /\left(\mathrm{mmol} \cdot 1^{-1} \cdot \mathrm{kPa}^{-1}\right) \\ & \text { and } \end{aligned}$		7.2
2.2 .2	P -	Carbon dioxide,	molal activity coefficient	YCO_{2}	1,03		Empirical variation with the osmolality (\hat{m}): In $\gamma_{\mathrm{CO}_{2}}=5,5 \cdot \mathrm{M}_{\mathrm{H}_{2} \mathrm{O}} \cdot \hat{m}$.		4.1
2.2 .3	P -	Carbon dioxide,	concentrational activity coefficient	y_{CO}^{2}	1,10		$y_{\mathrm{CO}_{2}}=\gamma_{\mathrm{CO}_{2}} \cdot \rho_{\mathrm{H}_{2} \mathrm{O}}{ }^{*} / \rho_{\mathrm{H}_{2} \mathrm{O}}$.		4.2
3.1.1*	P -	Oxygen,	partial pressure	pO_{2}	13,0	kPa	Measured with a $\mathrm{p}_{\mathrm{O}_{2}}$ electrode.	3.6;	5.3
3.1 .2	P -	Oxygen,	substance concentration	${ }^{\mathrm{O}_{2}}$	124	$\mu \mathrm{mol} \cdot 1^{-1}$	$c_{\mathrm{O}_{2}}=p_{\mathrm{O}_{2}} \cdot \alpha_{c}{ }^{\text {, } \mathrm{O}_{2}}$.		3.4
3.2 .1	P -	Oxygen,	concentrational solubility coefficient	$\alpha_{c, \mathrm{O}_{2}}$	9,55	$\mu \mathrm{mol} \cdot 1^{-1} \cdot \mathrm{kPa}^{-1}$	$\alpha_{c}, \mathrm{O}_{2}=\alpha_{c}, \mathrm{O}_{2} / y_{\mathrm{O}_{2}}$.		7.2
3.2 .2	P -	Oxygen,	molal activity coefficient	YO_{2}	1,03		Empirical variation with the osmolality (\hat{m}): ln $\mathrm{YO}_{2}=5,5 \cdot M_{\mathrm{H}_{2} \mathrm{O}} \cdot \hat{m}$.		4.1
3.2 .3	P -	Oxygen,	concentrational activity coefficient	$y_{\mathrm{O}_{2}}$	1,10		$y_{\mathrm{O}_{2}}=\gamma_{\mathrm{O}_{2}} \cdot \rho_{\mathrm{H}_{2} \mathrm{O}} * / \rho_{\mathrm{H}_{2} \mathrm{O}}$.		4.2

$\begin{aligned} & 6.3 \\ & \S \end{aligned}$	Syste	Component,	kind of quantity	Symbol	Numerical value	Unit	Determination	$\begin{align*} & \mathrm{Cf} .1 \tag{7.14}\\ & 6.1 \text { § } \end{align*}$
4.1 .1	P -	Hydrogen carbonate ion,	active molality	$\tilde{m}_{\mathrm{HCO}_{\overline{3}}}$	15,9	$\mathrm{mmol} \cdot \mathrm{kg}^{-1}$	$\tilde{m}_{\mathrm{HCO}_{\overline{3}}^{-}}=K_{a} \cdot p_{\mathrm{CO}_{2}} \cdot a_{\mathrm{H}_{2} \mathrm{O}} \cdot 10^{\mathrm{pH}} \cdot \alpha_{c}, \mathrm{CO}_{2} / \rho_{\mathrm{H}_{2} \mathrm{O}} *$ K_{α} is the thermodynamic equilibrium constant (cf. 6.3 §10.3).	5.1
4.1.2*	P -	Hydrogen carbonate ion,	substance concentration	$c_{\mathrm{HCO}_{3}}$	20,0	$\mathrm{mmol} \cdot 1^{-1}$	$c_{\mathrm{HCO}_{3}^{-}}=\tilde{m}_{\mathrm{HCO}_{3}^{-}} \cdot \rho_{\mathrm{H}_{2} \mathrm{O}} / \gamma_{\mathrm{HCO}_{3}^{-}} .$ $c_{\text {"HCO }}{ }^{-}$calculated as $c_{\mathrm{tCO}_{2}}-c_{\mathrm{CO}_{2}}$ includes various ion pairs (e.g. $\mathrm{NaHCO}_{3}, \mathrm{CaHCO}_{3}$), CO_{3}^{2-}, and carbamate. Empirical equation ($37{ }^{\circ} \mathrm{C}$): $c_{" \mathrm{HCO}_{3} "}=10^{\mathrm{pH}-6,74} \cdot p_{\mathrm{CO}_{2}} \mathrm{mmol} \cdot 1^{-1} \cdot \mathrm{kPa}^{-1} .$	3.4
