INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION

COMMISSION ON ELECTROANALYTICAL CHEMISTRY*

VOLTAMMETRY AT GLASSY CARBON ELECTRODES

Prepared for publication by M. GROSS¹ and J. JORDAN² ¹Laboratoire d'Electrochimie, Universite Louis Pasteur, Strasbourg, France ²Davey Laboratory, Pennsylvania State University, University Park, USA

*Membership of the Commission during the preparation of this report (1981-83) was as follows:

Chairman: J. Jordan (USA); *Secretary*: K. Izutsu (Japan); *Titular Members*: A. K. Covington (UK); J. Juillard (France); R. C. Kapoor (India); E. Pungor (Hungary); *Associate Members*: J. F. Coetzee (USA); W. Davison (UK); R. A. Durst (USA); M. Gross (France); H. Kao (China); K. M. Kadish (USA); R. Kalvoda (Czechoslovakia); Y. Marcus (Israel); T. Mussini (Italy); H. W. Nürnberg (FRG); M. Senda (Japan); D. E. Smith (USA); N. Tanaka (Japan); *National Representatives*: D. D. Perrin (Australia); B. Gilbert (Belgium); W. C. Purdy (Canada); R. Neeb (FRG); K. Tóth (Hungary); S. K. Rangarajan (India); W. F. Smyth (Ireland); E. Grushka (Israel); Z. Galus (Poland); G. Johansson (Sweden); J. Buffle (Switzerland); B. Birch (UK); J. Osteryoung (USA); M. Branica (Yugoslavia).

VOLTAMMETRY

at

GLASSY CARBON ELECTRODES

M. Gross^{a)} and J. Jordan^{b)} a) Laboratoire d'Electrochimie, Institut Le Bel Université Louis Pasteur 4 rue Blaise Pascal F - 67000 Strasbourg (France)

b) Department of Chemistry
 152 Davey Laboratory
 Pennsylvania State University
 University Park, Pennsylvania 16802 (USA)

Abstract :

Recommended pretreatment procedures are described for obtaining reproducible and accurate results. Based on a worldwide survey, information is tabulated on the working range of potentials of glassy carbon in water, organic solvents, and molten salts. Voltammetric characteristics of numerous redox couples are documented.

Contents :

- I. THE STARTING MATERIALS (Appendix A)
- II. PREPARING THE GLASSY CARBON ELECTRODE SURFACE FOR ELECTRO-CHEMICAL MEASUREMENTS
 - 1. Physical treatment
 - 2. Chemical pretreatment
 - 3. Electrochemical pretreatment
- III. GEOMETRIC CHARACTERISTICS OF THE GLASSY CARBON ELECTRODES
- IV. ELECTROACTIVITY RANGE OF THE GLASSY CARBON ELECTRODE (Appendix B)
- V. REDOX SYSTEMS STUDIED ON GLASSY CARBON ELECTRODES (Appendix C : Tables (1) and (2))
- VI. IDENTIFICATION OF THE SOURCES QUOTED IN THIS REPORT (Appendix D)
- VII. TABLE OF ABBREVIATIONS AND SYMBOLS

APPENDIXES A, B, C and D.

The present report is intended to describe and to recommend specific treatments in the preparation of glassy carbon (G.C.) as an electrode material.

The information summarized in this report illustrates the unique capabilities of glassy carbon electrodes with respect to other electrode materials. <u>G.C.</u> electrodes may be employed to obtain accurate and reproducible results on a large variety of redox systems and in a wide range of solvents. However, this goal can be achieved only if the <u>G.C.</u> electrode receives the proper pretreatment and is then handled appropriately.

Chemically modified glassy carbon electrodes, especially Hg-plated glassy carbon electrodes (thin film mercury electrodes, MFE), while important in ultra-trace analytical chemistry, are not reviewed in the present report. Specific papers have been published on analytical applications of such electrodes. (L. Mart, H.W. Nürnberg, P. Valenta, Fresenius Z. Anal. Chem., 300, 350-362 (1980)).

I. THE STARTING MATERIALS

Nine different commercial sources of G.C. were identified and are listed in Appendix A.

The first paper published on G.C. was by Sh. Yamada and H. Sato (Nature, 193 (4812), p.261 (1962)).

II. PREPARING THE <u>G.C.</u> ELECTRODE SURFACE FOR ELECTROCHEMICAL MEASUREMENTS

Careful checking of answers to an ad hoc questionnaire (see VI below) and of the published literature leads to the conclusion that many different procedures have been used by various investigators.

However the following general trends emerge from intercomparison of these procedures, as necessary steps to warrant good reproducibility of the electrochemical results.

1. Physical treatment

Two successive steps are usually involved in the polishing of the G.C. surface

Abrasion with emery paper of increasing fineness (typically $\underline{240}$, $\underline{320}$, $\underline{400}$ and $\underline{600}$ mesh per sq.i. or $\underline{32}$, $\underline{23}$, $\underline{15}$, $\underline{8}$, $\underline{5}$, $\underline{3}$, $\underline{1} \ \mu m$ SiC, $\underline{2}$ min. each).

Polishing with water (alumina or chromium III oxide) or oil (diamond) suspensions with decreasing particle size (typically from 5 - 10 to 0.5μ m or 0.25μ m).

It is critical to rinse carefully the surface of the electrode (with water or another solvent) between two polishing steps.

Some authors (5) (20) (28) recommend to use ultrasonic vibrations to clean the surface (dislodging impurities held in pores at the surface). Typical solvents are : hexane, acetone, water. Few minutes each.

Also it was observed (39) (42) that vacuum desorption under $\underline{1}$ torr or less, at normal (42) or high (500°C) temperatures (39), increases the reproducibility of the results (39) (42) and the reversibility (42) of the electrode reactions.

Specially relevant to this question is the recent study (44) of the relationship between the heat treatment temperature of <u>G.C.</u> and the kinetic parameters of various redox reactions. This question was also discussed in previous papers (39) (41).

2. Chemical pretreatment

Depending on the intended use of the G.C., specific chemical pretreatments may be added to the physical treatment.

- to obtain an electrode surface free of oxygen containing groups :

surface treatments with non oxidizing acids (HCl for instance) (48) in solution free of oxidizing species; polarization of the electrode at a potential slightly negative to <u>SCE</u>.

- to obtain an electrode surface free of adsorbed species : wash the electrode with ethanol or chloroform, then wipe the surface with a wet filter paper.

3. Electrochemical pretreatment

The purpose of this pretreatment is to increase the rate of the electron transfer steps at the electrode surface and also to warrant reasonable reproducibility of the experimental results. Several authors made extensive use of electrochemical pretreatments of <u>G.C.</u> electrodes (4) (14) (15) (19) (21) (23) (25) (32) (33) (37) (40) (43 (45). The practice has also been reviewed critically (41) (44).

This pretreatment involves applications of several "polarization cycles" to the electrode, in order to obtain a specified reproducible "surface condition".

However, the potential limits of the cycles have to be set far enough from zero volt (versus \underline{SCE}), in order for the activation to occur.

As a general rule, the activation of the G.C. electrode surface occurs when the potential is cycled at intermediate scan rates (typically 0.1 V/s) between moderately negative potentials (i.e. about - 0.5 V) and more positive potentials, viz. + 0.9 to + 1.50 V/SCE (37) (40) (43) (44) (45). It should be noted that such "activated electrodes" exhibit improved reproducibility and reversibility, at the expense of the analytical sensitivity. The latter is handicapped by enhancement of residual currents (14) (44) (50).

It should also be kept in mind that the <u>G.C.</u> electrode is irreversibly damaged at too positive potentials (≥ 2 Volts/<u>SCE</u>) and by high anodic currents (≥ 100 mA) (12).

III. GEOMETRIC CHARACTERISTICS OF THE G.C. ELECTRODES

When used for analytical purposes, the preferred geometry is a circular cross-section of a cylindrical rod of small area, whereas other geometries are involved in preparative electrolysis, which requires large effective areas (e.g. plates (52), reticulated vitreous carbon (32)).

"Rod cross section" electrodes are usually prepared by inserting rod-shaped electrodes (commercial diameters range typically from $\underline{3}$ to $\underline{8}$ mm), of about $\underline{10}$ mm in length, into tubes of teflon, or plexiglass, or pyrex, and by sealing the rod to the tube with epoxy (for instance Epo-Tek 349, Epoxy Technology, Watertown, Mass).

However, it is preferable to use rod electrodes inserted in tight-fitting teflon tubes, in order to avoid contamination of ambient electrolytes by epoxy.

Typically, fitting is achieved by "forcing" the carbon rod into a teflon sheath whose inner (bore) diameter is about 15 % smaller than the rod.

Electrical contact with the electrode is made via the top of the carbon rod with the aid of silver epoxy or mercury.

IV. ELECTROACTIVITY RANGE OF THE G.C. ELECTRODE

The electroactivity range of <u>G.C.</u> is remarkably large in a wide variety of solvents, as documented in Appendix B. A working range of $\underline{3}$ Volts is common.

However, it should be noted that the electroactivity range of <u>G.C.</u> electrodes is dependent on the prevailing "surface condition" (41,44).

V. REDOX SYSTEMS STUDIED ON G.C. ELECTRODES

are listed in Appendix C and include the following couples.

(1) Ferrocene/Ferricinium

: Table (1)

(2) $Fe(CN)_{6}^{4-} / Fe(CN)_{6}^{3-}$

(store solutions of $Fe(CN)_{6}^{4-}$ in the dark, to avoid photodegradation).

(3) Other redox systems : Table (2)

VI. IDENTIFICATION OF THE SOURCES QUOTED IN THIS REPORT

Two types of source materials were used :

- a) answers to a questionnaire distributed to $\underline{332}$ prominent electrochemists worldwide. Forty seven ($\underline{47}$) responses were received.
- b) published papers.

Each source has been assigned a code number and is identified accordingly, both in the foregoing text and in the following tabulations. The code numbers are listed in Appendix D.

VII. TABLE OF ABBREVIATIONS AND SYMBOLS

ACV	Alternating Current Voltammetry
AN	Acetonitrile
ASV	Anodic Stripping Voltammetry
BN	Benzonitrile
CA	Chronoamperometry
CV	Cyclic Voltammetry
DCP	Direct Current Polarography
DMF	Dimethylformamide
DPP	Differential Pulse Polarography
DPV	Differential Pulse Voltammetry
EI	Electrolysis
E 1/2	Halfwave potential
Epa	Potential of anodic peak in C V
E _{pc}	Potential of cathodic peak in C V
Fc/Fc ⁺	Ferrocene/Ferricinium
GC	Glassy Carbon
GCE	Glassy Carbon Electrode
HYV	Hydrodynamic Voltammetry
IRREV	Irreversible
LSV	Linear scanning voltammetry
М	Mole . litre -1
Me ₂ SO	Dimethylsulfoxide
n-PrCN	n-propionitrile
NHE	Normal Hydrogen Electrode
NPP	Normal Pulse Polarography
PC	Propylene Carbonate
Pot	Potentiometry
PY	Direct current polarography
ORev	Ouasi reversible
Řev	Reversible
RDE	Rotating disk electrode
RDEV	Voltammetry on Rotating disk electrode
SCE	Calomel Electrode in KCl Saturated solution
SHE	Standard Hydrogen Electrode
SR	Scan Rate
SSCE	Calomel Electrode in NaCl satured solution
ТВАР	Tetra-n-butyl-ammonium perchlorate
TBAPF	Tetrabutyl ammonium hexafluorophosphate
TEAP °	Tetraethyl ammonium perchlorate
TEAPTS	Tetraethyl ammonium para-toluene sulfonyl
THAP	Tetrahexyl ammonium perchlorate
THF	Tetrahydrofuran
ТМАР	Tetramethyl ammonium perchlorate

APPENDIX A : STARTING MATERIALS

- (1) Le Carbone Lorraine, Département Produits Spéciaux, 37 à 41, rue Jean Jaurès, F-92230 Gennevilliers (France), Télex F-620847 LCLGV, Tel. (1) 799.98.41.
- (2) China Scientific Instruments and Materials Corporation, 75, W. Dengshi Street, Beijing (China), Cable adress: "CSIMC" Beijing.
- (3) Fluorocarbon Company, Process Systems Division, 1432 So. Allec St., Anaheim, California, 92803 (USA), Tel. 714/956-7330.
- (4) Tokai Carbon Co/IMC Industry Group & Associates, Ming-Yu International Building, 8-8, 4-chome Ginza, Chuo-Ku, Tokyo 104 (Japon), Telex J-22 316, J-22 923, Tel. (535) 4381.
- *(5) Atomergic Chemetals Corp., 100 Fairchild Avenue, Plainview, New York, N.Y. 11803 (USA).
- (6) Sigri Elektrographit, Postfach 1160, D-8901 Meitingen (RFA) (quality "Sigradur"), Telex 05 3823 Sigri d, Tel. (08271) 83 3147.
- *(7) Deutsche Carbon, D-6000 Frankfurt, Postfach 56 0209 (RFA).
- (8) Metrohm Ltd, CH-9100 Herisau (Switzerland).
- * Sellers only : (5), (7) : Le Carbone Lorraine.

