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Solubility of gases in liquids: a critical review
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Ab4tLw2;t - Selected theoretical and experimental aspects of vapor-liquid
equilibria involving supercritical (noncondensable) components are reviewed.
The focus is on the rigorous thermodynamic basis on which high-precision
methods for the determination of Henry coefficients have to rest. A
condensed outline of current theories and correlations for the prediction
of auxiliary quantities, such as virial coefficients and partial molar
volumes, is presented. Finally, attention is given to recent work on

relatively simple aqueous solutions of nonelectrolytes, which may
contribute towards a better understanding of hydrophobic effects.

INTRODUCTION

The years since 1970 have been marked by intense activity in the field of solutions of non-

electrolytes in general, and of the solubility of gases in liquids in particular. The wealth

of new and precise experimental data (often a consequence of novel designs of apparatus),

the development of refined solution theories, and the recognition of the central role in

science of effective communication and dissemination of data, are documented representatively

by Refs.(l-32). This activity can be traced to requirements originating in rather diverse

areas of the pure and applied sciences. For instance, chemical process design often needs

reliable estimates of vapor-liquid equilibria (VLE) for mixtures containing one or more

components at rather low concentrations (trace components), which are either supercritical

(noncondensable) or only slightly subcritical. Other areas, where gas solubility data are

frequently needed, are geochemistry, environmental science (pollution control) and bio-

medical technology. Since life cannot exist without water, studies of simple aqueous

solutions, in particular of the rare gases and of hydrocarbons, have held a prominent

position in biophysics. Perhaps most important, studies on such model systems have provided

information on hydrophobic effects, which are thought to be of importance in complex

biological processes. By way of example we list a few application-oriented topics of recent

interest: strongly enhanced solubility of oxygen in perfluorinated hydrocarbons (33) as

compared to the solubility in the parent hydrocarbons - these substances are chemically

inert enough to be used as blood substitutes and as gas carriers in liquid breathing (34,35);

solubility of gases in long-chain alcohols (36) and its relation to anesthetic potency (37,

38); solubility of Freons in water (39), and of oxygen and ozone in water (waste water

treatment) (40,41); removal of CO2 and H2S from sour natural or synthetic gases by mixed-

solvent absorption (gas sweetening) (42-44); solubility of hydrogen and other light gases

in high molecular weight solvents (45,46), which is of importance for a number of
engineering processes such as hydrofining of oil and coal, and enhanced oil recovery;

solubility of gases in aqueous solutions of surfactants (solubilization) (47).

Given this wide scope it is not surprising that the subject of gas solubility in liquids has
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such a vast literature, as evidenced by the various representative reviews, state-of-the-art

reports and data compilations cited above. Because of this diversity, a certain variation

of experimental as well as theoretical methods used in each of these areas is almost in-

evitable, and makes it impossible to cover all of them in one short review. Far from being

exhaustive, this article will therefore focus on just a few selected areas with the bias

reflecting current research interests of the author. First, a rigorous discussion of the

thermodynamic fundamentals relevant to the solubility of gases in liquids will be presented.

This will be followed by an appraisal of recent experimental developments and of advances

pertinent to data reduction and correlation. A condensed outline of current methods for the

prediction of important auxiliary quantities, such as virial coefficients and partial molar

volumes, will be included. The last section will be devoted almost entirely to recent work on

relatively simple aqueous solutions of nonelectrolytes (with special attention to hydrophobic

effects).

In a loose way, the expression "solution of gas(es) in liquid(s)" is usually meant to

characterize \ILE in multicomponent mixtures where one or more of the components are 4apet-

c'tLtLcct or only 4Uht4( subcritical at the experimental temperature, and where the liquid-

phase mole fracti.on x2 of the "gas" is much 4maUvz than that of the solvent. At room

temperature and at a partial pressure of gas of about 100 kPa, mole fraction solubility

values for gases like Ar, N2 or CH4 dissolved in liquids such as benzene, methanol or water

are roughly between 10 and io-2. Clearly, some arbitrariness is involved and such a

classification is to be taken as a mere heuristic convenience to deal with corresponding

VLE data, i.e. with "gas-solubility data. Most of what follows will concern the solubi.lity

of a pwze gcu in a pwt tLqwLd. Gas solubilities in mIxed solvents, though undoubtedly of

considerable practical as well as theoretical Interest, will only be touched upon. Further,

problems associated with solutions of chemically reacting gases will not be treated to any

extent. Those with a specific interest in these topics are referred to Refs. (1,20,23,48-53).