4.2.1	P -	Hydrogen carbonate ion,	molal activity coefficient	$\gamma_{\mathrm{HCO}_{3}}$	0,74		$\text { ln } \gamma_{\mathrm{HCO}_{3}^{-}}=1 \mathrm{n} \gamma_{\mathrm{Na}^{+}}+\left(h_{\mathrm{HCO}_{3}^{-}}-h_{\mathrm{Na}^{+}}\right) \cdot M_{\mathrm{H}_{2} \mathrm{O}} \cdot \hat{m},$ where $\gamma_{\mathrm{Na}^{+}}=0,75(6.3 \S 5.2 .1), h_{\mathrm{Na}+}=3,5$, and $h_{\mathrm{HCO}_{3}}=0$ (hydration numbers, Ref. 7.4, 7.20).	4.1
4.2 .2	P -	Hydrogen carbonate ion,	concentrational activity coefficient	$y_{\mathrm{HCO}_{3}}$	0,79		$y_{\mathrm{HCO}_{3}}=\gamma_{\mathrm{HCO}_{3}} \cdot \rho_{\mathrm{H}_{2} \mathrm{O}} * / \rho_{\mathrm{H}_{2} \mathrm{O}}$.	4.2
5.1 .1	P -	Sodium ion,	active molality	$\tilde{m}_{\mathrm{Na}+}$	113	$\mathrm{mmol} \cdot \mathrm{kg}^{-1}$	Measured with ion selective electrode.	5.1
5.1.2*	P -	Sodium ion,	substance concentration	$c_{\mathrm{Na}^{+}}$	140	mmol $\cdot 1^{-1}$	$c_{\mathrm{Na}}{ }^{+}$measured by flamespectrometry includes some bound Na^{+}(e.g. NaHCO_{3}), possibly about 1% for normal plasma.	3.4
5.2.1	P -	Sodium ion,	molal activity coefficient	$\gamma_{\mathrm{Na}}{ }^{+}$	0,75		$\gamma_{\mathrm{Na}+}=\widetilde{m}_{\mathrm{Na}^{+}} /\left(c_{\mathrm{Na}+} / \rho_{\mathrm{H}_{2} \mathrm{O}}\right)$.	42
6.1.1	P -	Potassium ion,	active molality	$\tilde{m}_{\mathrm{K}^{+}}$	3,2	$\mathrm{mmol} \cdot \mathrm{kg}^{-1}$	Measured with ion selective electrode.	5.1
6.1.2*	P -	Potassium ion,	substance concentration	$c_{\mathrm{K}+}$	4,0	$\mathrm{mmol} \cdot 1^{-1}$	$c_{\mathrm{K}^{+}}=\left(\tilde{m}_{\mathrm{K}^{+}} / \gamma_{\mathrm{K}^{+}}\right) \cdot \rho_{\mathrm{H}_{2} \mathrm{O}} .$ $c_{\mathrm{K}^{+}}$measured by flamespectrometry includes some bound K^{+}.	3.4
6.2 .1	P -	Potassium ion,	molal activity coefficient	$\gamma_{\mathrm{K}^{+}}$	0,74		$\ln \gamma_{\mathrm{K}^{+}}=\ln \gamma_{\mathrm{Na}^{+}}+\left(h_{\mathrm{K}^{+}}-h_{\mathrm{Na}^{+}}\right) \cdot M_{\mathrm{H}_{2} \mathrm{O}} \cdot \hat{m},$ where $h_{\mathrm{K}^{+}}=1,9$ and $h_{\mathrm{Na}}{ }^{=}=3,5$ (hydration numbers, Ref. 7.4, 7.20).	4.2
7.1 .1	P-	Calcium ion,	active molality	$\widetilde{m}_{\mathrm{Ca}}{ }^{+}$	0,41	$\mathrm{mmol} \cdot \mathrm{kg}^{-1}$	Measured with ion selective electrode.	5.1
7.1.2*	P -	Calcium ion,	substance concentration	$c_{\mathrm{Ca}^{2}}{ }^{+}$	1,23	mmol $\cdot 1^{-1}$	$c_{\mathrm{Ca}^{2+}}=\left(\tilde{m}_{\mathrm{Ca}^{2+}} / \gamma_{\mathrm{Ca}^{2+}}\right) \cdot \rho_{\mathrm{H}_{2} \mathrm{O}}$.	3.4

$\begin{aligned} & 6.3 \\ & \S \end{aligned}$	Syst	Component,	kind of quantity	Symbol	Numerical value	Unit	Determination	$\begin{aligned} & \text { Cf. } \\ & 6.1 \text { § } \end{aligned}$