APPENDIX B : TABLE OF ELECTROACTIVITY RANGE

Solvent : H₂O

Supporting Electrolyte (conc.)	Anodic limit - in Volt - (current density in µA cm ⁻²)	Cathodic limit - in Volt - (current density in µA cm ⁻²)	Reference Electrode	Temp. °C	Source n°
Na ₂ SO ₄ (0.2 M) $^{+}$ Phosphate (0.05 M) 7 < pH < 9	} + 0.9 (80)	- 1.6 (80)	SCE		(3)
KNO ₃ (0.5 M)		- 1.4	SCE	25	(4)
$CH_{3}COOH$ (0.2 M) $CH_{3}COO Na$ (0.2 M)	+ 1.5	- 1.0	Ag/AgC1,KC1 sat	25	(4)
H COO H (0.2 M) + H COO Na (0.2 M)	+ 1.2	- 0.8	Ag/AgC1,KC1 sat	25	(4)
$NH_{4}NO_{3}$ (0.05 M) NH_{3} (0.4 M)	+ 1.0	>-1.0	Ag/AgC1,KC1 sat	25	(4)
Phosphate buffer (0.2M) pH=6.5	+ 1.4	- 1.3	SCE		(6)
Na OH (1M)	0.0	- 1.7	SCE		(6)
Salts of seawater, - pH 2	0.0	- 1.0	Ag, AgCl		(8)
- pH 5	0.0	- 1.4	Ag, AgCl		(8)

Supp Elect (co	orting trolyte onc.)	Anodic limit - in Volt - (current density in $\mu A \operatorname{cm}^{-2}$) (* μA)	Cathodic limit - in Volt - (current density in $\mu A \text{ cm}^{-2}$) (* μA)	Reference Electrode	Temp. °C	Source n°
KOH	(0.1 M)	+ 0.5	- 1.4	SHE		(14)
Acetate b pH=4.7	uffer	+ 1.4	- 0.7	SHE		(14)
5.10 ⁻² M	(NH ₄ CH ₃ 00					
buffer -after po emery pa	CH ₃ COOH) lishing on per 400	+ 1.5 (56)	- 1.25 (56)	SCE		(15)
-after po with 0.5	lishing μ paste	+ 1.6 (28)	- 1.4 (28)	SCE		(15)
H ₂ SO ₄	(1N)	+ 1.2 (45)	- 0.30 (45)	SCE	20	(17)
NaClO ₄	(1M)	+ 1.0 (1)*	+ 1.5 (1)*	SCE		(19)
сн ₃ соон + сн ₃ соо NH ₄ pH = 5.0	$(0.1 M) \\ (0.2 M)$	+ 1.1 (7.9)	- 0.5 (7.9)	SCE		(20)
Phosphate acetate b pH=5 to 8 and CH ₃ CN	and uffers of , in CH ₃ OH	∿ +1	v - 0.8	Ag/AgCl,KCl (1M)		(22)
H ₂ SO ₄ {	(1M) (10M)	+ 1.5 + 1.2 (25)	- 1.0 - 1.4 (25)	SCI: SCE		(23)
HBr	(1M)	+ 0.7	- 1.5	SCE		(23)
None (ele photoemi	ctron ssion)	+ 0.5	- 1.2	SCE		(25)
Na2SO4	(0.2M)		- 1.2	SSCE		(30)
+ MeCN + Me ₄ NC10 ₄	(0.1M)	> + 1.4	> - 1.6	SSCE		(30)
KC1 (5	. 10 ⁻² M)	+ 1.1 (10)	- 0.8 (10)	SCE		(35)
HC1	(1M)	+ 0.7	- 1.0	SCE		(6)
HC1	(0.01 M)	> + 0.075	< - 1.20	SCE		(21)
HC10 ₄	(0.1M)	+ 1.2 (1)*	- 0.8 (1)*	SCE		(19)
нс104	(0.01 M)	> + 0.075	< - 1.20	SCE		(21)
HC10 ₄ +	(0.01 M) (0.1 M)	+ 0.45 (10)	- 2.3 (10)	SCE		(23)
Na SCN	(2M)	+ 0.35	- 2.5	SCE		

Supporting Electrolyte (conc.)	Anodic limit - in Volt - (current density in μA cm ⁻²)	Cathodic limit - in Volt - (current density in µA cm ⁻²)	Reference Electrode	Temp. °C	Sourc n°
$HC10_4 + KC10_4$ (8.10 ⁻² M) pH = 1.5	+ 1.7	- 1.0	SCE		(25)
$HC1O_4 + KC1O_4 + N_2O$ pH = ~ 7	+ 1.7	- 1.5	SCE		(25)
$HC10_4 (0.5M) + 0_2$	0 (1)	- 0.4 (1)	NHE		(27)
Solvent : PC					
LiClO ₄ (0.1 M)	+ 2.6 (1000)	- 3.2 (1000)	Fc/Fc ⁺		(16)
(0.1 M)	+ 3.6 (1000)	- 3.2 (1000)	Fc/Fc ⁺		(16)
Et ₄ NC1 (0.1 M)	+ 0.4 (1000)	- 3 (1000)	Fc/Fc ⁺		(16)
$Bu_4 NPF_6$ (0.1 M)	+ 3.6 (1000)		Fc/Fc ⁺		(16)
Solvent : Benzon	 itrile				
$\operatorname{Bu}_4 \operatorname{NC1O}_4 (0.2 \mathrm{M})$	+ 1.65	- 2.35	Fc/Fc ⁺		(16)
Solvent : Molten	 Salts				
PbCl ₂ - KCl (77 - 23 % in mole)	+ 1.29 (1400)	0 (1400)	Pb/Pb ^{II}	440	(9)
NaOH - H ₂ O (50-50% in mole)	+ 0.1 (1400)	- 1.55 (1400)	Ag/Ag ^I	100	(9)
Na ₃ AlF ₆ (cryolithe)	+ 1.7	0	A1/A1 ^{III}	1015	(9)
Al Cl ₃ - NaCl	+ 2.15 (100)		Al,sat NaCl	175	(17)
LiC1 - KC1	+ 0.25 (200)		Pt, Pt ^{II} (0.1M)	450	(17)
CuCl ₂ /KCl	+ 0.8 (<10)	- 1.1 (<10)	Ag/AgC1 0.02 % in solvent		(34)
CO ₃ in LiCl-KCl eutectic, under P _{CO2} = 1 atm	<+ 0.2		Ag/Ag ⁺ (0.75 mol/kg)	470	(38)
AlCl ₃ -NaCl	+ 2.0	0	Al wire		(47)
AlCl ₃ -n-Butyl pyridinium chloride	+ 2.0	0	Al wire		(47)

Solvent : CH₃CN

Suppo Electi (cor	rting rolyte nc.)	Anodic limit - in Volt - (current density in µA cm ⁻²)	Cathodic limit - in Volt - (current density in µA cm ⁻²)	Reference Electrode	Temp. °C	Source n°
TEAP	(0.1 M)	+ 1.1	- 2.25	Ag, AgNO ₃ (0.01 M)	25	(4)
LiClO ₄		+ 2.8	- 2.7	SCE + junction		(6)
TEAP	(0.1 M)	+ 2.2		Ag/Ag ⁺ (0.01 M)		(12)
TEAP			- 2.1	SCE + junction		(18)
50 % C ₂ H ₅ Na OH (pH	OH ca.13.3)		- 1.75	SCE + junction		(18)
C4H9NPF6	(0.5 M)		- 2.2 (5000)	Ag/Ag ⁺ (0.1 M)		(24)
Et ₄ NBF	(0.10 M)	+ 3.5 (5000)				(26)
Solvent	: THF					
LiC10 ₄	(0.3 M)		- 2.2			(12)
Solvent	: n-CH ₃ -	(CH ₂) ₂ - CN				
(n-Bu) ₄ NC1	0 ₄ (0.10M)		- 2.5	Ag/Ag ⁺ (0.01 M)	- 60	(26)
Solvent	: DMF					
THAP	(0.1 M)	+ 1.4 (325)	- 2.0 (325)	SCE	25	(28)
Solvent	: 1,2 - C	2 ^H 4 ^{C1} 2				
THAP	(0.1 M)	+ 1.6 (325	- 1.9 (325)	SCE	25	(28)

TAULT										
Redox system or species (Source n°)	Solvent	Supporting electrolyte (conc.)	Electrochem. method used	Experim. details	Conc. of Red and or Ox in the solution (M)	Reaction observed oxidation reduction or both	Characteristic potential measured (V vs.Ref.el.)	Rate constant (cm s ⁻¹) at standard redox potential	n F/mole	Ref. Electrode
(1) Ferrocene	CH ₂ C1 ₂	0.1 M TBAP	CV	0 ↔ 900 mV 100 mV/s	10 ⁻³	both	$Ep_a = + 0.677$ $E_{pc} = + 0.380$	Quasi rev.		Ag/AgC1 1.0M KC1
					10 ⁻⁴	both	$E_{pa} = + 0.554$ $E_{pc} = + 0.462$			no corr.for junction potential.
Ferrocene	H ₂ 0 (10%) + C ₂ H ₅ OH	0.2 M Naclo4 0.01 M HClo4	G		2.10 ⁻³	both		(1.3±0.2)10 ^{−2}		SCE
(28) Ferrocene	1,2- C ₂ H ₄ C1 ₂	0.1 M THAP	ЛЛН	0 + 1.6 V 100 mV/s	10-4	oxidation	$E_{1/2} = + 0.52$	Rev.	-	SCE (including junction notential)
K_3 Fe(CN) ₆	H ₂ O	1 M KCI	ACV	v = 10 mV/s 0 ↔ 400 mV ω = 10 - 100 Hz amp1 = 10 mV	$(0x) = 5 \cdot 10^{-3}$	both	+ 0.238	5.3 . 10 ⁻²	-	Ag/AgC1 (KC1 1.0 mM no corr.for junction potential
K_3 Fe(CN) ₆	H ₂ 0	1 M KCI	CV 25°C	from v = 20 mV/s to 20 V/s	$(0x) = 10^{-3}$	both	at 20 mV/s: E _{pc} = +0.226 E _{pa} = +0.285	(7±1)10 ⁻²		SCE
$\mathrm{K_{3Fe}(CN)_{6}}$	H ₂ 0	0.5 M K ₂ SO ₄	CV 25°C	1 to 3 V/s	(Ox) = 1.8.10 ⁻⁴	both 1	/2(E _{pc} = + 0.265 + E _{pa})	2.5 . 10 ⁻²	-	Ag/AgCl (KCl sat)

