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THE DETERMINATION OF SELENIUM

IN BIOLOGICAL MATERIALS AND WATER

The determination of selenium is of considerable interest because it would
appear to be an essential trace element but it is also toxic at relatively
low levels. Methods for its determination in biological materials and
water are critically evalued with particular attention given to methods
which are widely used in routine analysis. The method involving the
reaction of selenium(IV) with 2,3-diaminonaphthalene to give the strongly
fluorescent 4,5—benz-piazselenol is now widely accepted as a satisfactory
method for routine work. Reduction of selenium to the hydride for deter-
mination by atomic absorption spectroscopy is the basis of another accepted
method. A further method which is gaining in popularity involves cathodic

stripping voltammetry.

The element selenium is widely distributed at low concentrations throughout the eart1s crust.
Although it would appear to be an essential trace element it also shows evidence of toxicity
at levels which are regarded as normal for many trace elements (ref. 1) . The usual con-
centration of selenium in plants and healthy animals is at about the 0.1-0.5 pg g level
(ref. 2) . In selenium deficient areas, where stock is prone to selenium responsive ailments
such as the white muscle disease of sheep, the forage has a selenium level of about one
tenth this value or less and the selenium content of the animal is correspondingly low.
This type of deficiency in stock may be corrected using drenches containing sodium selenite

to provide supplementary dietary selenium. Although selenium deficiency ailments in stock
would appear to be well documented relatively few cases of selenium responsive ailments in
man have been reported even although the blood selenium status of a population tends to
reflect the selenium level of the food supply. The role of selenium in human health has
been reviewed by Thomson and Robinson (ref. 3) . Kwashiorkor (ref. 4) found among small
numbers of children in Guatamala is reported to be associated with blood selenium levels of
about 0.08 pg cm3 while Keshan desease (ref. 5) which has been identified particularly
among children in certain isolated areas in China is also associated with low blood selenium
levels and responds to sodium selenite treatment.

Although an extensive range of analytical methods is available for selenium, two methods in
particular, molecular fluorescence and atomic absorption spectroscopy, have adequate sensi-

tivity, require only readily available laboratory apparatus and are quite suitable for
routine survey work. In a recent review (ref. 6) it was reported there is little significant

difference between the two methods, although the hydride generation technique, when coupled
with atomic absorption spectroscopy, may have an advantage at selenium levels below 100 ng g-.
However there is no doubt that technical skills and the availability of equipment are also

very important factors.

SAMPLE DIGESTION

The initial step in analytical methods involving biological materials usually involves des-
truction of the sample and conversion of the elements to forms suitable for analysis. In
the case of selenium this is a very critical stage in the analysis for it is an element which

is very readily volatilised. For this reason dry ashing is not favoured, complete loss of

selenium having been reported (ref. 7) although dry ashing in the presence of magnesium
nitrate (ref. 8) was successful. Even oxygen flask combustionproceduresarenotrecommencled
except in experienced hands but the method is slow (ref. 9). Most of the useful methods
for the destruction of biological materials involve wet digestion procedures but even so
extreme care and strictly controlled procedures are required for it is well established that
any significant charring may lead to loss of selenium. Favoured digestion mixtures involve

combinations such as nitric and perchloric acids (ref. 10), nitric, sulphuric and perchloric
acid (ref. 11) or nitric and phosphoric acids with hydrogen peroxide (ref. 8). Recent

studies (ref. 6, 12—14) have shown excellent recoveries when a preliminary digestion is
carried out with a mixture of nitric and perchloric acid before final digestion following
the addition of sulphuric acid to eliminate excess nitric and perchloric acids. A mixture

of chloric, perchloric and nitric acids (ref. 15) using an optimised temperature time pro-
grammed digestion has also been shown to give excellent recoveries. Wet digestion methods
have been critically studied by Nave et al (ref. 16, 63). The essential common factor for
all methods is that oxidising conditions are maintained throughout. Although glass is
normally satisfactory for the digestion vessels, quartz Kjeldahl flasks have been used to
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avoid possible absorption of selenium on glass. New glassware should be checked to ensure
that selenium is not removed from the glass during the digestion (ref. 10).