7.2.1	P -	Calcium ion,	molal activity coefficient	${ }^{\text {Ca }}{ }^{2+}$	0,31		$\begin{aligned} \ln \gamma_{\mathrm{Ca}^{2+}}= & 4 \cdot \ln \gamma_{\mathrm{Na+}} \\ & +\left(h_{\mathrm{Ca} 2+}-4 \cdot h_{\mathrm{Na}}\right) \cdot M_{\mathrm{H}_{2} \mathrm{O}} \cdot \hat{m} \\ & +3 \cdot \ln \left(1+M_{\mathrm{H}_{2} \mathrm{O}} \cdot \mathrm{\Sigma}_{\mathrm{B}}\left\{\left[1-h_{\mathrm{B}}\right] \cdot m_{\mathrm{B}}\right\}\right) \end{aligned}$ where $h_{\mathrm{Ca}^{2+}}=12$ and $h_{\mathrm{Na}+}=3,5$ (hydration numbers, Ref. 7.4, 7.20).	4.2
8.1 .1	P -		freezing point depression	$\Delta T_{\text {fus }}$	0,545	K	Measured by means of freezing point osmometer.	8.5
8.1.2*	P -		osmolality ($0^{\circ} \mathrm{C}$)	\hat{m}	294	$\mathrm{mmol} \cdot \mathrm{kg}^{-1}$	$\begin{aligned} & \hat{m}=\Delta T_{\text {fus }} / K_{\text {fus }}, \\ & K_{\text {fus }}=1,855 \mathrm{~kg} \cdot \mathrm{~K} \cdot \mathrm{~mol}^{-1} \end{aligned}$	
8.1 .3	P -		osmotic concentration $\left(0^{\circ} \mathrm{C}\right)$	\hat{c}	294	$\mathrm{mmol} \cdot 1^{-1}$	$\begin{aligned} & \hat{c}=\Delta T_{\mathrm{fus}} / K_{\mathrm{fus}, c}, \\ & K_{\mathrm{fus}, c}=K_{\mathrm{fus}} / \rho_{\mathrm{H}_{2} \mathrm{O}}=1,8551 \cdot \mathrm{~K} \cdot \mathrm{~mol}^{-1} \end{aligned}$	8.1
8.1 .4	P -	Solutes,	substance concentration	${ }^{\text {S Solutes }}$	300	$\mathrm{mmol} \cdot 1^{-1}$	$\begin{aligned} c_{\text {Solutes }}= & \hat{c} / \phi_{c} \\ \approx & 2 \cdot\left(c_{\mathrm{Na}^{+}}+c_{\mathrm{K}^{+}}\right) \\ & +c_{\mathrm{Glucose}}{ }^{+} c_{\text {Carbamide }}-c_{\mathrm{Pr}^{-}} . \end{aligned}$	8.3
8.1 .5	P -	Water,	activity ($0^{\circ} \mathrm{C}$)	$a_{\mathrm{H}_{2} \mathrm{O}}$	0,9947		$-\ln \alpha_{\mathrm{H}_{2} \mathrm{O}}=\Delta T_{\text {fus }} \cdot M_{\mathrm{H}_{2} \mathrm{O}} / K_{\text {fus }},$ or from vapour pressure measurements: $a_{\mathrm{H}_{2} \mathrm{O}}=p_{\mathrm{H}_{2} \mathrm{O}} / p_{\mathrm{H}_{2} \mathrm{O}}{ }^{*}$	$\begin{aligned} & 6.0 .1 \\ & 8.1 \\ & 8.6 \end{aligned}$
8.1 .6	P -		osmotic pressure	II	758	kPa	$\Pi=R \cdot T \cdot \hat{c}$.	8.8
8.1 .7	P -	Water,	vapour pressure ($37{ }^{\circ} \mathrm{C}$)	$p_{\mathrm{H}_{2} \mathrm{O}}$	6,24	kPa	Measured by means of vapour pressure osmometer.	5.3
8.1 .8	P -	Water,	mass concentration	$\rho_{\mathrm{H}_{2} \mathrm{O}}$	0,933	$\mathrm{kg} \cdot 1^{-1}$	$\rho_{\mathrm{H}_{2} \mathrm{O}}=\boldsymbol{m}_{\mathrm{H}_{2} \mathrm{O}} / \mathrm{V}$.	3.1
8.1 .9	P -	Water,	substance concentration	$c_{\mathrm{H}_{2} \mathrm{O}}$	51,8	$\mathrm{mol} \cdot 1^{-1}$	$c_{\mathrm{H}_{2} \mathrm{O}}=\rho_{\mathrm{H}_{2} \mathrm{O}} / M_{\mathrm{H}_{2} \mathrm{O}}$.	3.4
8.2 .1	P -		molal osmotic coefficient	ϕ_{m}	0,92		Depends on the composition of the plasma.	8.2
8.2 .2	P -		concentrational osmotic coefficient	ϕ_{C}	0,98		Depends on the composition of the plasma.	8.4

${ }_{\S}^{6.3}$	System - Component,	kind of quantity	Symbol	Numerical value	Unit	Determination	$\begin{aligned} & \mathrm{Cf} .1 \\ & 6.1 \S \end{aligned}$