APPENDIX C : TABLE OF VOLTAMMETRIC DATA

Table 1

Redox system or species (Source n°)	Solvent	Supporting electrolyte (conc.)	Electrochem. method used	Experim. details	Conc. of Red and or Ox in the solution (M)	Reaction observed oxidation reduction or both	Characteristic potential measured (V vs.Ref.el.)	Rate constant (cm s-1) at standard redox potential	n F/mole	Ref. Electrode
(10) K ₄ Fe(CN) ₆	H ₂ 0	0.5 M KC1	CV	from -0.40 to +0.75V at 20 mV/s	(Red) = 1.0 . 10 ⁻³	both	$ E_{p_a} = + 0.24 E_{p_c} = + 0.14 $	Quasi rev.	-	SCE
(14) K ₅ Fe(CN) ₆ K ₄ Fe(CN) ₆	Н ₂ 0	0.1 М Н ₂ SO ₄	RDE V		1 . 10 ⁻³	both	$E_{1/2} = + 0.46$	Rev.	-	SHE
=	н ₂ о	Phosphate buffer 1M pH = 7	CV	100 mV/s	1 . 10 ⁻³ M	both		∿ 10 ⁻⁴	, –	
K ₃ Fe(CN) ₆	H ₂ 0	0.1 M phosphate buffer + 1 M KCl pH = 3 7.4	S	50 mV/s polished + heated (520 - 540°C)	5 . 10 ⁻⁴ 2 . 10 ⁻⁴	reduction	E _{p,c} = (E _{p,a}) + 0.235 (+ 0.292) + 0.231 (+ 0.281)	• •	~ _	Ag/AgC1 (4 M KC1)
(40) K ₃ Fe(CN) ₆	H ₂ 0	0.1 M phosphate buffer pH = 7.5	Turbulent tubular electrode (convective voltam.)	2.69 ml.min ¹ v = 0.2V.min ¹	1 . 10 ⁻⁶ of each			(2 ± 1) 10 ⁻³		Ag/AgC1 (0.1 M KC1)
$\begin{array}{c} \textbf{(44)}\\ \textbf{K}_{3}\text{Fe}(\text{CN})_{6}\\ \textbf{k}\\ \textbf{K}_{4}\text{Fe}(\text{CN})_{6}\end{array}$	H ₂ 0	0.5 М К ₂ SO ₄	CV 22°C		5.0 . 10 ⁻³ of each	both		1.5±0.2 10 ⁻² on anodically "activated" GCE		SCE

Table 2										
System studied (Red/Ox) (Source n°)	Solvent	Supporting electrolyte (conc.)	Electrochem. method used	Experim.details (potential range explored, ini- tial potential, scan rate, etc	Conc. of Red and/or Ox in the solution in Mole/1	Reaction observed Oxidation Reduction or Both	Characteristic Potential measured (V/ref.) (E1/2 · Epeak other)	Rate constant _F (cm s ⁻¹) at standard redox potential	n E1/2 or /mole Epeak of ferro - ferricyanide or ferrocene/ ferricinium	REMARKS
(1) bis-hydroxy- methyl ferro-	H ₂ 0	KF - 0.1 M	G	0 ↔ 900 mV 50 mV/s	10 ⁻³	Both	Ep,a = 0.280 Ep,c = 0.215	Quasi-rev		
cene	Н ₂ 0	KNO ₃ -0.1 M	CV	0 ↔ 900 mV 50 mV/s	10-3	Both	$E_{p,a} = 0.277$ $E_{p,c} = 0.204$	Quasi-rev Quasi-rev		
	H ₂ 0	KC1 -0.1M	CV	0 ↔ 900 mV 50 mV/s	10 ⁻³	Both	E _{p,a} = 0.268 E _{p,c} = 0.210	Rev		
	CH ₂ C1 ₂	TBAP -0.1M	CV	0 ↔ 900 mV 50 mV/s	10 ⁻³	Both	E _{p,a} = 0.502 E _{p,c} = 0.422	Quasi-rev		
	CH ₃ CN	TBAP -0.1M	CV	Am 000 ↔ 0	10 ⁻³	Both	E _{p,a} = 0.424 E _{p,c} = 0.355	Quasi-rev		
	CH ₂ CN	TEAPTS - 0.1 M	CV	0 ↔ 900 mV 50 mV/s	10 ⁻³	Both	E _{p,a} = 0.409 E _{p,c} = 0.330	Quasi-rev	All potentials are vs.Ag/AgCl (1.0m]	KC1);
	CH ₃ CN	TBAPF ₆ - 0.1 M	CV	0 ↔ 900 mV 50 mV/s	10 ⁻³	Both	$F_{p,a} = 0.401$ $F_{p,c} = 0.332$	Quasi-rev	tion potential.	- 71111
(2) HEFc	CH ₃ CN	0.1 M NaClO ₄	CV	.1 -0.7V, 0.1V/s	1.10 ⁻⁴	Both	(Ep) _a (Ep) _c 0.41 0.35	Rev	I /	Ag/AgCl Ag/AgCl
BHEF _C	CH3CN	0.1M NaClO ₄	CV 0	.1 -0.7V, 0.1V/s	1.10 ⁻⁴	Both	0.41 0.35	Rev	/	
AFc	CH ₃ CN	0.1M NaClO ₄	CV 0	.1 -0.7V, 0.1V/s	1.10 ⁻⁴	Both	0.42 0.38	Rev	/	:
BAF _C	CH ₃ CN	0.1 M NaClO ₄	CV 0	.1-0.7V, 0.1V/s	1.10 ⁻⁴	Both	0.42 0.38	Rev	/	:

REMARKS	Reference: Ag/AgC1, 0.1 M NaC1	Strong adsorp- tion of NAD ⁺	Reference: SCE
E _{1/2} or Epeak of ferro- ferricyanid or ferrocene/ ferricinium		+ 0.15V	
h F/mole	~~~~	2	-
Rate constant (cm s ⁻¹) at standard redox potential	Rev Rev /	Irrev	
eristic al d Epeak .	(Ep) _C 0.22 0.25 0.20	o 🔨	.7 .0V
Charact Potenti measure (V/Ref. $E_1/2$, other.	(Ep) _a 0.29 0.32 0.27 /	+ 0.4 t + 0.5 v SCE	Ep = - 0 - 1
Reaction observed Oxidation Reduction or Both	Both Both Both /	BHEFC BAFC OX	Red Red
Conc. of Red and/or Ox in the solution in Mole/1	1.10 ⁻⁴	1 ferrocene- rocene from 10 ⁻⁶ to 10 ⁻³	ca.5.10 ⁻³ ca.5.10 ⁻³
Experim.details (potential range explored, ini- tial potential, scan rate, etc	0.1 -0.7V, 0.1V/s	<pre>1,1'-bis a-hydroxy 1,1'-bis - acetofer from 0.0V to 0.9V scan rate up to 50 V s⁻¹ otide.</pre>	0 V 1.5 V
Electrochem. method used	5	PY and N.P.P. at the RDE + CV on RDE RDE	CV
Supporting electrolyte (conc.)	0.1 M NH2CH2COOH + 0.1 M NaCI	F _c c 0.2MNa ₂ SO ₄ 0.05M phos- phate 7 < pH < 9 7 < pH < 9	KNO ₃ (0.5M)
Solvent	aqueous aqueous aqueous aqueous	srroceneHE ocene AF H ₂ 0 4 - Dihydroni	Н ₂ 0
System studied (Red/Ox) (Source n°)	HEF _C (2) BHEF _C AF _C BAF _C	α-hydroxyf(acetofern (3) NADH (3) NADH + H ⁺ + 2e + 2e + 2e	(4) T1 (1)/T1

REMARKS	eference: Ag/AgNO ₃ 0.01 M	sference: Ag/AgCl, KCl sat		eference: SCE	=	=
E1/2 or Epeak ferro- ferricyanide or ferrocene/ ferricinium		R		μ,		
n F/mole					2 e	2 e
Rate constant (cm s ⁻¹) at standard redox potential				Irrev	Irrev	Irrev
Characteristic Potential measured (V/red.) (E1/2 , Epeak,	Ep - 1.12 - 1.12 0.70 0.62	E _{1/2} 0.8 -0.05 -0.3		Ep - 0.475 V	Ep +1.30V	E _p + 0.95V
Reaction observed Oxidation Reduction or Both	(III)/(II) Red 0x (III)/(VI) Red 0x (III)/(II)	Red Ru (III) / Ru (III) / Ru (III) / Ru (III) / Ru (III) / Ru (III) / Ru (III) /		Red	X	3 OX
Conc. of Red and/or Ox in the solution in Mole/1	10 ⁻³ 10 ⁻³	10 ⁻³ - 5.10 ⁻³		10 ⁻⁵	10 ⁻⁴	10 ⁻⁵ - 10 ⁻
Experim.details (potential range explored, ini- tial potential, scan rate, etc	1.1V 2.0V - 1.4V	-		RDE 400 RPM Range - 0.3 V to - 0.6 V	RDE 400 RPM Range + 0.5 V to +1.5 V	RDE 400 RPM + 0.5 - +1.5 V
lectrochem. sthod used	8 5	НУ		DPV	DPV	DPV
Supporting E. electrolyte mw (conc.)	TEAP (0.1 M)	CH ₃ COOH (0.2 M) + CH ₃ COONa (0.2 M)		1 M HCI	0.2MPhosphate buffer, pH=6.5	0.2M Phosphate buffer, pH = 6.5
Solvent	CH ₃ CN	H ₂ 0		H ₂ 0	H ₂ 0	H ₂ 0
System studied (Red/Ox) Cource n°)	(4) Ru (acac) ₃	(Ru (H-edta) (H ₂ 0))	(9)	so ₂	$s_40_6^{=}$	$s_20_3^{\Xi}$

ht	Supporting electrolyte (conc.)	Electrochem. method used	Experim.details (potential range explored, ini- tial potential, scan rate, etc	Conc. of Red and/or Ox in the solution in Mole/1	Reaction observed Oxidation Reduction or Both	Characteristic Potential measured (V/ref.) (E1/2, Epeak, other)	Rate n constant n (cm s ⁻¹) F/mo at standard redox potential	E1/2 or Epeak of ferro- ferricyanide or ferrocene/ ferricinium	REMARKS
) ₂ NO ₂ NO)+ ² sht listed in Co 0.5M TBAPF ₆	0	1.8 HYV	RDE 900 RFM Range +1.0 to -1.5V vs Ag/Ag ⁺	10 ⁻² - 10 ⁻⁴	Red	$\begin{array}{c} E_{1/2} \\ X = C1 & + 0.005 \\ H & - 0.043 \\ C_{6}H_{5} & - 0.042 \\ C_{4}H_{9} & - 0.116 \\ CH_{3} & - 0.116 \\ CH_{3} & - 0.110 \\ CH_{3} & - 0.275 \\ 0CH_{3} & - 0.275 \end{array}$	0.1 cm/sec 16	Q	
0.2M NaCIO4		CA	+1.00V -2.40V SR 50 mV/sec	10 ⁻³	ð	E _p + 1.25 V E _p + 1.57 V E _p + 1.95 V		0 0 0	eference: g/Ag ⁺ 0.1M)
0.2M NaCIO ₄		WH	RDE 400 RPM SR 2 mV/sec	10 ⁻³	ŏ	E _{1/2} +1.18V	-	Ð	=
0.1M LiClO ₄		CV	SR 100 mV/sec	10 ⁻³	ŏ	E _p +1.40V	-	ð	:
0.1 M NaClO ₄		НУV	RDE 400 RPM SR 2 mV/sec	10 ⁻⁴	ð	E1/2 1.52V	-	۵	:
0.05M acetate buffer, pH=4.6	4.6	, HYV	RDE 400 RPM SR 2 mV/sec	10 ⁻⁴	Red	E _{1/2} -0.80V	Irrev 2	e X	ference: SCE
0.05M acetate buffer, pH= 4.6	te 4.6	CV	SR 10 mV/sec Range + 0.2 V to -1.2 V	10 ⁻⁴	Ox Xed	Ep - 0.93 V Ep - 0.83 V Ep + 0.13 V	Irrev 2. Irrev 1. Irrev 1.	000	= = =