THERMODYNAMICS

When discussing equilibria of phases containing more than one component, it is frequently

convenient to distinguish between a mixture or a solution, and a dA1wt IoewtLokt. In a

mixture all components are on equal footing; thermodynamically they are all treated in the

same manner, that is to say symmetrically. On the other hand in a dilute solution, one (or

several) of the components is/are present in great excess and form(s) the 4oLurl-t or mAxd
4oeve'zt, while the remaining component(s) at usually rather low mole fraction(s) is/are

classified as 4oewte.(4). In general, the thermodynamic treatment of dilute solutions focuses

on the solute(s), that is to say it will be asymmetric. These statements will be quantified

below. There is nothing fundamental in this distinction between a dilute solution and a

mixture, and although no-t a&uuj stated explicitly , thermodynamic analysis of gas-solvent

systems proceeds essentially along the lines as for other phase equilibrium problems. It

seems thus permissible to present here only a rather condensed treatment and to refer for

details to the appropriate reviews (22,31) and monographs (1,20,24), in particular to the

excellent recent book by Van Ness and Abbott (24), which contains a section on the reduction

and correlation of gas-solubility data.

Consider a PvT-system with uniform temperature T and pressure P containing K components in
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each phase. The fundamental relations characterizing phase equilibrium between two phases

are those which equate the chemical potential of each component i = 1, ... , K i.n one phase

to its chemical potential in the other. This equilibrium condition may be replaced

advantageously by the rigorously equivalent criterion of eqacLI,tyo -the componeivt ugctc.Ltie
f. For VLE this can be expressed in compact notation as

fV(rPlv) = fL(rpIL) ( = 1),K) (1)

where the superscripts 1 and L indicate the vapor phase and the liquid phase, respectively,

{x" denotes the set of (K-i) independent vapor-phase mole fractions Ix, .. • x1}, and
{xt denotes the set of (K-i) independent liquid-phase mole fractions. As indicated in Eq.(1)

the fugacities depend on temperature, pressure and composition. Two methods are cotmionly used

to establish the link with experimental practice. In the first, the equilibrium condition

is rewritten in terms of the agacLty coe7çLc2ent6

Ø.(T,x}) f/(;P) (2)

in both phases L and V. In the second method the fugacities in the vapor phase are again

expressed in terms of , while the LLqwLd-pka fugacities are expressed in terms of

liquid-phase tvLty coeLcJ.vt4

L(Tp1L1) fL/(LfOL) ()
where fOL is an appropriate standard-state fugacity. Setting IyJ fx"J and dropping the

superscript L where permissible, Eq.(1) may be recast in the following two entL&eLy

eqwLvc2eiit ways:

= = i,...,K, (4)

= (5)

Each equation may serve as a rigorous basis for the treatment of VLE problems. Note that both

Eqs.(4) and (5) in fact represent K highly complex equations relating 2K variables

(T,P,x}4y}). Hence - in accord with the phase rule - K variables have to be specified to

allow solution for the remaining K unknowns. The decision as to what approach should be

preferred is by and large a matter of convenience and of taste. For high pressure VLE in-

volving fairly simple substances(,. the use of a single equati.on of state (EOS) vali.d for bo-tk

phases has often computational advantages and a certain aesthetic appeal, and thus Eq.(4) may

be selected. Eq.(5) is the one most frequently used in the thermodynamic analysis of VLE

(data reduction or VLE calculations) at low to moderate pressures. In this case, an LOS is

required onLy for the £ow-deiz4Lty vapo phase (often the virial EOS is useful), while for the

UquJLd phase usually an adequate coe LcLeivt model (or more precisely an analytical

expression for the excess molar Gibbs energy GE as a function of the x) is introduced; see

however also Refs. (54,55) for numerical methods. Since the emphasis of this review is on gas

solubilities at rather low pressures and temperatures well below the critical temperature

Tc,i of the solvent (see Note a), only the ('y, )-method, Eq.(5), will be considered; the

Note a: Throughout this article, a subscript c will denote a "critical quantity", and reduced

quantities r "c will be designated by a subscript r. A subscript s indicates "orthobaric

(i.e. saturation) conditions". Superscri.pts ° identify either "standard-state quantities" or

"perfect-gas-state quantities", * is reserved for "pure-substance quantities", and

indicates "infinite dilution".
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)-mettiod will not be pursued further. In what follows now on bLna..&y yotem, component
1 will always be the subcritical solvent and component 2 will be the dIssolved gas (usually,

but not necessarily a supercritical fluId).