DETERMINATION OF SELENIUM BY MOLECULAR FLUORESCENCE

The fluorimetric method is widely accepted as a technique for the routine determination of
selenium in biological material and of the two discussed here it is the method of longest

standing. Selenium(IV) reacts quantitatively with aromatic l,2-diamines in acid solution
to give piazselenols which are measured fluorimetrically following extraction into hydro-
carbon solvent. The sensitivity is good in the 0-100 ng per sample range although the
amount of manipulation required in the manual method is considerable. The method has been
the subject of a collaborative study (ref. 13) and the official AOAC method which uses this
technique has been further investigated (ref. 14, 17).

The reaction of 3,3diaminobenzidine with selenium(IV) was initially used as a colorinetric
method for the determination of selenium but Cousins (ref. 18) found that the resulting
3,4'-diaminophenylpiazselenol could be used as the basis of a more sensitive and selective
fluorimetric method. However, this piazselenol has a relatively poor fluorescence
efficiency and because of the residual free amino groups it cannot be extracted directly from
the acidic reaction mixture. Parker and Harvey (ref. 19) who made an extensive study of the
reaction of selenium(IV) and l,2—diamino aromatic compounds found that 4,5-benzopiazselenol,
formed when 2,3—diaminonaphthalene reacts with selenium(IV) in acid solution, had much
stronger fluorescence characteristics and in addition it could be extracted directly from
the reaction mixture into hydrocarbon solvents.

2,3-Diaminonaphthalene is, unfortunately, a light sensitive molecule and it is essential to

recrystallise the hydrochloride before use (ref. 20). The reagent, usually 0.5% inO.lnol
dm-3 hydrochloric acid should be stored at low temperature away from light under a layer of

cyclohexane (ref. 20) . Extraction with cyclohexane immediately before use gives a reagent
with a low and acceptable blank fluorescence. Least decomposition takes place if the
reagent is used in diffuse light. The reaction with 1,2-diamino compounds is specific for
selenium(IV) but sample preparation is normally carried out under oxidising conditions which
could yield selenium(VI) . It is therefore essential to effect a reduction of selenium(VI)

to selenium(IV) before analysis. Methods commonly used include heating with hydrochloric
acid (ref. 9).or the addition of hydrogen peroxide (ref. 14). Low recoveries of selenium
may result if all nitric acid is not removed before the addition of the hydrochloric acid,
but the use of hydrochloric acid has the added advantage that it aids the solution of any
iron perchlorate which may separate in concentrated perchloric acid.

Selenium(IV) reacts with 2,3-diaminonaphthalene in both acid and neutral solution, the rate

of reaction decreasing with acidity. Optimum conditions for analytical work are a pH of

1-2 at a temperature of 40-50°C. Reaction rate is then reasonably rapid but the solution
remains sufficiently acidic to retain most metals in solution. The addition of a small

amount of EDTA assists in holding in solution most common elements which are likely to
interfere. Adjustment of pH is normally effected by neutralisation of the acidic digest
with ammonia to a cresol red endpoint (ref. 9), although when processing large numbers of
samples the alternative procedure (ref. 10) of adding excess ammonia, boiling off excess and
then adding a constant amount of acid has attractions. Monitoring the adjustment of the
pH with a meter is likely to be slow and to greatly increase the risk of contamination.
Although dekalim was initially recommended as the extraction solvent cyclohexane (ref. 9)

or n—hexane (ref. 21) are now favoured. Deoxygemation and removal of water from the hydro-

carbon extract by cemtrifugation may lead to increased fluorescence but they are not required
for normal routine work. The fluorescence spectrum of 4,5—benzopiazselenol shows a
maximum at about 520 nmand this wavelength setting or a filter having a maximum transmission
about this wavelength is normally used for the measurement of fluorescent intensity.
Excitation at 365 nm is appropriate although 352 nm and 373 nm are also effective. The

choice of wavelengths and filters depends largely on the apparatus available.