ent S.	upporting Ele lectrolyte met conc.)	ectrochem. chod used	Experim.details (potential range explored, ini- tial potential, scan rate, etc	Conc. of Red and/or Ox in the solution in Mole/1	Reaction observed Oxidation Reduction or Both	Characteristic Potential measured (V/ref.) (E1/2, Epeak other)	Rate constant (cm s ⁻¹) at standard redox potential	E ₁ / n Epe F/mole fer fer fer	<pre>'2 or ak of RBMARK' rro- rricyanide or rrocene/ rricinium</pre>
.05M phosph uffer, pH =	late 7.0	C	SR 10 mV/sec Range + 0.2V to -1.2V	10-4	Red Ox Ox	$\begin{array}{rcl} E_{\rm D} & - \ 0.93 \\ E_{\rm D} & - \ 0.83 \\ E_{\rm P} & + \ 0.13 \end{array}$	Irrev Irrev Irrev	2e 1e 1e	Reference SCE
.05Mcarbona uffer,pH=1	ute 0.0	CA	SR 10 mV/sec Range + 0.2V to -1.2V	10 ⁻⁴	ox o Ox	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Irrev Irrev Irrev	2e 1e 1e	-
.05M acetatu uffer, pH = 4.	0 O	CV	SR 50 mV/sec	10-4	Red Ox Ox	Ep - 0.10 Ep - 0.93 Ep - 0.83 En - 0.83 En - 0.13	Irrev Irrev Irrev Irrev		E
.05Mphosphat uffer, pH=7.	9 O	ACV	SR 2 mV/sec 20 Hz, ampli- tude 20 mV	10-4	Red Red	$_{\rm Ep}^{\rm F} - 0.01$ $_{\rm Ep}^{\rm F} - 0.818$	Irrev Quasi-rev	1e 1e	=
.05M acetate Jffer, pH = 4.	<i>.</i> 9	ACV	SR 2 mV/sec 20 Hz, ampli- tude 10 mV	10-4	Red Red	Ep - 0.1 Ep - 0.805	6.10 ⁻⁴ 6.10 ⁻³	1e 1e	:
.05Mcarbona1 uffer, pH = 10	•0.	ACV	SR 2 mV/sec 20 Hz, ampli- tude 10 mV	10-4	Red Red	Ep - 0.1 Ep - 0.89	< 10 ⁻⁴ 4.10 ⁻³	1e 1e	:
.05M acetatu Jffer, pH = 4.	0.0	ACV	SR 2 mV/sec 20 Hz, ampli- tude 10 mV	10-4	Red	Ep - 0.06 Ep - 0.87	5.10^{-5} 1.10 ⁻²	1e 1e	:
.05Mcarbona uffer, pH = 10	.0	ACV	SR 2 mV/sec 20 Hz, ampli- tude 10 mV	10-4	Red Red	Ep - 0.1 Ep - 0.89	$< 10^{-3}$ 6.10^{-3}	1e 1e	Ξ
M H ₂ O		DPV	Range - 0.3 V to -1.3 V vs SCE (NaCl) SR 1mV/sec	10-3	Red Red Red	Ep - 0.42 Ep - 0.55 Ep - 0.90	Quasi-rev Quasi-rev Quasi-rev	1e 1e 2e	Reference SCE (NaC1)

COMMISSION ON ELECTROANALYTICAL CHEMISTRY

•

System studied (Red/Ox) (Source n°)	Solvent	Supporting electrolyte (conc.)	Electrochem. method used	Experim.details (potential range explored, ini- tial potential, scan rate, etc	Conc. of Red and/or Ox in the solution in Mole/1	Reaction observed Oxidation Reduction or Both	Characteristic Potential measured (V/ref.) (E1/2, Fpeak, other)	Rate constant (cm s ⁻¹) at standard redox potential	n F/mole	E1/2 or Epeak of F ferro- ferricyanide or ferricinium	BMARKS
(6) Hemato-	TMF	6М НаО	Ň	SR 10 mV/sec	10-3	Red	F 0.5	Anasi-rev	1e	Refe	rence :
porphyrin	1.11	1.5 M HC104	5		2	Red	нр гр го го со со со со со со со со со со со со со	Quasi-rev Quasi-rev	1e 2e	-	L L
sbc1 ⁻ 6	H ₂ 0	12 M HC1	ΛλΗ	Range + 0.7V to 0.0V, RDE 400 RPM	10^{-3}	Red	$E_{1/2} + 0.45$	2.10 ⁻³	2e	•	SCE
SbC1 ⁻ 6	H ₂ 0	6 M HC1	NYH	RDE 400 RPM	10 ⁻³	Red	E1/2+0.45	2.10 ⁻³	2e		SCE
SbC1 ₅ OH ⁻	H ₂ 0	6 M HCI	ЛХН	RDE 400 RPM	10-3	Red	E _{1/2} + 0.40	Irrev	2e		SCE
$\text{SbC1}_4(\text{OH})^2$	H ₂ 0	6 M HCI	NYH	RDE 400 RPM	10 ⁻³	Red	E _{1/2} + 0.05	Irrev	2e		SCE
sbc1 ⁻ 6	H ₂ 0	12 M HC1	G	SR 50 mV/sec	10 ⁻³	Red Ox	Ep + 0.513 Ep + 0.607	1.10 ⁻³	2e 2e		SCE
SbC1 ⁻ 6	H ₂ 0	6M HC1	CV	SR 50 mV/sec	10 ⁻³	Red Ox	Ep + 0.582 Ep + 0.678	2.10 ⁻³	2e 2e		SCE
SbC1 ₅ (0H) ⁻	H ₂ 0	6M HC1	C	SR 50 mV/sec	10 ⁻³	Red	Ep + 0.350	Irrev	2e		SCE
$\text{SbCl}_4(\text{OH})^2$	H ₂ 0	6 M HC1	CV	SR 50 mV/sec	10 ⁻³	Red	E _p + 0.10	Irrev	2e		SCE
so ₂	H ₂ 0	0.1 M HCI 0.1 M KCI pH = 1.0	ЛЛН	Range 0.0 to - 0.08 V RD 400 RFM	10 ⁻³	Red	E _{1/2} - 0.48	Irrev	2e		SCE
so ₂	H ₂ 0	0.1 M HC1 0.1 M KC1 pH = 1.0	C	SR 100 mV/sec	10 ⁻³	Red Ox	Бр - 0.49 Бр - 0.02	Irrev	2e 2e		
so ₂	H ₂ 0	0.1 M HC1 0.1 M KC1 pH = 1.0	DPV	RDE 400 RFM	10-3	Red	Ер - 0.51	Irrev	2e		

RBMARKS	Rapid oisning	n i mondo	id pre- eatment g/AgCl,	constant lved in	40 mn		,av =	pa ⁺ Epc)			
E ₁ /2 of Epeak of ferro ferricyanide or ferrocene/ ferricinium	<u>с</u>	2	ac tr Ref.:/	Rate ha		ţ	<u>д</u>	1/2(E			
n F/mole	-		Q	-	-	-	-	-	-		
Rate constant (cm s ⁻¹) at standard redox potential	1.27.10 ⁻⁴	- 01 - 5.6	2.1 .10 ⁻¹⁹ at + 0.63V	$1.4 \cdot 10^{-3}$	$1.34.10^{-3}$	$8.6.10^{-4}$	$1.8.10^{-5}$	5.7 . 10 ⁻³	1.2 . 10 ⁻³	9.0 . 10 ⁻⁴	$1.2 \cdot 10^{-3}$
Characteristic Potential measured (V/ref.) (E1/2, Epeak, other)	Epa = +1.000 at 0.2Vs ⁻¹	Ep _a = 1.410 Ep _c = 0.690 at 0.2V s ⁻ 1	Ep =-1.319 at 0.1V s ⁻¹	Ep,av = " +0.216	" + 0.533	" + 0.467	" + 0.520	" + 0.522	" + 0.520	NA	NA
Reaction observed Oxidation Reduction or Both	Red	Red	Red	Both	Both	Both	Both	Both	Both 2+	z. 3+ Both	3+ Both
Conc. of Red and/or Ox in the solution in Mole/1	Cr (III) = 2.06.10-3	Ce(IV) = 4.2 .10 ⁻³	$(I 0\overline{3}) = 4 \cdot 10^{-3}$	Fe(III) = $4 \cdot 10^{-3}$	2.10^{-3}	2.10^{-3}	2.10^{-5}	2.10^{-3}	$2 \cdot 10^{-3}$	$\left\{\begin{array}{c} 2 \cdot 10^{-5} \text{ Fe} \\ 2 \cdot 10^{-3} \text{ Fe} \end{array}\right.$	2.10 ⁻³ Fe
Experim.details (potential range explored, ini- tial potential, scan rate, etc	Range of Scan Rates (V s ⁻¹) 0.04 - 0.2	0.02 - 0.2	0.02 - 0.12	0.04 - 0.20	0.04 - 0.20	0.006-0.2	0.02 - 0.2	0.02 - 0.4	0.02 - 0.4	Steady State	NA
Electrochem. method used	L SV	L SV	L SV	CV, 25°C	CV	CV	CV	CV	CV	RDE V	CV
Supporting electrolyte (conc.)	1 M KCI	1 M H ₂ S0 ₄	1 M NaOH	0.5 M K ₂ 0x	0.9 M HC104	0.45 M H ₂ SO ₄	0.09 M HCL	0.09M+0.1M HC1 C10 ₄	0.09M+3.9M HC1 NaClO4	1M H ₂ SO ₄	1 M H ₂ SO ₄
Solvent	Н ₂ 0	H ₂ 0	H ₂ 0	H ₂ 0	H ₂ 0	H_2^{-} 0	H_2^{-10}				
System studied (Rex/Ox) (Source n°)	Cr(III)/Cr(II)	Ce(IV)/Ce(III)	I 0 ⁻ ₃ /I ⁻	Fe ³⁺ /Fe ²⁺							

.

1/2 or peak of RBMARKS erro- erricyanide or errocene/ erricinium		Reference : SCE	eversibility of the eversibility of the ystem increases dras-ically after exposing he polished GC suracte to an 0_2 glow-ischarge.	Reference : Fc/Fc ⁺	Ξ	:
F/mole E		·	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	-	-	1:1
: Rate constant (cm s ⁻¹) at standard redox potential	Rev		lischarge ad GC)		Rev	Rev
Daracteristic Potential measured (V/ref.) (E1/2, Epeak other)		E _{Pa} + 0.37 E _{Pc} - 0.21	B _{P+} = -0.505 E _P - = - 0.59 (O ₂ -glow d	E ^{to} = 0.50	E ^{'O} = 0.59	0.1;-1.3
Reaction (observed Oxidation Reduction or Both	First Red, then Ox	Both			Oxid.of Ag(I) to Ag(II)	Co(III) + Co(II) + Co(I) +
Conc. of Red and/or 0x in the solution in Mole/1 (*in p.p.b.)	* From 5 to 0.001 ppb	2.5 10 ⁻³ K ₄ W(CN) ₈	Sat (Ox)	10 ⁻³ _10 ⁻¹	10^{-3} $- 10^{-1}$	10 ⁻³
Experim.details (potential range explored, ini- tial potential, scan rate, etc	from +1.0V to 0V SR 10 mV/s	SR 100 mV/s	SR 100 mV/s			
Electrochem. method used	Differential pulse anodic stripping voltammetry	CV	5	POT	POT, CV, RDE CA, EL	C
Supporting electrolyte (conc.)	NaCl/HC1 % 0.5M (Sea water)	0.2M KC1	0.2M KCI S0 ₃ Na	$Bu_4 NPF_6$	Bu4NPF ₆	Bu4NPF6
Solvent	H ₂ 0 H ₂ 0 H ₂ 0 H ₂ 0	Н ₂ 0		Я	PC	BN
System studied (Red/Ox) (Source n°)	(8) Trace metals Cd/Cd++ Pb/Pb++ Cu/Cu++ Bi/Bi+++ Zn/Zn++	$W(CN)_8^{(11)}$	Several qui- none / hydro- quinones e.g. : NaO ₃ S -	(16) Ag/Ag ⁺	Ag(bipy) ⁺ / Ag(bipy) ²⁺ 2	Co TPP