9	P (water phase)	ionic strength	I	160	$\mathrm{mmol} \cdot \mathrm{kg}^{-1}$	Macro-ions are considered rather immobile and are not included in the calculation of the ionic strength. Albumin in a conc. of $0,6 \mathrm{mmol} \cdot 1^{-1}$ and with a charge number of about 20 would otherwise contribute strength. $120 \mathrm{mmol} \cdot \mathrm{kg}^{-1}$ to the ionic	
10.1	Water -	vapour pressure ($37{ }^{\circ} \mathrm{C}$)	$p_{\mathrm{H}_{2} \mathrm{O}}{ }^{*}$	6,275	kPa		5.3
10.2	Water -	mass density ($37{ }^{\circ} \mathrm{C}$)	ρ	0,9930	$\mathrm{kg} \cdot 1^{-1}$	Mass density of water equals mass concentration of water in pure water: $\rho\left(\mathrm{H}_{2} \mathrm{O}\right)=\rho_{\mathrm{H}_{2} \mathrm{O}} \text {. }$	
10.3	$\begin{aligned} & \text { Water }-\left(\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\right. \\ & \left.\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}\right), \end{aligned}$	equilibrium constant	K_{a}	$10^{-6,32}$		$K_{a}=a_{m, \mathrm{H}^{+}} \cdot a_{\mathrm{HCO}_{3}^{-}} /\left(a_{m, \mathrm{CO}_{2}} \cdot a_{\mathrm{H}_{2} \mathrm{O}}\right) .$ Determined by measuring $K_{\text {hybrid }}=a_{m, \mathrm{H}^{+}} \cdot c_{\mathrm{HCO}_{3}} / c_{\mathrm{CO}_{2}}$ and extrapolating to infinite dilution. Varies with T (7.18): $\begin{aligned} & -\lg K_{a}=6,32-2,31 \times 10^{-3} \cdot\{\Delta T\}+158 \times 10^{-6} \cdot\{\Delta T\}^{2} \\ & \text { where }\{\Delta T\}=(T-310,15 \mathrm{~K}) / \mathrm{K} . \end{aligned}$	10.2
10.4.1	```Water - Carbon dioxide, (infinite dilution)```	concentrational solubility coefficient	$\alpha_{c, \mathrm{CO}_{2}{ }^{\text {a }}}$	0,247	$\mathrm{mmol} \cdot 1^{-1} \cdot \mathrm{kPa}^{-1}$	Empirical temperature variation (7.1, 7.11): $\begin{aligned} & 1 \mathrm{~g}\left\{\alpha_{c}, \mathrm{co}_{2}{ }^{\infty}\right\}=1 \mathrm{~g}(0,247)-9,60 \times 10^{-3} \cdot\{\Delta T\} \\ & \\ & +158 \times 10^{-6} \cdot\{\Delta T\}^{2}, \\ & \left\{\alpha_{c_{c}} \mathrm{CO}_{2}^{\infty}\right\}=\alpha_{c}, \mathrm{co}_{0}^{\infty} /\left(\mu \mathrm{mol} \cdot 1^{-1} \cdot \mathrm{kPa}^{-1}\right), \\ & \{\Delta T\}= \end{aligned}$	7.2
10.4.2	```Water - Oxygen, (infinite dilution)```	concentrational solubility coefficient	$\alpha_{c, o_{2}}{ }^{\infty}$	10,50	$\mu \mathrm{mol} \cdot 1^{-1} \cdot \mathrm{kPa}^{-1}$	Empirical temperature variation (7.3): $\begin{aligned} & \lg \left\{\alpha_{c}, \mathrm{O}_{2}{ }^{\infty}\right\}=\lg (10,50)- 5 \times 10^{-3} \cdot\{\Delta T\} \\ & 9 \times 10^{-5} \cdot\{\Delta T\}^{2}, \\ &\left\{\alpha_{c, O_{2}}{ }^{\infty}\right\}=\alpha_{c, O_{2}} /\left(\mu \mathrm{mol} \cdot 1^{-1} \cdot \mathrm{kPa}^{-1}\right), \\ &\{\Delta T\}=(T-310,15 \mathrm{~K}) / \mathrm{K} . \end{aligned}$	7.2