So far nothing has been decided as to the choice of standard states, which is in fact again

largely a matter of convenience. Two covLve.ntLovi4 are in common use. One is based on ideal
behavior in the sense of the LewA.s-1Zctnda!2 'wte, that is to say for aU components we

identify q with f, the fugacity of the pure component i in either a real or hypothetical
liquid state at (T,P) of the solution. Thus, reality is compared with the behavior of the

model fluid "ideal solution (Lewis-Randall)", where
*

Ii = xLf(7;P), Lclorl. (6)

The other convention distinguishes between the solvent and the solute and is based on ideal

behavior of the latter in the sense of Heviy'4 Law, that is to say for component 1 (solvent)

= whereas for component 2 (solute) f Is identified with the Hetvij co Lcivt H21
all at (T,P) of the solution. Thus, reality Is compared with the behavior of the model fluid
"ideal -dilute solution (Henry)", where

*1 \xfT,Pj (7)

H2,1(TP)

f2

H21=Iim (HL)
2 dx2 x2:0

K-i.—tim —t\ X2

0

Fig. 1. Composition dependence of component fugacity f2 in a binary

solution at constant (T,P). f is the fugacity of pure substance 2 and H21

is the Henry coefficient. The dashed lines represent Henry's law (HL) and

the Lewis-Randall rule (LR), respectively.

constant(T, P)

x2
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Corresponding to these two conventions, the 1iquidphase activity coefficients are

normal ized either 4ynnet'iJLc.a.Uy

cis 4

(8)

or an.4ymmQfJrLaLey

AS

(9)
as

The prime in Eq.(9) is to serve as a reminder that the unsymmetric convention of

normalization has been used, that is to say f1/(x1fF and f2/(x2H2
We re-

iterate that the numerical value of the activity coefficient depends on the selected

standard state and has no significance whatsoever unless the value of is specified

concomitantly. The two choices of convention for the standard states are shown in Fig. 1'.

Note that for a supercritical component 2 no experimental value for the liquid-state fugacity

of pure 2 exists, and that f2 is known from experiment only for x2<1.

The 4jmme.t'uLc onvej'jtLovi is the most natural one for mixtures where aU Tc > T, and where

the interest is on the composition dependence of the various thermodynamic quantities in the

whole range Ox1. When Tc2<T and/or when the interest is on the thermodynamics of

component 2 in the dilute region, the wt6ymme.ttL conveiitLori is usually selected. ft has the

advantage that the Henry coefficient and hence 'y are unambiguously defined according to an

expetiineivtal pir.ocedait.e (as indicated in Fig. 1); these quantities may be obtained, at least

in principle, to any desired degree of accuracy. However, as an alternative in the case

Tc 2 <
T one may obtain the fugacity of pure solute in a hypothetLcc2 liquid state through

essentially cvthLt'wJLy extrapolation of the function

ef = x4tn(f1/x) + constcpt (T,P) (10)

to x2 = 1 f is the mixture fugacity, and £n(f1/x) is the partial molar quantity associated

with £nf. The resulting pure-component fugacity f may then be adopted as an arbitrary

standard-state fugacity for the solute and the symmetric convention may be applied. We note

that for each extrapolation recipe a corresponding dL,'.ent set of liquid-phase activity

coefficients ensues (56), each satisfying f*L = 4/x9.

The various quantities corresponding to these conventions are, of course, related. At

constant (T,P)

D /P* fl D øo
(11)

"2,4 (n'y2
= ÷ e°° , (12)

where the activity coefficient at infinite dilution is given by

co 0. 1i ' D. In )\ (13)= = — (mi /
x*4

The equilibrium criteria for VLE, Eqs.(4,5), provide relations at temperature T and

equilibrium pressure P of the solution. For Jotkejunc2 condLtLon4, P varies with x2, and
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hence for each composttion and 'y f and will refer to a dL exn-t pressure

and not to a fixed reference pressure. Thus the pressure dependence of these quantities

must be known and the pertinent formulae are summarized below. For the reduction (or

correlation) of gas-solubility data it is advantageous to choose the vapor pressure P5

of the solvent as the constant reference pressure. Conversion to any other reference

pressure is - at least in principle - straightforward. The fugacity of the pure solvent at

(T,P) is related to its vapor pressure by

f*L(Tp) f*L(TP)1(TP) = 14(TP) , (14)

(T1P) xp . (15)

Here, is the fugacity coefficient of pure saturated solvent vapor,

i.s the molar volume of pure liquid, and ?(T,P) is called the Poynting correction. For the

Henry coefficient we obtain

H21(T,P) = H21(7/)(T,P) , (16)

(7P) e.xp (17)

w1ere is the partial molar volume of dissolved gas at infinite dilution. The

appropriate relations for the activity coefficients are

(TxL) =

fvrPv*LTP aP )
(18)

RT (19)

where VLj(T,P,x2) is the partial molar volume of component i (= 1 or 2) at mole fraction x2.