The analytical section of the method has been successfully automated by Brown and Watkinson
(ref. 22) with a throughput of 40 samples per hour. This method has been tested extensive-

ly in routine work (ref. 10) and modified (ref. 20) to improve the phase separation. It is

commonly used at the 0-10 ng cm3 range with a detection limit for sample selenium of 0.044
ng g. In general interferences from elements likely to be present in biological materials
are readily overcome by the addition of EDTA to the reaction mixture but high sulphate may
cause precipitation of the amine sulphate. Interference studies are reported by Brown an

Watkinson (ref. 22). The fluorometric method has been critically reviewed by Tee-Siaw Koh
and Benson (ref. 64) who checked many aspects of the analytical procedure using 75Se
labelled L-selenomethionine.
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DETERMINATION OF SELENIUM BY ATOMIC ABSORPTION SPECTROSCOPY

The determination of selenium by atomic absorption spectroscopy has been reviewed by
Verlinden, Deelstra and Adriaenssens (ref. 23) while collaborative studies have been report—
ed by Ihnat and Miller (ref. 12) . There are many difficulties associated with the deter-
mination of selenium in aqueous solution by direct atomic absorption spectroscopy. The
most sensitive resonance line at 196.1 nm is in the region of maximum interference from
flame and matrix effects and a poor signal to noise ratio. Although flame interference
effects can be minimised through the use of an argon (ref. 24) or nitrogen-hydrogen-air
entrained flame the resulting lower temperatures have a tendency to enhance certain matrix
effects. Less interference and a much higher sensitivity is gained using a chemical

separation technique where hydrogen selenide, produced by chemical reduction of the analyte
solution, is introduced directly into an inert gas-hydrogen-air-entrained flame.

The initial chemical reduction technique involved the use of reagents such as zinc in hydro-
chloric acid (ref. 25) but the relatively slow evolution of hydrogen selenide necessitates
the use of a collection technique such as a balloon or condensation in a liquid air trap.
Sodium tetrahydroborate (sodium borohydride) is currently recognised as an efficient and

rapid reducing agent for the production of hydrogen selenide. The reagent, as a 2-5%
aqueous solution stabilised with sodium hydroxide, may be added with a syringe but more
reproducible results are obtained with a mechanical syringe (ref. 26) or mechanical pumping
device (ref. 27,28) . Addition of sodium tetrahydroborate in pellet form (0.25 g) is also

reported to give good precision (ref. 64) . Although other hydride forming elements react
quantitatively with sodium tetrahydroborate at much lower acid concentrations the analyte
solution should be approximately 5 mol dm3 in hydrochloric acid for the determination of
selenium. Most recommend the reduction of selenium(VI) to selenium(IV) before the addition
of sodium tetrahydroborate but quantitative recoveries of selenium(VI) are obtained at high
acid concentrations (ref. 29) and many interferences appear to be minimised (ref. 30) . The
recommended concentration of sodium tetrahydroborate varies widely but the activity (or
purity) of the reagent depends on the manufacturer. Optimum reagent concentrations and gas
flows are best determined for each batch and for each design of hydride generator (ref. 27).
Hydride generation is rapid and concentration in a trapping system such as that of Chapman
and Dale (ref. 31) or condensation in a liquid air trap (ref. 25) is not essential except
when extremely dilute solutions are analysed. The method has been atomated by Vijan and
Wood (ref. 32) and Agemian and Thomson (ref. 33) to give a continuous steady signal rather
than the usual transient signal of the reagent injection technique with good detection
limits and very favourable precision.

Although many prefer to introduce the hydrogen selenide into the argon (or nitrogen) -hydrogen-
air entrained flame through the conventional nebuliser system, further enhancement of the
ahsorbace signal is attained when the selenide is atomised by heating in a heated silica
tube in the light path. Numerous variations using an air-acetylene flame (ref. 34) or
electrical heating (ref. 27, 31, 32, 35—37) are described but the essential component is a
silica tube about 8 mm id and 180 mm long having a side arm (2-3mmid) at midpoint for the
introduction of selenide. Reported optimum temperatures for atomisation vary from 6000 to
12000 but about 8000 appears to give a good response with minimum interference. It is
essential to condition the silica tube before use because initial analyses in a new tube

give a suppressed absorption signal (ref. 31). No consistent preference is shown for argon
over nitrogen as the carrier gas.