•

$ \frac{{}^{\text{A}\text{PF}}_{\text{b}} \text{CV, CA}}{{}^{\text{A}\text{PF}}_{\text{b}} \text{CV, CA}} \qquad 10^{-3} \frac{{}^{\text{IIII}}_{\text{III}} + {}^{\text{III}}_{\text{II}} + {}^{\text{II}}_{\text{II}}) \text{C2} ; -1.3 \qquad \text{Rev} 2 ; 2 \qquad \begin{array}{c} \text{Retrence:} \\ \frac{{}^{\text{Ref}\text{Ref}}_{\text{e}} \text{CV, CA}}{{}^{\text{A}\text{PF}}_{\text{b}} \text{CV, CA}} \qquad 10^{-3} \text{idem} 0.2 ; -1.3 \qquad 2 ; 2 & \begin{array}{c} \text{Ref}_{\text{Ref}} \text{CV}_{\text{e}} \text{CV}_{\text{e}} \\ \frac{{}^{\text{IIII}}_{\text{III}} + {}^{\text{IIII}}_{\text{III}} \\ \frac{{}^{\text{IIII}}_{\text{III}} + {}^{\text{IIII}}_{\text{III}} & \frac{{}^{\text{Ref}}_{\text{e}} & 2 & \frac{{}^{\text{2}}}{2} & \begin{array}{c} \frac{{}^{\text{Ref}}_{\text{Ref}} \text{CV}_{\text{e}} \\ \frac{{}^{\text{Ref}}_{\text{Ref}} \text{CV, CA} & 10^{-3} & \text{idem} & 0.2 ; -1.3 & \text{Rev} & 2 ; 2 & \begin{array}{c} \frac{{}^{\text{Ref}}_{\text{Ref}} \text{CV}_{\text{e}} \\ \frac{{}^{\text{IIII}}_{\text{III}} + {}^{\text{IIII}}_{\text{III}} \\ \frac{{}^{\text{IIII}}_{\text{III}} + {}^{\text{IIII}}_{\text{III}} & \frac{{}^{\text{Ref}}_{\text{Ref}} & 0.0 ; -1.7 & \text{Rev} & 2 ; 2 & \begin{array}{c} \frac{{}^{\text{Ref}}_{\text{Ref}} \text{CV}_{\text{e}} \\ \frac{{}^{\text{Ref}}_{\text{Ref}} \frac{{}^{\text{Ref}}_{\text{e}} & \frac{{}^{\text{Ref}}_{\text{Ref}} & \frac{{}^{\text{Ref}}_{\text{Ref}} & \frac{{}^{\text{Ref}}_{\text{Ref}} & 2 & \frac{{}^{\text{Ref}}_{\text{Ref}} & \frac{{}^{\text{Ref}}_{\text{Ref}}} & \frac{{}^{\text{Ref}}_{$	Solvent	Supporting electrolyte (conc.)	Electrochem. method used	Experim.details (potential range explored, ini- tial potential, scan rate, etc 	Conc. of Red and/or Ox in the solution in Mole/1	Reaction observed Oxidation Reduction or Both	Characteristic Potential measured (V/ref.) (E _{1/2} , E _{peak} , other)	Rate constant (cm s ⁻¹) at standard redox potential	F/mole Epeak of ferro- ferro- ferroror ferrocene ferrocene ferrocene	REMARKS le
$ \begin{split} \mathrm{NF}_6 & \mathrm{CV}, \mathrm{CA} & 10^{-3} & \mathrm{idem} & 0.2 \ ; -1.3 & 2; 2 & \int \underset{(\mathrm{III})}{\mathrm{peaks}} \mathrm{for} \\ \mathrm{NF}_6 & \mathrm{CV}, \mathrm{CA} & 10^{-3} & \mathrm{idem} & 0.2 \ ; -1.3 & \mathrm{Rev} & 2; 2 & \int \underset{(\mathrm{III})}{\mathrm{peaks}} \mathrm{for} \\ \mathrm{NF}_6 & \mathrm{CV}, \mathrm{CA} & 10^{-3} & \mathrm{idem} & 0.0 \ ; -1.7 & \mathrm{Rev} & 2; 2 & \mathrm{sep. of} \\ \mathrm{NF}_6 & \mathrm{CV}, \mathrm{CA} & 10^{-3} & \mathrm{idem} & 0.0 \ ; -1.7 & \mathrm{Rev} & 2; 2 & \mathrm{sep. of} \\ \mathrm{NF}_6 & \mathrm{CV}, \mathrm{CA} & 10^{-3} & \mathrm{idem} & 0.1 \ ; -1.7 & \mathrm{Rev} & 2; 2 & \mathrm{sep. of} \\ \mathrm{NF}_6 & \mathrm{CV}, \mathrm{CA} & 10^{-3} & \mathrm{CO}(\mathrm{III}) & 0.1 \ ; -1.7 & \mathrm{QRev} & 1; 1 & \\ \mathrm{NF}_6 & \mathrm{CV}, \mathrm{CA} & 10^{-3} & \mathrm{CO}(\mathrm{III}) + \mathrm{CI}_{\mathrm{III}} \\ \mathrm{NF}_6 & \mathrm{CV}, \mathrm{CA} & 10^{-3} & \mathrm{CO}(\mathrm{III}) & 0.1 \ ; -1.7 & \mathrm{QRev} & 1; 1 & \\ \mathrm{NF}_6 & \mathrm{CV}, \mathrm{RB}, \mathrm{CA} & 10^{-3} & \mathrm{III} + \mathrm{III} + \mathrm{III} \\ \mathrm{NF}_6 & \mathrm{DPP}, \mathrm{CV} & 10^{-3} & \mathrm{III} + \mathrm{III} \\ \mathrm{NF}_6 & \mathrm{DPP}, \mathrm{CV} & 10^{-3} & \mathrm{III} + \mathrm{III} \\ \mathrm{NF}_6 & \mathrm{DPP}, \mathrm{CV} & 10^{-3} & \mathrm{III} + \mathrm{III} \\ \mathrm{NF}_6 & \mathrm{DPP}, \mathrm{CV} & 10^{-3} & \mathrm{III} \\ \mathrm{NF}_6 & \mathrm{DPP}, \mathrm{CV} & 10^{-3} & \mathrm{III} \\ \mathrm{DP}, \mathrm{CV} & 10^{-3} & \mathrm{DPP}, \mathrm{CV} & 10^{-3} & \mathrm{III} \\ \mathrm{DP}, \mathrm{CV} & 10^{-3} & \mathrm{III} \\ \mathrm{DP}, \mathrm{CV} & 10^{-3} & \mathrm{III} \\ \mathrm{DP}, \mathrm{DP}, \mathrm{CV} & 10^{-3} & \mathrm{III} \\ \mathrm{DP}, \mathrm{DP}, \mathrm{DP}, \mathrm{DP} & \mathrm{DP}, \mathrm{DP} & \mathrm{DP}, \mathrm{DP} & $	Bu4	NPF ₆	CV, CA		10 ⁻³	$(_{\rm III}^{\rm I}) \star (_{\rm III}^{\rm II}) \star (_{\rm III}^{\rm III})$	0.2;-1.3	Rev	2;2	Reference: Fc/Fc ⁺ sen, of
	Bu	NPF 6	CV, CA		10 ⁻³	idem	0.2;-1.3		2;2	the two peaks for
$ \label{eq:relation} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Bu_4	NPF 6	cv, ca		10-3	idem	0.2;-1.3	Rev	2;2	$(\begin{smallmatrix} \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{smallmatrix}) \begin{array}{c} (\begin{smallmatrix} \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{smallmatrix}) \begin{array}{c} \star \end{array}) \begin{array}{c} \star \end{array}$
$ \label{eq:rescaled} \begin{split} & \ ^{\rm VBF}_6 & \ ^{\rm CV,\ CA} & \ ^{\rm UI} & \ ^{\rm UII}_{\rm II}) \\ & \ ^{\rm VBF}_6 & \ ^{\rm CV,\ CA} & \ ^{\rm IO}_{\rm C} & \ ^{\rm CO(II)} & \ ^{\rm O(II)}_{\rm III}) \\ & \ ^{\rm CO(II)}_{\rm III} & \ ^{\rm O(II)}_{\rm III}) \\ & \ ^{\rm CO(II)}_{\rm III} & \ ^{\rm O(II)}_{\rm III}) \\ & \ ^{\rm CO(II)}_{\rm III} & \ ^{\rm O(II)}_{\rm III}) \\ & \ ^{\rm CO(II)}_{\rm III} & \ ^{\rm O(II)}_{\rm III}) \\ & \ ^{\rm CO(II)}_{\rm III} & \ ^{\rm O(II)}_{\rm III}) \\ & \ ^{\rm CO(II)}_{\rm III} & \ ^{\rm O(II)}_{\rm III}) \\ & \ ^{\rm CO(II)}_{\rm III} & \ ^{\rm O(II)}_{\rm III}) \\ & \ ^{\rm CO(II)}_{\rm III} & \ ^{\rm O(II)}_{\rm III}) \\ & \ ^{\rm CO(II)}_{\rm III} & \ ^{\rm O(II)}_{\rm III}) \\ & \ ^{\rm CO(II)}_{\rm III} & \ ^{\rm O(II)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(IIII)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III}) \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III} \\ \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III} \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III} \\ \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III} \\ \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III} \\ \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III} \\ \\ & \ ^{\rm O(III)}_{\rm III} & \ ^{\rm O(III)}_{\rm III} \\ \\ & \ ^{\rm O(III)}_{\rm IIII} \\ \\ & \ ^{\rm O(IIII)}_{\rm IIII} \\ \\ & \ ^{\rm $	Bu	4 ^{NPF} 6	CV, CA		10 ⁻³	idem	0.0;-1.7	Rev	2;2	sep. of the 4
$ {}^{\rm NPF_6} \qquad {\rm CV, \ CA} \qquad 10^{-3} \qquad {\rm Co(III)+Co(II)} \qquad 0.1 \ ; -1.7 \qquad {\rm QRev} \qquad 1 \ ; 1 \\ \qquad \qquad \qquad \qquad + {\rm Co(I)} \qquad \qquad + {\rm Co(I)} \qquad \qquad 0.1 \ ; -1.7 \qquad {\rm QRev} \qquad 1 \ ; 1 \\ \qquad \qquad + {\rm Co(I)} \qquad \qquad + {\rm Co(I)$									÷	peaks : $ \begin{array}{c} \underset{II}{\text{peaks}}:\\ \underset{II}{\text{m}} \\ \underset{II}{\text{m}} \\ , \underset{III}{\text{m}} \\ , \underset{IIII}{\text{m}} \\ , \underset{III}{\text{m}} \\ , \underset{III}{\text{m}} \\ , \underset{IIII}{\text{m}} \\ , \underset{IIIII}{\text{m}} \\ , \underset{IIIIII}{\text{m}} \\ , \underset{IIIIII}{\text{m}} \\ , \underset{IIIIII}{\text{m}} \\ , IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$
$ {}^{\rm APF}_{\rm 6} {}^{\rm CV, \ RDE, \ CA} \qquad {}^{\rm 10^{-3}}_{\rm EL} \qquad {}^{\rm [III]}_{\rm III}) + {}^{\rm (III]}_{\rm II}) + {}^{\rm (III]}_{\rm II}) = {}^{\rm CO}_{\rm III}, \qquad {}^{\rm Rev} \qquad {}^{\rm I}; 1 = {}^{\rm I}_{\rm II} = {}^{\rm I}_{\rm III} = {}^{\rm III} = {}^{\rm I}_{\rm III} = {}^{\rm I}_{\rm III} = {}^{\rm III} =$	Bu	4 ^{NPF} 6	CV, CA		10 ⁻³	Co(III)+Co(II) + Co(I)	0.1 ; - 1.7	Q Rev	1;1	
$4^{\text{NPF}}6$ DPP, CV 10^{-3} $\binom{\text{III}}{\text{III}} + \binom{\text{III}}{\text{II}} + \binom{\text{II}}{1}$ 0.23;0.1 Rev 1;1	Bu	4 ^{NPF} 6	CV, RDE, CA EL		10 ⁻³	$(\underset{I}{\overset{II}{\underset{I}{\underset{I}{\underset{I}{\underset{I}{\underset{I}{\underset{I}$	0.15; -0.0; -1.4; -1.65	Rev	1;1	
	Bu	4 ^{NPF} 6	DPP, CV		10 ⁻³	$(^{\mathrm{II}}_{\mathrm{II}}){\scriptstyle\leftarrow}(^{\mathrm{III}}_{\mathrm{II}}){\scriptstyle\leftarrow}(^{\mathrm{III}}_{\mathrm{III}})$	0.23;0.1	Rev	1;1	