As concerns the fugacity coefficient of species i,we present two perfectly general

equations valid for V as well as for L, which allow its determination either in terms of a

p/e44wLe-e.xpLLc.Lt or a io&Lme (den ty)-exptLcLt EOS, provided of course, that the EOS are

valid over the entire ranges of integration. When a pressure-explicit EOS

P/?RTZZ(T,y,{x}.) is used

f'[(ônZ)
- ez cotot (7{xj). (20)

Here aV is the molar density of the mixture, n1 is the amount of substance i, n =

and Z is the compressibility factor of the mixture. The corresponding expression for a

volume (density)-explicit EOS Z = Z(T,P,{x}) is

114
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= f(z - constant (T{x}), (21)

where Z PV1/RT and (anV/ni)T,p,n.
is the partial molar volume of i in the

solution. Since the majority of EOS are psure-explicit rather than volume-explicit,

Eq.(20) is more useful in VLE problems than Eq.(21). The appropriate formulae for the

pure-substance fugacity coefficients are, with obvious notation,

*

— f(Z — 4)(?7)4cL5Z + - '1 — nZj' contctT (22)

and

- fcz- 1)P4dP, costct T. (23)

We now have at hand the thermodynamic formalism for a rigorous discussion of the /ie4acUori

and covieLatLovi of gas-solubility data on the basis of the ('y,Ø)-approach in the un-

syninetrical version (22,24,31). I4o-the,'mc2 conditions are assumed throughout and the vapor

pressure P5t of pure solvent is always chosen as the eeeizce peAs4w'. For the solute

the equilibrium criterion Eq.(5) may be replaced by

y(T,P)y2)P (24)

where use was made of Eqs.(16,17,19). Analogously, for the solvent we now have

y1'(7Fy1)P = x4#y4(7 ! x)74 Si ep . (25)

Note that both and of Eqs.(24,25) are constant-pressure activity coefficients which,

at fixed temperature, depend only on liquid-phase composition. They are by definition

independent of the system pressure. Their advantages have been discussed in detail by

Prausnitz (1). In particular, they satisfy the isothermal-isobaric Gibbs-Duhem equation

x4dn'y4(7 14 + XZ (TJI x) = 0 . (26)

At the vapor pressure of the solvent, the Henry coefficient is rigorously accessible

through determination of the limiting value of experimental (VLE) ratios of the fugacity

of the solute over the corresponding mole fraction (see Fig. 1):

e(fL/) e
r,I)P

.
(27)

Thus, according to the prescription Eq.(27), H21(T,P51) is obtained as the teept in a

graph of (y22P/x2) against x2 at constant T. Since for x2-' 0 also y2 -.0, application of

de UHôpital's rule (see Fig. 1) yields several entirely equivalent expressions for the

Henry coefficient (24,31), relating it to UnvLtLng 4iopes. For instance
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h'2.14(I,FM)
=j(f/d1) = Vpe(/) ) (28)

which is perhaps the most useful version. Here is the fugacity coefficient of component
2 at infinite dilution in the vapor phase.

DetermThation of the Henry coefficient is only the first step in a comprehensive reduction
of gas-solubil ity data. SInce actual solubi.l ity nasurements are sometimes performed at
several d:LeAeiit pressures P > and hence at different LnLt mole fractions x2, they

contain not only information on H21, but also on the composition dependence of the activity
coefficient. The influence of total pressure upon liquid-phase fugacities has been separated

formally from the influence of composition through Eqs.(24,25), whence extraction of

constant-pressure activity coefficients becomes feasible. The lzey teLa-tLo'i for the

determination of #.y(T,Pi,x2) at constant T is a more compact and convenient form (31)

of Eq.(24),

e( P) (TP
= en 'y( 7; xi). (29)

s/I

The argument of the logarithmic term on the lhs of Eq.(29) is a dimensionless group

containing the experimental isothermal data, the Henry coefficient H2 1(T,P51) already

extracted therefrom, and the vapor-phase fugaci.ty coefficient of the solute, which must be

calculated from a suitable EOS, see Eqs.(20,21). To proceed further, that is to say in order

to evaluate the integral in Eq.(29), information is needed onihe composition dependence

ao ieU a. the pressure dependence of the partial molar volume 4 in the liquid phase. These

two terms may then be combined to yield constant - pressure activity coefficients for each

data point, which in turn may be correlated with x2 by any appropriate correlating equation.