6.4. Alphabetical index of symbols of kinds of quantities.

Symbols of physical or chemical quantities should be single letters of the Latin or Greek alphabet printed in sloping type (7.21). Unfortunately Greek letters of sloping type are unavailable for common typewriters. In the present document, Greek letters, although printed in upright type, generally represent physical quantities, with the following exceptions (which should always be printed in upright type): Δ = difference, $\mu=$ prefix micro (not to be confused with $\mu=$ chemical potential), $\Pi=$ product (not to be confused with $\Pi=$ osmotic pressure), $\Sigma=$ sum. References are given to the paragraphs of List 6.1 for definitions and remarks.

6.4 (continued)

Symbol	Name		6.1 §
\tilde{p}	fugacity		5.3
Q	electric charge		2.6
R	molar gas constant		2.4 .1
S	entropy		2.2
s	saturation fraction		3.2 .1
T	thermodynamic temperature		1.5
$\Delta T_{\text {fus }}$	freezing point depression		8.5
t	time		1.3
U	internal energy		2.1
V	volume		2.4
(V)	(electric potential)		2.7
V_{m}	molar volume	(Remark 1)	2.4 .1
x	substance fraction		3.2
y	concentrational activity coefficient		4.2
z	charge number		2.6.1
α_{c}	concentrational solubility coefficient		7.2
α_{m}	molal solubility coefficient		7.1
α_{x}	rational solubility coefficient		7.0
β	buffer value		9.2
γ	molal activity coefficient		4.1
θ	Celsius temperature		2.3
λ	absolute activity		2.1
μ	absolute chemical potential		2.9.1
น	electrochemical potential		2.9 .2
v	stoichiometric number		10.1
Π	osmotic pressure		8.8
ρ	mass concentration		3.1
ρ	mass density		3.1
ϕ	electric potential		2.7
ϕ_{C}	concentrational osmotic coefficient		8.4
ϕ_{m}	molal osmotic coefficient		8.2
ψ	practical chemical potential		2.9 .3

REFERENCES

7.1 H. Bartels and R. Wrbitzky, Bestimmung des CO_{2}-Absorptionskoeffizienten zwischen 15 und $38{ }^{\circ} \mathrm{C}$ in Wasser und Plasma, Pfluegers Arch. 271, 162-168 (1960).
7.2 R.G. Bates, Determination of pH. Theory and practice, 3rded. pp. 435, John Wiley and Sons, New York (1973).
7.3 R.G. Bates and J.B. Macaskill, Standard potential of the silver-silver chloride electrode, Pure \& Appl. Chem. 50, 1701-1706 (1978).
7.4 R.G. Bates, B.R. Staples and R.A. Robinson, Ionic hydration and single ion activities in unassociated chlorides at high ionic strength, Anal. Chem. 42, 867-87l (1970).
7.5 C. Christoforides, L.H. Laasberg and J. Hedley-White, Effect of temperature on solubility of O_{2} in human plasma, J. Appl. Physiol. 26, 56-60 (1969).
7.6 J.D. Cox (ed.), Notation for states and processes, significance of the word standard in chemical thermodynamics, and remarks on commonly tabulated forms of thermodynamic functions (IUPAC Recommendation 1981), Pure \& Appl. Chem. 54, 1239-1250 (1982).
7.7 R.A. Durst, Standard reference materials: standardization of pH measurements, pp. 48, NBS Special Publication 260-53, U.S. Government Printing Office, Washington DC (1979).