The hydride generation technique increases the ability to handle high salt concentrations -
the chemical separation greatly reduces matrix effects and background noise. Even so some
interferences have been reported from metals and from other hydride forming elements. The
major source of error appears to be in the hydride generation but residues in the silica tube
from lead and bismuth can also be troublesome. Interference effects for a wide range of
elements and experimental conditions have been reported by Meyer et al (ref. 38), Smith (ref.
39), Verlinden and Deelstra (ref. 35), Pierce and Brown (ref. 40) and Lloyd, Molt and

Delves (ref. 65). The most common and serious interference is from copper(II) which
reacts rapidly with selenide, formed on reduction of selenium(IV), to produce the very in-
soluble copper selenide which may even separate as a black deposit. Some suppression of
this interference is obtained on adding a tellurium(IV) salt (ref. 41) to the analyte
solution (telluride preferentially binds the copper) and selenite separation by co-
precipitation with lanthanum (ref. 42) has also been reported as a means of overcoming this
interference. Of the common metals cadmium, cobalt, copper, iron, lead, nickel and zinc
will interfere if present in sufficient quantity but the extent of the interference would
seem to depend on hydride generator design and operation and on reagent and acid concentrat-

ions (ref. 30). Other hydride generating elements also interfere in the determination of
selenium to some extent but particularly tin and bismuth (ref. 35). Another serious inter-
ference arises from nitrate (ref. 40, 43) which could be present following acid digestion of
biological samples although Vijan and Wood (ref. 32) found nitric acid without effect in
their automated method. The nature of the nitrate interference would again appear to be
apparatus and reagent concentration dependent for some report a depression (ref. 40,43) of
the absorbance while others report an enhancement (ref. 6). Recent work (ref. 44) indicates
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that oxides of nitrogen arising from the acidification of nitrite could be responsible for
much of the "nitrate" problem. Whether or not selenium(VI) is quantitatively reduced by
sodium tetrahydroborate would also appear to be dependent on experimental conditions.
Clinton (ref. 19) reports that his method is quite specific for selenium(IV) although others
(ref. 29) state that no prereduction of selenium(VI) is necessary when total selenium is
required. Rapid reaction at high acid concentrations tends to favour good recoveries from
both selenium(IV) and selenium(Vi) (ref. 30).

Loss of selenium during ashing restricts the use of direct electrothermal methods of atom-
isation for the determination of selenium in biological samples but Saeed et al (ref. 45)
have shown that in the presence of nickel, selenium is quantitatively retained until a
furnace temperature above l0000 is reached. They report a detection limit of 5 ppb selenium.
A useful comparison of the three atomic spectrometric methods of hydride generation—heated
silica tube atomisation, hydride generation-atomic fluorescence and graphite furnace atomic
absorption spectroscopy is provided by Brown, Ottaway and Fell (ref. 66).

Reported detection limits vary not only with the technique but also with the parameters used
in that technique. It is therefore difficult to generalise. With conventional flame
atomic absorption spectroscopy but using a nitrogen-hydrogen air entrained flame the
detection limit for selenium is about 2-5 pg cm3, with hydride generation the detection
limit with hydrogen flame atonisation is lowered to about 2 ng cm3 and practical lower
limits of around 5 ng g of sample are readily attained. Hydride generation coupled with
heated silica tube atonisation improves the detection limit even further.