This is, then, the reward for exacting and tedious experimental work on the solubility of a

gas in a liquid: the Henry coefficient H2 1(T,P5 ) and a correlating equation for

#y(T,P51 ,x2).

A final caveat concerns the extension of the methods just described to multisolute/multi-

solvent systems. The activity coefficient of any supercritical component may again be based

on either the Henry coefficient or the fugacity of the pure solute in a hypothetical liquid

state. Both approaches are thermodynamically equivalent, though implementation of the

unsymmetric formalism leads to somewhat more complex equations. The ensuing problems have

been discussed in depth by Van Ness and Abbott (49), see also Ref.(24). Let it here suffice

to present the general situation for a ternary solution in which a supercritical component 3

(the gas) is dissolved in a mixture of two solvents 1 and 2. For this case Fig. 2 shows

schematIcally the surface

= Ex1et(f1/.x1) (30)

as a function of the composition at constant T and P. The two curves £nf = £nf(x3;x2= 0) and

tnf = £nf(x3;x1= O characterize the constituent binary solutions [3,1] and [3,2]. For

component 3 dissolved in solvent i, H3 1(T,P) is by definition the limiting value at

constant T and P of the partial molar quantity £n(f3/x3) as x3 0, and is thus given by the
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intercept on the x3= 1 axis of the tangent drawn at (x3= 0,x1= 1). For the gas dissolved in

a binary mixed solvent [1+2] with composition (x1,x2), £nH3,[12](TP) is obtained

analogously. The curve results now from the intersection of the £nf surface with the vertical

plane characterizing the constant composition ratio x1/x2, and the tangent is drawn at

(x3= O,x1,x2= 1-x1), yielding the Henry coefficient again as the intercept on the x3= 1 axis.

In the limit x3-O

3)[4+2.1
em (Ptfi) = fC4+2J + eirrL nf
x3O 3 xO(3)T,P) /Xj

where £nf[1÷2]i.s the fugacity of the binary (solute-free) solvent mixture [1+2]. Evidently,

H3,[1+2]dePends on the composition of the mixed solvent [1+2] and has of course the

limiting values H31 for x1 = 1 and H3,2 for x2= 1.

(31)

/ (nH32

/ 1
constcint(T,P) "

/

/

,tnH31/ / I"
/ I/ I

n
I

In f

*
mt2

Fig. 2. Schematic representation of the £nf surface for a ternary solution

of a gas, 3 ,in the mixed solvent [1+2]: the Henry coefficient in the pure

solvent I (= 1 or 2) is H3,1 and in the mixed solvent it is H3,12]

While the solubility of gases in mixed solvents is important in many industrial applications,
relat(vely few experimental data are available. Thus, heavy use is made of prediction
schemes which endeavor to correlate the multisolvent quantity

£nHgas [1+2+3+ ••
With the

ntich more frequently known £flHgas,j characterizing the solubility of the particular gas in
solvent i= 1,2,3 etc. Ln addition to work already cited,Refs. (57-60) further illustrate

activities in this area.

We conclude this introduction to the thermodynamics of mixtures containing supercritical

components with a section devoted entirely to various approximations to the exact

relations obtained so far. These approximations are indispensable when application to

experimental reality is desired.Additional details will be given together with the dis-
cussion of experimental techniques. Consider for instance the key relation Eq.(29). Though

thermodynamically rigorous and fairly straightforward, this formalism for separating the
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Influence of composttion upon the liquid—phase fugacity from the influence of pressure is

marred by the following (22,31):

(a) Rigorous evaluation of the Poynting term would require detailed knowledge of the pressure

dependence as well as the composition dependence of the partial molar volume,and this

at each temperature of interest. Such comprehensive information will be available only

in very few cases; for the great majority of solutions, however, approximations at

various levels of sophistication must be introduced (1,22,24,31,61,62) to make the

problem tractable. Similar comments apply to Eqs.(14),(16) etc. The situation i.s

particularly unsatisfactory at high pressures and when approaching the critical region,

where the Poynting corrections become significant.