/2 or RBMARKS eak of RBMARKS rricyanide or rrocene/ rricinium			Reprod. 2,5 %	Hg film on GCE)= + 0.2 vr ferro- ricyanide		
F/mole fe fe fe fe fe	5 5	7	σ		4 E _F sd ffc n fer		<u> </u>
Rate constant (cm s ⁻¹) at standard redox potential	Irrev Irrev	Irrev			Irrev O ₂ Red is accelerate on PB filh		0.052 (450°C
Characteristic Potential measured (V/ref.) (E1/2, Epeak, other)	0.95 < E _p < 1.59 0.95 < E _p < 1.32	0.87 < E _p < 1.60	10	∿ as on Hg electrode	E _{1/2} [≈] + 0.2		
Reaction observed Oxidation Reduction or Both	ðð	s	Red at -0.2V/ECS		0 ₂ Red.		
Conc. of Red and/or 0x in the solution in Mole/1 (* in ug/1) (** PO7)	3 10 ⁻³ for CV ≈ 10 ⁻² for macro-	electrolyse 3 10 ⁻³	8.10 ⁻⁵ à 8.10 ⁻⁵	* < 1 µg/1	1 atm Ox **		
Experim.details (potential range explored, ini- tial potential, scan rate, etc 	SR 0.1 V s ⁻¹	SR 0.1 V s ⁻¹	RDE 2V/min 100 à 150 t/mm Pre-electrolysis at 1 V/ECS	-0.8V + 0V 3 mn pre-elec- trolysis DPP SR 2mV s ⁻¹	Prussian Blue (PB) modified GC		
Electrochem. method used	CV and macroelec- trolyses	CV	LSV	Anodic stripping Pulse Pola- rography.	S	CV	CV E
Supporting electrolyte (conc.	TEAP 0.1M	Bu ₄ NBF ₄	Acetate buffer 5.10 ⁻² M		1 M HC1/KC1 pH ≈ 3	LiC1 - KC1 (450°C)	LiC1 - KC1 (450°C) "
Solvent	CH ₂ CN CH ₂ CN	CH ₂ CN		Sea water pH= 2	H ₂ 0	Fused	
System studied (Red/Ox) (Source n°)	C = C - C $C = C - OR$ $C = C - OR$	c = c	(15) Ce ³⁺ /Ce ⁴⁺	Cu Pb Cd	0 ₂ /H ₂ 0	c1 ⁷ /c1 ₂	Cr (III) /Cr (II)

System studied (Red/Ox) (Source n°)	Solvent	Supporting electrolyte (conc.)	Electrochem. method used	Experimen.details (potential range explored, ini- tial potential, scan rate, etc	Conc. of Red and/or Ox in the solution in Mole/1	Reaction observed Oxidation Reduction or Both	Characteristic Potential measured (V/ref.) (E1/2, Epeak, other)	Rate constant n (cm s ⁻¹) F/mo at standard redox potential	E1/2 or Epeak of ferro- ferricyanide or ferricinium	REMARKS
(17) Fe(III)/Fe(II)		LiCl-KCl (450°C)	CA							
Cu(II)/Cu(I)		LiC1-KC1 (450°C)	Q							
cı ⁻ /cı ₂	Fused	NaC1-AIC1 ₃ (175°C)	C					i ₀ = 8.6 μΑ/cm ² (175°C)		
(18) S0 ₂ /S0	DMF	0 1 TEAD	CV B1	R 10 - 500 mV/s	10-1		Ep - 0.9V	Quasi 0.65		
(19) Fe ^{2+/3+}	water	var.acids	, MH	+0.7, -0.1V	0 - 6 . 10 ⁻³	Red	E1/2	10 ⁻³ 1	ı	recalc
Fe ^{2/3+}	water	var.compl. agents	ЛХН				+ 0.44 + + 0.25 + 0.06 + - 0.325	$+ > 10^{-2}$ + 10^{-2} + 1 $> 10^{-2}$ > 10^{-2}		to SHE recalc to SHE
cu ⁰ /cu ²⁺	water	var.inorg. salts,HOAc, ethylene- diamine	HYV			Red	various	1+1 or 2	Ref	erence : SCE
(For deta	ils see :	J. Electroan	al.Chem. 38, 3	49 (1972) ; 39, 229	(1972) ; 44	<u>1</u> , 117 (1973	.(()			

tem died d/Ox)	Solvent	Supporting electrolyte (conc.)	Electrochem. Method used	Experim.details (potential range explored, ini- tial potential, scan rate, etc	Conc. of Red and/or Ox in the	Reaction observed Oxidation Reduction or Both	Characteristic Potential measured (V/ref.) (E1/2, Ebeak,	Rate constant (cm s ⁻¹) 1 at standard	n Amole	E _{1/2} or Epeak of ferro- ferricyanide	REMARKS
ce n)				:	solution in Mole/1		other)	redox potential		ferrocene/ ferricinium	
(20) ihydro- zylamine	H ₂ 0	0.1 M CH ₃ COOH	CV	+0.7V - 0.0V E _{init} = ± 0.0V	10-4	Both	$ E_{pa} = 0.49 E_{pc} = 0.20 $	Quasi-rev	2	$E_{pa} = 0.275$ $E_{pc} = 0.125$	eference: SCE "
		0.2M CH ₃ COO H ₄ pH = 5.0		SR 5 - 200 mV s ⁻¹			at SR 50 mV s ⁻ 1			at SR 50 mV s ⁻¹	=
(23) /Sb(III)	9.5 M HC1		ЛИН	1.2V ↔ -1.0V SR10 mV. s ⁻¹ E _{init} = 0.6 V	10-3 - 10 ⁻²	Red	E _{1/2} = 0.47 (3000 rpm and 1 mM)	4.10 ⁻⁴	5	H G G	eference: SCE = 0.2 is stable 9.5 M
//Ce(III)	H ₂ S0 ₄	1 M	ЛҰН	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 ⁻³ - 10 ⁻²	Red	0.9 (3000 rpm) 10-2M	3.2 . 10 ⁻⁴	-	ð	= 0.25
(/Sn(II)	4 M HCl 9.5 M LiBr	+ 1 M HBr	Л	$1.2 \leftrightarrow -0.5V$ $0.0 \leftrightarrow -0.7V$		$\begin{array}{c} 0x\\ 10^{-3} \leftrightarrow 10^{-2}\\ \text{Red} \end{array}$	2 0.4 (3000 rpm) 7 mM - 0.3	2.10 ⁻⁴ 5.6.10 ⁻⁴	5 2	An on	= 0.35 = 0.32
1/Cu(I)	KC1 (+ HC1)	0.5M (0.1M)	Л	1.2 ↔ -1.0V	10 ⁻³ - 10 ⁻²	Both		(4.6 - 9.5) 10 ⁻³	-	B	0.49-0.53
//Ti(III)	H_2SO_4	1 - 10	ЛХН	1.2 ↔ -0.8V	10 ⁻³ - 4 10 ⁻³	ð	0.28 (3000 rpm) 1,5 mM		-		
(/Hg(I)	H_2SO_4	1 M	ЛЛН	1.5 ↔ -1.0V E = 1.0 V	10 ⁻⁵ - 10 ⁻²	Red	0.43 (3000 rpm) 10-3 M	≪ 10 ⁻⁵	<< 10 ⁻	5 8 8	= 0.32 - 0 = 0.55
(I)/Hg(I)	H_2SO_4	1 M	HW	"init "	10 ⁻⁵ - 10 ⁻²	Red	0.42	10-7		no	= 0.55

.

				Experim.details		Reaction	Characteristic	Rate	E1 /2 OT	
System studied (Red/Ox)	Solvent	Supporting electrolyt (conc.)	Electrochem. e method used	(potential range explored, ini- tial potential,	Conc. of Red and/or	observed Oxidation Reduction	Potential measured (V/ref.)	constant (cm s ⁻¹) at	n E ^{1/2} of F/mole ferro- ferricvanide	REMARKS
(Source n°)				stall fate, etc	in the solution in Mole/1	DOLL DOLL	(E1/2, Epeak, other)	standard redox potential	ferricinium	
(24) I/II	CH ₃ CN	TBA PF ₆ 0.5 M	CA	+0.8 to - 2.2 Volt 0.02 V/s to 200 V/s 400 to 10 000 rpm	10-4 to 10 ⁻¹		E _{1/2} + 0.005	0.06	-	Reference: Ag/Ag ⁺ (0.1 M)
NI/III	:	:	NYH	÷	:	Red	E _{1/2} - 0.043	0.19	-	
V/VI	=	:	=	=	Ξ	Red	E _{1/2} - 0.082	0.09	1	
NII/VIII	:	:	:	:	:	Red	E _{1/2} - 0.116	0.07	-	
X/XI	:	:	=	=	:	Red	E _{1/2} - 0.140	0.15	-	
XI/XII	:	=		:	:	Red	E _{1/2} - 0.275	0.12	-	
Note	: (Ru(di-) 1/11 , y 111/1V , X	$ \begin{array}{l} x-dpy \\ x = C1 \\ x = H \\ x = H \end{array} $	() (NO)) ^{1+/2+} V/VI, X = $C_{6}H_5$ VII/VIII, X = $C_{4}H_9$	(pheny1) D (But) XI/)	X/X , X = XII`, X =	cH ₃ ocH ₃				
(25)										
Interactions C-Hydrogen	H ₂ 0	HC10 ₄ +	Electron photo -							
C-H ₂ O		KC10 ₄	emission							
C-Oxygen		0.08 M	in electro- lytes	Activation of the electrode	unknown	Red		very	-	
Reactivity of	ų		, +		in this	very		fast		
photogenerate	pe		CΛ		method	obvious.				
atomic hydroge	Ę			Study of the interactions		Perhaps Ox				
$H \rightarrow H_{20^{+}}$ $H \rightarrow H_{2}$										

•

REMARKS tide 's/	Reference: Ag/Ag (0.01M)	:		lef.: SCE	kef.: SCE
E1/2 or Epeak of ferro- ferricyan or ferrocen ferricini				Н	ц
n F/mole	7	-	1	I	-
Rate constant (cm s ⁻¹) at standard redox potential	Irrev	1.8 . 10 ⁻³	Irrev	I	Rev
Characteristic Potential measured (V/ref.) (E1/2, Epeak, other)	Ep = - 2.0, - 2.3	$E_{1/2} = + 0.20$	E _p = +3.0, +2.9	Many	Ep,c,a : -0.04 +-0.15 as a function of pH
Reaction observed Oxidation Reduction or Both	Red of each conformer	Ox/Red	ŏ	1 ³ 0x/Red	Ox/Red
Conc. of Red and/or 0x in the solution in Mole/1	1.5 10 ⁻³	~ 10 ⁻³	2.10 ⁻²	10 ⁻³ - 5. 10	2.10 ⁻³
Experim. details (potential range explored, ini- tial potential, scan rate, etc	From - 1.5 V to - 2.7 V SR 0.5 - 2 V/s - 60 to - 80°C	From - 0.2 V to + 0.5 V 8 0.02 - 0.1 V/s, 21°C	From +1.0 V to +3.5 V SR 0.5V/s	From + 2V to - 2.2V	From ca 0.3 V to + 0.1 V SR 0.05 V/s, 25°C
Electrochem method used	LSV	SI	ß	S	5
Supporting electrolyte (conc.)	TBAP 0.10M	TEAP 0.10 M	TEAP 0.10 M	TEAP 0.10 M	NaOH + NaNO ₃ (OH ⁻) = 10^{-2} + 5 M
Solvent	n-PrCN	CH ₃ CN	CH ₃ CN	CH ₅ CN	57 % EtOH/ 43 % H ₂ 0 (Vol/Vol)
System studied (Red/Ox) (Source n°)	(26)	Me_N-N \$	$\bigcup_{(CH_3)}$ ccho	related specie	others

.