ALTERNATIVE ANALYTICAL METHODS

Several alternative analytical methods have been proposed for the determination of selenium
in biological material but in many cases there is little evidence to suggest that they have
been extensively tested in routine analytical service work. Neutron activation (ref. 46)
has attractions because of its specificity but the equipment required is not available in
most analytical laboratories. Numerous chromatographic techniques have been proposed but
that involving the estimation of a dibronopiazselenol by electron capture detection follow-
ing reaction of seleniun(IV) with l,2—diamino-3,5—dibromobenzene and extraction in toluene
would appear to be particularly sensitive (ref. 47). Inductively coupled plasma argon
emission spectroscopy lacks the sensitivity required for most biological samples although
various preconcentration techniques (ref. 48) are available to overcome this deficiency and
the method is particularly suitable for multielement analysis (ref. 49-51). One of the
most sensitive methods is that of atomic fluorescence (ref. 52, 53) which has given a detect-
ion limit of 0.1 ng cm3 for selenium(IV) in solution. Other methods include X-ray
fluorescence (ref. 54) and differential pulse cathodic stripping voltammetry (ref. 55, 56).

The two methods described in detail in this review have been extensively studied and proven
in laboratories involved in survey work. Both require what is normally readily available

laboratory apparatus. They should be the method of choice for those entering the field.

DETERMINATION OF SELENIUM IN WATER

In general the methods which are used for the determination of selenium in natural waters
are similar to the methods used for biological materials but a greater sensitivity is

normally required. A very comprehensive review has been compiled by Robberecht and Van
Grieken (ref. 67). The levels reported in Japanese studies indicate about 8-30 ng of
selenium(IV) and 20—50 ng of total selenium per litre for river waters and seawaters.
Dilute selenium solutions stored at low temperatures in polyethylene containers following
acidification with sulphuric acid (ref. 43) to pH 1.5 or hydrochloric acid (ref. 57) to pH
2 appear to show no significant change in concentration or of oxidation state. However,
it should be remembered that acidification to very low pH may catalyse the interconversion
of selenium(VI) to selenium(IV) (ref. 58).

Several published methods describe the determination of selenium(IV) and total selenium in
natural waters. The use of the hydride generation/atomic absorption technique is described
by Cutter (ref. 58). Selenium hydride generated from selenium(IV) by reduction with sodium
borohydride in 4 M hydrochloric acid is concentrated in a dry ice - isopropanol trap and then
released to an atomic absorption spectrometer fitted with a quartz tube furnace. Total
selenium is similarly obtained after the sample has been boiled with 4 M hydrochloric acid
and methyl selenides are stripped in helium, concentrated and separated by chromatography
before atomisation. A novel concentration procedure is that of Nakashima (ref. 59) who

co-precipitated selenium(IV) with iron(III) hydroxide at pH 4 and, aided by sodium lauryl-
sulphate, floated the precipitate with air. The collected precipitate was dissolved in
acid solution and the selenium determined by a hydride generation/atomic absorption

technique.
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Derivatives of diamines provide analytical methods of high sensitivity. Measurement of

dibromopiazselenol by electron capture detection following chromatographic separation
enables the determination of selenium(IV) and total selenium in river water and seawater
down to 2 ng l level (ref. 60) while an even lower detection limit, and speciation, is
reported for a similar electron capture technique involving the conversion of selenium(IV)

to 5-nitropiazeselenol (ref. 57).

Although the fluorimetric procedure of Watkinson and Brown (ref. 20) is satisfactory fcrmost

biological samples refinement is necessary to gain adequate sensitivity and precision for
natural waters. The required improvement is gained when reagents are purged with nitrogen
and the flow stream is segmented with bubbles of nitrogen (ref. 61) . Oxygen is known to
quench the fluorescence of the piazselenol and is also involved in the polymerisation of
2,3-diaminonaphthalene, a reaction which leads to high blank values. Total selenium in
natural waters is obtained following acid digestion (ref. 62) but speciation requires prior
anion exchange separation.

With the availability of good commercial instruments having the required operational mode,
the technique of differential pulse cathodic stripping voltammetry is becoming a method of
increasing significance for the determination of selenium in natural waters. The method is
particularly useful at low concentrations and there is the added advantage that other
elements may be determined in the same run (ref. 68). A standard deviation of 2.3% at the
1 ng per litre level is reported by Henze (ref. 69).

The author thanks Dr J. H. Watkinson, Ruakura Soil and Plant Research Station, Hamilton, for
helpful criticism of the manuscript.
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