(b) Frequently, the calculation of cannot be based on experimental results, say second

and third virial coefficients (63), but must use semi-empirical correlations, the

reliability of which may not always be high. This may impede satisfactory reduction of

data obtained at elevated pressures (64,65).

(c) With few exceptions, typical gas solubility measurements do no.t cover large composition

ranges. At the same time, experimental scatter often tends to obscure the composition

dependence of the derived constant-pressure activity coefficients. Thus for purely

practical reasons, the correlating equations for'yusually contain only few adjustable

parameters, that is to say very rarely more than two (1,66).

Against this background several popu&v ctppxox.inot..Lon4 to the key relation Eq.(29) will be

given in order of decreasing restrictiveness. The assumption = I (the vapor phase

behaves as an ideal-gas mixture), together with #4(T,P51,x2) = 1 (usually quite reasonable

for small solubilities) and ignoring the Poynting term (acceptable for pressures well

below the critical region) leads to the simplest and most £cvmLtLax relation

E
y1P

=
X2/21 ,

(32)

which is often called "Heivy'4 Law". A series of similar approximationsto Eq.(25) results

in "Rctot's Law" for the sol vent,

(33)

Li' only the simplification concerning the vapor phase is relaxed, we obtain for the solute

=
2±12)1

. (34)

Adding the Poynting term with 4(T,P, x2)= viT,P5 yet still retaining y = 1,

independent of composition, yields

e((&" \ = (P - P)VO0P)
xH (7P)) RT2 2.,1 s,1

This expression is known as the IQricJ'iv41zy-Ka6aiu'iov4!zy eqao.tLori (67). For a long time it has

been used for the determination of v0L from gas solubility measurements at elevated pressures

and accounts, in fact, for a large portion of the existing data. However, the mole fraction

solubility may then be already appreciable and hence the assumptions 'y = 1 and 4 =

too severe. Values for VQL obtained in this way should always be regarded with caution

and may be unreliable (68,69). The p/ieexked experimental method for determining VOL is

either precision densimetry (70) or dilatometry (71) at very small mole fractions.

As concerns the model ing of the composition dependence of 'y, the correlating equation has
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to be compatible with the number and the precision of the experi.nnta1 data points. Because
of the i.nterconvertability of symmetrically and unsymmetrically normalized activity
coefficients, Eqs.(I1) through (13), the selection of such correlations usually follows

rather closely the well established recipes for the symmetrically normalized activity

coefficients. The simplest possibility corresponds to the two-suffix Margules equation,

that is to say for the constant-pressure activity coefficients at P51 and T we obtain

ey1 = Ax , n'y A (x — 1) . (36)

Insertion into Eq.(29) and maintaining the same level of approximation with respect to 4

gives

(y2(7y2)P\ (P- VL(7j) - 2 - (37)
" x2/-I1(TP4) ) RT \X1 )

which i.s known as the KtiLchv4!zy— Lnsizayct qaa.Lovi (72,73). There can be little doubt that

even Eq.(37) is not particularly realistic at high pressures and/or high solubility. How-

ever, we emphasize again that an indispensible prerequisite for the use of more elaborate

correlating equations is the availability of experimental data on the compo4LtLon dependence

of the partial molar volume as well as on its p/ewe dependence.

The magnitude of the Poynting correction, evaluated with a generally applicable liquid-phase

EOS, is indicated by the following specific example. Consider a fictitious liquid, at
*L 3-1 *L -9-1298.15 K, with molar volume V, = 120 cm mol and isothermal compressibility 5T = 10 Pa

*L
and let the pressure dependence of V be accounted for by the modItSLed TaLt equwtLovL (22,

26,31,74), which is satisfactory for pressures up to several tens of megapascals. Upon

insertion into Eq.(15) and integration

tn-I

= ex V*L (i + mI3IP) —

(38)
MTE P RT (m1)3.,

where = - and m is a pressure-independent parameter. For many organic liquids

experimental values cluster around m = 10, with very small temperature dependence (74,75).

For an applied pressure LP = 0.2 MPa we obtain 4TE= 1.01, and for tP = 2 MPa the result

is 1.10, quite a significant correction. Qualitatively similar coments apply

for the solute.