or or REMARKS lk of REMARKS o- icyanide or ocene/ icinium	- Reference: NHE	ŀ	ı	Jr	c ⁺) SCE	27 V/3CE	Reference: SSCE	
E1/2 le Epec ferr ferr ferr ferr				of Pb 30 mV f(E1/2 (Fc/Fi	⊃ +		
F/mo				by UPD /2 = - 1(← 1		~~	-
Rate constant (cm s ⁻¹) at standard redox potentia	Irrev			catalysis 1/2 ^{to E} 1,	Rev	Rev Rev	0.065	Rev
Characteristic Potential measured (V/ref.) (E1/2, Epeak, other)		E1/2 ≃ - 0.250	<u>م</u>	positive c Shifts E, 02 reducti	E _{Pc} = - 0.45	$E_{Pc}^{1} = - 0.70$ $E_{2}^{2} = - 1.1$ $P_{2}^{2} = - 1.1$	E _{1/2} = 1.03	= 1.01
Reaction observed Oxidation Reduction or Both	Red	$_{2} 0_{2} + 2e^{-}$ + $H_{2}0_{2}$	$H_2O_2 + 2$ + H_2O		Both	Both	X	ŏ
Conc. of Red and/or Ox in the solution in Mole/1	$CO_2 = 2 \cdot 10^{-4}$	10 ⁻³ < C _{H2} 0 ₂ < 10 ⁻²			4.10 ⁻⁴	1.43 . 10 ⁻⁴	10 ⁻³	10 ⁻³
Experim.details (potential range explored, ini- tial potential, scan rate, etc 	From + 200 mV	to - 500 mV	SR 1 to $100 \mathrm{mV s^{-1}}$		0 + -1.9V and 0 + 1.6V	SK 100 MV/s 0 + - 1.9V and 0 + 1.6V SR 100 MV/s	<pre>Einit = 0.00 V 0.05 V/sec</pre>	<pre>Binit = 0.00V 0.05V/sec</pre>
Electrochem. method used	CV and HYV		CV and HYV		C	CV	CA	C
Supporting electrolyte (conc.)	0.5M KC104		0.5M KCIO ₄		THAP 0.1 M	THAP 0.1 M	0.1 M H ₂ SO ₄	0.2M Na ₂ SO ₄
Solvent	H ₂ 0		H ₂ 0		1,2- C ₂ H ₄ C1 ₂	1,2- C ₂ H ₄ C1 ₂	H ₂ 0	H ₂ 0
System studied (Red/Ox) (Source n°)	(27) 0 ₂ /H ₂ 0 ₂		H ₂ 0 ₂		(28) co ₄ (co) ₁₂	Pc H ₂ (free base phtalocyanine)	(30) Ru (bpy) ^{3/2+}	Ru (bpy) ₃ /2+

•

System studied (Red/Ox) (Source n°)	Solvent	Supporting electrolyte (conc.)	Electrochem. method used	Experim. details (potential range explored, ini- tial potential, scan rate, etc 	Conc. of Red and/or Ox in the solution	Reaction observed Oxidation Reduction or Both	Characteristic Potential measured (V/ref.) (E1/2, Epeak,	Rate constant (cm s ⁻¹) at standard redox	n F/mole	E _{1/2} or Epeak of RU ferro- ferricyanide or ferrocene/	MARKS
					Mole/l		×	potential		ferricinium	
(30) Ru (bpy) 3/2 ⁺	H ₂ 0/CH ₃ CN 50/50	0.1 M TMAP	CV	E _{init} = 0.00V SR 0.05V/s	10-3	ð	E _{1/2} = 1.15	Rev	-	Refe	rence: CE
$0s(bpy)\frac{3/2^{+}}{3}$	Н ₂ 0	0.2M Na ₂ SO ₄	t CV	=	10 ⁻³	ŏ	= 0.60	Rev	-		
${ m Cp}_2{ m Fe}{ m TMA}^{2/+}$	Н ₂ 0	0.2M Na ₂ SO	4 CV	:	10 ⁻³	ර්	= 0.38	Rev	-		
bpy = 2,2' C _{P2} FeTMA ⁺ No correct	<pre>bipyridine bipyridine f = (Tetrame ion for jun</pre>	e. sthylammonio): nction potent.	ferrocene. ial.								
(33) Hg/Hg ²⁺	H ₂ 0	KNO ₃	Potentio- static	From + 500 mV to - 500 mV	(M ²⁺) =			Rev	2		
Ag/Ag ⁺	(Deoxyge- nated	(1M)	Galvano- static		10 ⁻⁴ to 10 ⁻¹	Red and		in all cases	-		
Pb/Pb ²⁺	with N_2)			vs. the Rev		ŏ			2		
Cu/Cu ²⁺				potential of the respective M/M ²⁺ electrode					7		
(35) Fe ²⁺ /Fe ³⁺	Н ₂ 0	0.1 M HClO ₄	DC P	E _{init} = + 0 V/SCE	10 ⁻⁴	(Dx Red	$E_{1/2,a} = +0.7$ $E_{1/2,c} = +0.35$	Irrev Irrev		Refe	rence: CE
		0.1M HC10 ₄ 10 ⁻³ M KC1	through	E _{init} = + 0.9V/SCE	10 ⁻⁴	{ 0x Red	$E_{1/2,a} = + 0.58$ $E_{1/2,c} = + 0.42$	Irrev Irrev			= =

System studied (Rex/Ox) (Source n°)	Solvent	Supporting electrolyte (conc.)	Electrochem. method used	Experim. details (potential range explored, ini- tial potential, scan rate, etc	Conc. of Red and/or Ox in the solution in Mole/1	Reaction observed Oxidation Reduction or Both	Characteristic Potential measured (V/ref.) (E1/2, Epeak,	Rate constant n (cm s ⁻¹) F/mol at standard redox potential	E1/2 or Epeak of RB ferro- ferricyanide or ferrocene/ ferricinium	MARKS
(5)	Me ₂ S0	TEAP	CA	Ipc / Ipa		Red of dissolved species	Epc (± 0.01)		Ref. PC Pla	erence : SCE if cou- d to
С (Т-(m-NH ₂) PP)			CV	.		-	{ - 0.08 - 1.45		glas 	sy carbon 1.08 1.50
$C(Fe^{III}T(p-NH_2)PP)$			CV	-			<pre>{ - 0.11 - 0.17 - 1.68</pre>			0.13 1.17 1.65
$C(Co^{III}T(m-M_2)P)$			CV				{ + 0.06 - 0.85		+ -	0.10 0.86
$C(Gu^{II}T(p-M_2)PP)$							{ - 1.20 - 1.68			1.19 1.65
$C(2n^{II}T(p-M_2)P)$							{ - 1.31 - 1.72		<u> </u>	1.39 1.75
$C(Ni^{II}T(p-NH_2)PP)$							{ - 1.18 - 1.75			1.21 1.78
(14) 0 ₂	H ₂ 0	0.1 M KOH	НУ	<pre>prepol.at + 0.25 and at -1.25 V (1 min)</pre>	3.10 ⁻⁴	Red	- 1.143	ca 10 ⁻⁴ 2	Ref	erence : SHE
02	H ₂ 0	0.1 M KOH	ЛХН	Anodic prepol. 20 µA for 2 min.	3.10 ⁻⁴	Red	- 0.022	= - -	Ref	erence : SHE

REMARKS	ference : SSCE		ference : NHE	ference: SCE Electrode covered with adsorb.
E1/2 or Epeak of ferro- ferricyanide or ferrocene/ ferricinium	Re		Re	Re Possibi- lity ECE mechanism
ite n stant n s-1) F/mole tt ndard lox ential			si-rev	
con con con con con con con con con con			Qua:	
Characteristic Potential measured (V/ref.) $(E_1/2, E_{peak})$ other)	Epeak = - 0.430 to - 0.530		Electro- reduction starts ~ + 0.650	$\begin{array}{l} E_{1/2} &= \\ + 0.450 \\ (\pm 0.01) V \\ E_{p} = + 0.475 \end{array}$
Reaction observed Oxidation Reduction or Both	Red OX	ŏ	Red	ŏ ŏ
Conc. of Red and/or Ox in the solution in Mole/1 (*p.p.b.)	Conc. in solut.* 0.025 to 100 ppb	(Pb ^{II}) = 0.1	10 ⁻²	(Red) = 10 ⁻³ (Red) = 10 ⁻³
Experim. details (potential range explored, ini- tial potential, scan rate, etc 	Edeposit =-1.000V Efinal =+0.075V Epulse =50 mV (60 ms) SR 1 to 5 mV.s ⁻¹	Step from : 0 to + 275 mV at 40 to 60°C	From + 0.80 to + 0.40 V	10 rps SR 2 mV s- ¹ SR 5 mV s ⁻¹
Electrochem. method used	DCP - ASV	Potential step	TSV	RDE V LSV
Supporting electrolyte (conc.)	0.01 M HCl or HClO ₄	сн ₃ соон 1 м (сн ₃ соо) 2 Рь 0.1 м	нсіо ₄ 1.0 м	0.5M KCl or 0.25M K ₂ SO ₄ .0.05M tris or Phosphate buffer (pH > 7)
Solvent	H ₂ 0	H ₂ 0	H ₂ 0	H ₂ 0 H ₂ 0
System studied (Red/Ox) (Source n°)	(21) Pb ²⁺ /Pb(Hg)	(28) Pb ²⁺ /Pb0 ₂	(36) Ag ⁺ /Ag	(37) NADH/NAD ⁺ + 2e + H ⁺

System studied (Red/Ox) (Source n°)	Solvent	Supporting electrolyte (conc.)	Electrochem. method used	Experim. details (potential range explored, ini- tial potential, scan rate, etc 	Conc. of Red and/or Ox in the solution in Mole/1	Reaction observed Oxidation Reduction or Both	Characteristic Potential measured (V/ref.) (E1/2, Epeak, other)	Rate constant (cm s ⁻¹) F/n at standard redox potential	E1/2 or Epeak of ferro- ferricyanide or ferricene/ ferricinium	RÉMARKS
(39) Ascorbate (Ascorbic acid)	H ₂ 0	pH 7.4 (0.1M buffer) (0.1M ctrengh to 1 with KC1	5	SR 50 mV . s ⁻¹	5.10 ⁻⁴	ŏ	E _p = + 0.390 V		20053. _{KA}	ference : g/AgC1. C1 4M st. more versible on heated be- re use at
		pH = 3.0	C	SR 50 mV.s ⁻¹	5.10 ⁻⁴	ŏ	0.480		<u>d</u>	. + 0.253 + 0.253
4 Me Cat (Methyl- catechol)	H ₂ 0	pH = 3.0 7.4	CS CS	SR 50 mV . s ⁻¹ SR 50 mV . s ⁻¹	5.10 ⁻⁴ 5.10 ⁻⁴	ŏŏ	$\left\{ \begin{array}{c} 0.415\\ 0.140 \end{array} \right.$	Irrev		+ 0.428 + 0.132
DoPAC (3,4-dihydroxy- phenyl ethyl- amine-HCl)		pH = 3.0 7.4	CS CS	SR 50 mV . s ⁻¹ SR 50 mV . s ⁻¹	5.10 ⁻⁴ 5.10 ⁻⁴	ŏŏ	{+ 0.590 {+ 0.430	Irrev		+ 0.437 + 0.155
DHBA (3,4-dihydroxy- benzylamine- HBr)		pH= 3.0					{ + 0.710 { + 0.360	∿ Rev	·	+ 0.460 + 0.217
(46) 2-Ethyl- anthraquinone	СН ₅ ОН С ₂ Н ₅ ОН Propan- 2-с	Buffer : (0.1M_NH ₄ C1 0.1M_NH ₃) o.1M_NH ₃)	LSV and CV between 0 and -1.0V 20°C		~ 10 ⁻³		E _{Pc} = - 0.68 ± 0.01 V			keference : SCE

REMARKS	erence : SCE				
E1/2 or Epeak of ferro- ferricyanide or ferrocene/ ferricinium	Ref				
n F/mole					
Rate constant (cm s ⁻¹) at standard redox potential					
Characteristic Potential measured (V/ref.) (E1/2, Epeak, other)	Epa (V)	+ 1.03 + 1.00 + 0.90	+ 0.76 + 0.74 + 0.75	+ 0.72 + 0.70 + 0.73 + 0.96 + 0.93	+ 0.76 + 0.74 + 0.77 + 0.69 + 0.65
Reaction observed Oxidation Reduction or Both	ĕ			÷	
Conc. of Red and/or Ox in the solution in Mole/1	2.10 ⁻³				
Experim. details (potential range explored, ini- tial potential, scan rate, etc	SR 37 mV . s ⁻ 1				
Electrochem. method used	CA				
Supporting electrolyte (conc.)	Britton-Rob. buffer (pH = 11.9) + Na ₂ SO ₄ 0.1M				
Solvent	H ₂ 0				
System studied (Red/Ox) (Source n°)	(51)	Me ₂ NH Et ₂ NH Pr ⁿ NH	Me ₃ N Me ₂ NEt Me ₂ NPr ⁿ	Me ₂ NPr ¹ Me ₂ N Bu ^t Me ₂ NCH ₂ CO ₂ Me ₂ NCH ₂ CH ₂ CN Me ₃ NCH ₂ CONH ₃	e c c c c c c c c c c c c c c c c c c c