7. 8 R. Dybkaer (ed.), Quantities and units in clinical chemistry (IUPAC and IFCC Recommendation 1978), Pure \& Appl. Chem. 51, 2451-2479 (1979).
7.9 R. Dybkaer (ed.), List of quantities in clinical chemistry (IUPAC and IFCC Recommendation 1978), Pure \& Appl. Chem. 51, 2481-2502 (1979).
7.10 R. Dybkaer and K. Jørgensen, Quantities and units in clinical chemistry including recommendation 1966 of the Commission on Clinical Chemistry of the IUPAC and of the IFCC, lst ed., pp. $\mathrm{X}+102$, Munksgaard, Copenhagen (1967).
7. 11 N.S. Harned and R. Davis, Jr., The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to $50{ }^{\circ} \mathrm{C}$, J. Amer. Chem. Soc. 65, 2030-2037 (1943).
7.12 International Standard, ISO 31 Series. Technical Committee ISO/TC 12. Quantities, units, symbols, conversion factors, and conversion tables. 14 parts. International Organization for Standardization, Geneve (1979).
7.13 D.A. Lowe, A guide to international recommendations on nomes, symbols for quantities and on units of measurement. Progress in standardization: 2, lst ed. pp. 314, Bull. WHO, 52, Suppl., World Health Organization, Geneve (1975).
7.14 A.H.J. Maas, A.N.P. Van Heijst and B.F. Visser, The determination of the true equilibrium constant ($\mathrm{p} \bar{K}_{1 g}$) and the practical equilibrium coefficient ($\mathrm{p} \tilde{\mathrm{K}}_{1 \mathrm{~g}}$) for the first ionization of carbonic acid in solutions of sodium bicarbonate, cerebrospinal fluid, plasma, and serum at 25° and 38°, Clin. Chim. Acta 33, 325-343 (1971).
7.15 M.L. McGlashan, Physicochemical quantities and units. The grammar and spelling of physical chemistry, 2nd ed., pp. $\mathrm{x}+117$, The Royal Institute of Chemistry, London (1971).
7.16 C.H. Page, On the dimension group of classical physics, J. Res. Natl. Bur. Stand. 79B, 127-135 (1975).
7. 17 R. Parsons (ed.), Electrochemical nomenclature (IUPAC Recommendation 1974), Pure \& App 2. Chem. 37, 503-516 (1974).
7. 18 T. Shedlovsky and D.A. McInnes, The first ionization constant of carbonic acid at 0-38 from conductance measurements, J. Amer. Chem. Soc. 57, 1705-1717 (1935).
7.19 O. Siggaard-Andersen, The acid-base status of the blood, 4. ed., Munksgaard, Copenhagen (1974).
7.20 R.H. Stokes and R.A. Robinson, Ionic hydration and activity in electrolyte solutions, J. Amer. Chem. Soc. 78, 1870-1878 (1948).
7.21 D.H. Whiffen (ed.), Manual of symbols and terminology for physicochemical quantities and units (IUPAC Recommendation 1978), Pure \& Appl. Chem. 51, 1-41 (1979).

[^0]: *Membership of the Commission for 1979-83 was as follows:
 Chairman: H. P. LEHMANN (USA); Titular Members: C. ONKELINX (Belgium); J. C. RIGG (Netherlands); O. SIGGAARD-ANDERSEN (Denmark); B. F. VISSER (Netherlands); R. ZENDER (Switzerland); Associate Members: L. F. BERTELLO (Argentina); R. DYBKAER (Denmark); K. JØRGENSEN (Denmark); P. MÉTAIS (France); National Representatives: D. J. CAMPBELL (Canada); D. STAMM (FRG); B. BOUSQUET (France); A. DESYPRIS (Greece); N. MONTALBETTI (Italy); T. HORIO (Japan); O. P. FOSS (Norway); C.-H. DE VERDIER (Sweden); P. D. GRIFFITHS (UK); C. A. BURTIS (USA).
 \dagger Membership of the Expert Panel for 1979-83 was as follows:
 Chairman: 1976-82 O. SIGGAARD-ANDERSEN (Denmark); 1982- A. H. J. MAAS (Netherlands); Secretary: 1976-82 R. A. DURST (USA); 1982- H. F. WEISBERG (USA); Members: R. W. BURNETT (USA); P. D. WIMBERLEY (Denmark); W. G. ZIJLSTRA (Netherlands).