Whatever method for determining H21(T,P51) is selected, say for instance recipes Eq.(27)

or Eq.(28), evaluation from an experimental isothermal data set requires a vapor-phase EOS

for calculating the fugacity coefficient. The majority of gas solubility measurements are

in the low to moderate pressure domain, say with P not exceeding several megapascals. Hence

for many systems the virial equation

= I + Bp"÷ c(Y)1+ (39)

is convenient (26,31), and often yields entirely satisfactory results even when truncated

after the term which is linear in molar densityp' For a mixture of K components, each with

mole fraction y

B(7
= 2 y, > B (T) (40)
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KKK
C(Ty) : >'L >'j YkJk(T)

etc. (41)

k

Coefficients, with identical subscripts refer to pure substances, whereas mixed subscripts

designate composition-independent interaction virial coefficients (or cross-coefficients)

characterizing the molecular interaction between molecules of species i with those of species

j (Be), of species i with those of species j and k (Clik) and so forth. They are functions

of temperature only. Insertion of Eqs.(39-41) into Eq.(20) yields for a two-component

mxtu re

en = 2j(y2B + yB)+ (yC1 + Lyy2C41 + C41) - nZV) (42)

= + ... (FO1 C
— e z". (43)

Unfortunately, experimental information on third virial coefficients is rather 1 itnited and

one has to rely heavily on correlation methods, such as those advanced by Chueh and
Prausni.tz (76), or more recently by De Santis and Grande (77), and Orbey and Vera (78).
This, and the computational convenience associated with a volume-explicit rather than a

pressure-explicit EOS, leads to the widely used approximation for Low pressures

= 1 + BP/RT ()
where B of the mixture is again given by Eq.(40.). The corresponding expression for the

fugacity coefficient is now

= + y412) ,

(2B — (46)

where l'2 2B12 - (B11 + B22). We emphasize that the quite popular rule of thumb

v(T,P1yz) *V(Tp) (47)

may frequently be a rather unsatisfactory assumption (22), and is in general inapplicable
for the evaluation of Eq.(47J can be justified only if the vapor phase is an ideal
solution.

EXPERIMENT

Advances in experimental technique for the determination of Henry coefficients may be

classified as follows:

(a) novel designs of apparatus which significantly improve experimental precision and

accuracy;

(b) designs which increase the accessible pressure and temperature ranges of already

existing instruments;

(c) efforts towards simplifying and accelerating data acquisition.

In this article only recent contributions to (a) will be considered. Some of the older,

more popular types of apparatus have been reviewed in detail by Battino and Clever (79) in

1966, and a decade later in 1975 (8); see also Refs.(6,13,17,21,25).
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The most significant recent advance belonging to group (a) is undoubtedly due to Benson and

Krause (BK) (80,81). They use an cj'iaJytLca2 method in which the composition of the liquid

phase and of the vapor phase in equilibrium is determined via classical PvT measurements.

The precision (and accuracy) which may be achieved with BK—type equipment surpasses that of

any previous design, including the one of Cook and Hanson (82). A schematic representation

of the experimental situation (31,81,83-85) is provided by Fig. 3. The flow diagram contains

the essential parts of the apparatus as well as the auxiliary thermodynamic quantities, which

have to be either measured separately, or extracted from the literature, or estimated. The

average random error of H2 i(T,PS1) obtained in this way is usually about ±0.05 %. The

methods reliability has been impressively demonstrated by the reported interiab accord on

oxygen solubility in water: between 275 and 328 K, the difference between the data reported

by Benson et al. (81) and those reported by Rettich et al. (83-85) amounted to about 0.1' %.

As shown in Fig. 3, the essential parts of this apparatus are a degassing device (86), an

equilibrator (81,83), an extractor (same design as for degassing), the Töpler pump (87) for

transferring the dry gas to the manometric system, the high-precision manometric system

itself (PvT-measurements) and, of course, powerful thermostats (temperature drift± 0.003 K

during 24 h) and platinum resistance thermometers. Quantities measured are the temperature

at equilibrium, and the amounts of gas n and n contained in precisely known volumes of the

liquid solution, L, and of the vapor phase,v". As was shown in Ref.(83), Henry

coefficients of sparingly soluble gases may be obtained according to

H24 (T 4) = ii0[hz"CTI, Y ) qT, P) yZ)1 (48)

h24 = (/nt)(QL/vv)RT/Vl*L (49)

Fig. 3. Determination (schematic) of Henry coefficients H2 l(T,PS ) with
a BK-type apparatus (81,83). Auxiliary quantities needed for rigorous

data reduction are also shown (31,83-85).

(50)
L c0L LN - — )
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Note that the total equi.l ibrium pressure P does not appear expi icitely in Eq.(48) . Lt has
to be known, however, for the evaluation of the correction term and i.s obtained by an

iterative procedure described in detail in Ref.(83).