LEMARKS	SCE :
E1/2 or Epeak of ferro- ferricyanide or ferricene/ ferricinium	Refe
n F/mole	
Rate constant (cm s ⁻¹) at standard redox potential	
Characteristic Potential measured (V/ref.) (E1/2, Epeak, other)	$1/2 (E_{pc}+E_{pa})$ (V) $+ 0.67$ $+ 0.63$ $+ 0.62$ $+ 0.67$ $+ 0.64$ $+ 0.63$
Reaction observed Oxidation Reduction or Both	
Conc. of Red and/or OX in the solution in Mole/1	5.10 ⁻³ to 2.10 ⁻²
Experim. details (potential range explored, ini- tial potential, scan rate, etc 	
Electrochem. method used	5
Supporting electrolyte (conc.)	Phosphate buffer (pH = 12) 0.1 M Na_2 HPO - Na OH, 0.1 M Na_2 SO ₄
Solvent	H20 Н
System studied (Red/Ox) (Source n°)	(52) Me ₂ N Et Me ₂ N Pr ⁿ Me ₂ N Pr ⁱ Me ₂ N - CH ₂ CH ₂ ⁱ Me ₂ N - CH ₂ Ph Me ₂ N - CH ₂ Ph Me ₂ N - CH ₂ CO ₂

APPENDIX D : SOURCE LIST

a) Answers to the questionnaire

- (1) Dr. John F. Evans, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55414 (USA).
- (2) Pr. Wang Erkang, Changchun Institute of Applied Chemistry, Academia Sinica, Changchun, Jilin 130021 (China).
- (3) Dr. J. Moiroux, Laboratoire de Chimie, E.N.S.E.T., 61, Avenue du Président Wilson, 94230 Cachan (France).
- (4) Dr. Gen P. Satô, Department of Chemistry, Sophia University, Faculty of Science and Technology, 1, Kioi-cho 7-chome, Chiyoda-Ku, Tokyo 102 (Japan).
- (5) Pr. Royce W. Murray, Kenan Laboratories of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514 (USA).
- (6) Pr. Joseph Jordan, Department of Chemistry, Pennsylvania State University, 152, Davey Laboratory, University Park, Pennsylvania 16802 (USA).
- (7) Dr. Russell J. Taylor, Department of Defence, Materials Research Laboratories, Cordite Avenue, Maribyrnong, P.O.B. 50, Ascot Vale, Victoria 3032 (Australia).
- (8) Dr. Léon Mart /ICH 4, Nuclear Research Center Juelich, P.O.B. 1913, D-5170 Jülich 1 (FRG).
- (9) Dr. Plichon, Laboratoire de Chimie Analytique des Milieux Réactionnels, E.S.P.C.I., 10, rue Vauquelin, 75231 Paris Cédex 05 (France).
- (10) Pr. G.J. Patriarche Dr. J.M. Kauffmann, Université Libre de Bruxelles, Institut de Pharmacie, Campus Plaine, C.P. 205/6, Boulevard du Triomphe, B-1050 Bruxelles (Belgium).
- (11) Dr. Karl Doblhofer, Fritz-Haber Institut der Max-Planck-Gesellschaft, Faradayweg 4-4, D-1000 Berlin 33 (FRG).
- (12) Dr. G. Le Guillanton, Laboratoire de Synthèse et Electrochimie Organique, Université Catholique de l'Ouest, B.P. 808, 49005 Angers Cédex (France).
- (13) Dr. P. Zuman, Department of Chemistry, Clarkson College of Technology, Potsdam, New York 13676 (USA).
- (14) Dr. M. Brězina and Dr. J. Weber, J. Heyrovský Institute of Physical Chemistry and Electrochemistry, Czechoslovak Academy of Sciences, U továren 254, 10200 Prague 10 (Czechoslovakia).
- (15) Dr. M. Molina, Laboratoire d'Electrochimie Analytique, SCAA SEA DCAEA, Centre d'Etudes Nucléaires, B.P. 6, 92260 Fontenay aux Roses (France).
- (16) Dr. Maurice L'Her, Departement de Chimie, Université de Bretagne Occidentale, 6, Avenue Le Gorgeu, 29283 Brest Cédex (France).
- (17) Dr. Isamu Uchida, Department of Applied Chemistry, Faculty of Engineering, Tohoku University, Sendai (Japan).
- (18) Dr. Dierk Knittel, Institut f
 ür Physikalische Chemie, Universit
 ät Hamburg, Laufgraben 24, D-2000 Hamburg 13 (FRG).
- (19) Dr. Karel Štulík, Charles University, Department of Analytical Chemistry, Albertov 2030, 12840 Prague 2 (Czechoslovakia).
- (20) Pr. Mitsugi Senda and Dr. Tokuji Ikeda, Department of Agricultural Chemistry, College of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606 (Japan).

- (21) Dr. Juerg B. Reust, Inst. für Anorganische, Analytische und Physikalische Chemie, Universität Bern, Freiestrasse 3, CH-3012 Bern (Switzerland), Div. of Chemical and Physical Sciences, Deakin University, Victoria 3217 (Australia).
- (22) Dr. James Anderson, Department of Chemistry, University of Georgia, Athens, Georgia 30602 (USA).
- (23) Dr. Paul Kiekens, Rijksuniversiteit Gent, Laboratorium voor Analytische Scheikunde (Pr. Verbeek), Krijgslaan 271-S 12, 9000 Gent (Belgium).
- (24) Dr. Kevin T. Corby, Dupont Experimental Station, E 269/304, Wilmington, Delaware 19898 (USA).
- (25) Dr. Pierre Vennereau, Laboratoire d'Electrochimie Interfaciale du CNRS, 1, Place Aristide Briand, 92195 Meudon Cédex principal (France).
- (26) Dr. Dennis H. Evans, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706 (USA).
- (27) Pr. W. Lorenz, Institut für Physikalische Chemie und Elektrochemie, Lehrstuhl III, Universität Karlsruhe, Kaiserstrasse 12, 7500 Karlsruhe 1 (FRG).
- (28) Pr. M. Gross, Laboratoire d'Electrochimie, Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg (France).
- (29) Dr. Daniel S. Polcyn, Pope Scientific, Inc., P.O.B. 495, Menomonee Falls, Wisconsin 53051 (USA).
- (30) Pr. Allen J. Bard, Department of Chemistry, University of Texas, Austin, Texas 78712 (USA).
- (31) Pr. Maja, Istituto Di Elettrochimica e Di Chimica Fisica, Politecnico, Corso Duca degli Abruzzi, 24 Torino (Italy).
- (33) Dr. B.R. Schariffer, Departamento de Quimica, Universidad Simon Bolivar, Apartado 80659, Caracas 1080 (Venezuela).
- (34) Dr. H.C. Brookes, Chemistry Department, University Natal, Durban (South Africa).
- (35) Pr. V.D. Linden, Chemical Analytical, Department CT. Technische Hogeschool Twente Postbus 217, 7500 AE Enschede (Netherlands).
- (36) Pr. R.G. Barradas, Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6 (Canada).
- (37) Pr. Philip J. Elving, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (USA).
- (39) Pr. R. Mark Wightman, Department of Chemistry, Chem. Building, Indiana University, Bloomington, Indiana 47405 (USA).
- (47) Dr. J. Robinson, Department of Chemistry, The University, Southampton SO9 5NH (G.B.).
- b) Published papers
- (32) Joseph Wang, Department of Chemistry, New Mexico State University, Las Cruces NM 88003 (USA).
 Electrochimica Acta, 26, nº 12, p. 1721-1726 (1981).
- (38) F. Seon, G. Picard and B. Tremillon, Laboratoire d'Electrochimie Analytique et Appliquée, LA
 - au CNRS nº 216, Ecole Nationale Supérieure de Chimie de Paris, Université P. et M. Curie, 11, rue P. et M. Curie, 75231 Paris Cédex 05 (France). - <u>Electrochimica Acta</u>, <u>27</u>, nº 10, p. 1357-1368 (1982).

- (40) W.J. Blaedel and G.W. Schieffer, Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (USA).
 J. Electroanal. Chem., 80, p. 259-271 (1977).
- (41) W.E. Van der Linden and J.W. Dieker, Laboratory for Analytical Chemistry, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands).
 <u>Analytica chimica Acta</u>, <u>119</u>, p. 1-24 (1980).
- (42) D. Laser and M. Ariel, Department of Chemistry, Technion, Israel Institute of Technology, Haifa (Israel).
 <u>Electroanalytical Chemistry and Interfacial Electrochemistry</u>, <u>52</u>, p. 291-303 (1974).
- (43) Royce C. Engstrom, Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069 (USA).
 <u>Anal. Chem.</u>, <u>54</u>, p. 2310-2314 (1982).
- (44) Luke Bjelica, Roger Parsons and M. Reeves, Department of Physical Chemistry, The University, Bristol BS8 ITS (G.B.).
 Proc. Symp. Electrode Processes Electrochemical Society Monograph, p. 190 (1979).
 Croatica Chemica Acta, CCACAA, 53 (2), p.211-231 (1980).
- (45) W.J. Blaedel and Roger A. Jenkins, Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (USA).
 <u>Analytical Chemistry</u>, <u>46</u>, n° 13 (Nov. 1974).
- (46) V.J. Jennings, T.E. Forster and J. Williams, Lanchester Polytechnic, Coventry, Warwickshire (G.B.).
 <u>Analyst</u>, <u>95</u>, p. 718-721 (August 1970).
- (48) L.S. Chulkina and V.A. Zarinskii, V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Academy of Sciences of the USSR, Moscow (USSR).
 - J. Anal. Chem. USSR, <u>27</u>, p. 2044 (1972).
- (49) Ruedi Eggli, Institute of Inorganic Chemistry, University of Zürich, CH-8001 Zürich (Switzerland).
 <u>Analytica Chimica Acta</u>, 97, p. 195-198 (1978).
- (50) F. Vydra and P. Petak, J. Heyrovsky Polarographic Institute, Czechoslovak Academy of Sciences and Ore Research Institute, Prague (Czechoslovakia).
 J. Electroanal. Chem., 24, p. 379-386 (1970).
 J. Electroanal. Chem., 33, p. 161-168, (1971).
- (51) Masaichiro Masui, Hiroteru Sayo and Yoshiaki Tsuda, Faculty of Pharmaceutical Sciences, Osaka University, Toneyama, Toyonaka, Osaka-fu (Japan).
 - J. Chem. Soc. (B), p. 973-976 (1968).
- (52) Masaichiro Masui and Hiroteru Sayo, Faculty of Pharmaceutical Sciences, Osaka University, Toneyama, Toyonaka, Osaka-fu (Japan).
 J. Chem. Soc. (B), p. 1593-1596 (1971).
- (53) J.P. Collman, M. Marrocco, C.M. Elliott and M. L'Her - <u>J. Electroanal. Chem.</u>, <u>124</u>, p. 113 (1981).
- (54) J.P. Collman, C.M. Elliott - <u>Proc. Nat. Acad. Sci. USA</u>, 7, (1977).
- (55) J.P. Collman, P. Denisevich, Y. Konai, M. Marocco, C. Koval and F. Anson - <u>J. Amer. Chem. Soc.</u>, <u>102</u>, p. 6027 (1980).

Transport properties of electrolytes for applied research and technology from infinite dilution to saturation in mixed-solvent solutions Transport property measurements, insights	1071 355 369	U.v. microscopy, oxidation and stabilization studies on polymers	1727
into solute–solute–solvent interactions from Triglycerides in fats and oils, standardised method for determining Tungsten, Mo, and Re enolates, synthesis and C—C bond-forming reactions of	1083 1515R 1789	Waters fresh, pH determination in low ionic strength natural, physical chemistry of Waveguides, preparation of optical White blood cells, morfometry of	877R 1015 1299 599
Ultra high modulus polyethylene composites uPVC pipe, understanding brittle failure of	1641 993	X-ray scattering measurements of order in non-crystalline polymers	1627

Errata

Volume, Issue and Year	Page no. and location	Correction
<u>56</u> , 8 (1984)	1102 Solvent: Molten Salts Column 1, item 6	for CuCl ₂ /KCl read CaCl ₂ /KCl
<u>57</u> , 6 (1985)	903 Section 6.4 line l	<u>for</u> cholesterol oxygen oxidoreductase <u>read</u> cholesterol oxidase suspension
	903 Section 6.5 line l	for (catalase-suspension 1) read (catalase-suspension)
	903 Section 7.2 line 3	<u>for</u> catalase-suspension 1 (6.5) <u>read</u> cholesterol oxidase suspension (6.4)