As already indicated above, for gaseous mixtures at low pressures the virial EOS in its

volume-explicit form is convenient. While there is often sufficient information on the pure-

substance virial coefficients experimental results on the cross-coefficients B12 are

frequently lacking (63). Cross-coefficients may be estimated with reasonable confidence by

several well-established correlations, such as the Hayden-O'Connell method (88) or the

Pi.tzer-Curl -Tsonopoulos corresponding-states method (89,90) . when using the latter, the
reduced pure-substance virial coefficient at a reduced temperature Tr is given by

= + ) (51)

where B0 and B(D are polynomials in T1 , and is the acentric factor. Lt is assumed
that the same relation holds for the cross-coefficient B12, but with characteristic para-

meters (interaction parameters) Tc 12' c 12 and w12 replacing the pure-substance quantities

Tc c and w , to which they are related by conventional recipes known as combL4t&tg )wle4.

Specifically, the reduced temperature is now Tn2 T/Tci2 and

=
) (52a)

CZ = 474z(1 ,i/1 + ÷ ) 3) (52b)

= + (52c)

The quantity k12 is another binary interaction parameter (usually much smaller than unity).

Lt is similar to the binary interaction parameters used in the more fundamental combining
rules for unlike energy parameters of two-parameter pair potentials (26,91,92). Mixture

compressibility factor ZV and component fugacity coefficient may then be calculated by

Eqs.(40,44,45). Alternatively, one may use any appropriate analytical EOS to obtain Z"
Examples for calculations of this kind have been presented in Refs.(93) and (94). In the

former, a modified Redlich-Kwong equation is used, while the latter utilizes a perturbed-

hard-sphere EOS similar to that introduced by Carnahan and Starling (95).

In our method (31,83-85) of determining H2 1(T,P51), the partial molar volume at infinite

dilution has to be known. Recent measurements with a vibrating-tube densimeter (70) yielded

VOL for 20 fluids (about half of them supercritical) dissolved in water; a dilatometri.c

method was used in Ref.(71) to obtain this quantity for several gases (CH4, C2H6 etc.) in

n-alkanes and 1-alkanols. in liquid water is well correlated with Vc 2 that is to

say at 298.15 K our results are represented to within ca. ± 10 % by V/cm3moi = 10.74

+ 0.2683 'c 2/cm3mol. For the noncondensables this is comparable to the performance

of the Brelvi-OConnell correlation (96), which should twt be used at temperatures sub-

stanttally below the critical temperature of the solute Tc 2• Scaled particle theory has

been used by Pierotti (12,97) and Wilhelm et al. (14), amongst others, to calculate oL

for nonpolar and polar gases in both nonpolar and polar solvents according to

wooL = VCAV + t RT)
Here =

(aGCAV/3P)T , and GCAV and GINT are the partial molar Gibbs energy of cavity
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formation (98) and interaction (12,14,97,99,100), respectively. Agreement with experiment is

satisfactory in most cases. For a review of the literature on vrL see Handa and Benson (62).

Over limited ranges of I , the temperature dependence of H21(T,P51) is usually adequately

represented by either the Clarke-Glew (CG) equation ((01)

en(H/Pa) = A0
+ + An(T/K) + A3(T/K) + A(T/K)Z+ (54)

or by the BK equation (80,81)

Fig. 4. Henry coefficients H2 1(T,P5 () for (H20 + N2) and (H2O + CO) as

functions of temperature: t = I/K - 273.15. 0, experimental results;—
either CG or BK smoothing equations; ———, obtained via scaled particle

theory (84,85).

Fig. 4 shows measured Henry coefficients for CO and N2 dissolved in water (84,85) as a

function of temperature, the correlations provided by the appropriate smoothing equations

(CG or BK), and results obtained by application of scaled particle theory in its simplest

version (12,14,97,99,100). Substantial improvement of the temperature dependence of H21

(for instance, reasonably accurate prediction of the usually observed maximum of the curve

H21 vs. I) is possible by introducing the concept of eec2Lve, hence tempe,'ct—depei'dent,

hard-sphere diameters (102) into the formalism, as recently shown y Prausnitz et al. (46,

103).

With very few exceptions precision measurements of H2 1(T,P5 over sufficiently large

ranges of temperature constitute the only source of information on enthalpies of solution,

and ci oJLtLcrni on heat capacity changes upon solution, AC 2 = of sparingly

soluble gases in liquids (14,104,105), see also Refs.(26,31). Specifically,

tt

e (I-/2/PQ) =

io (55)

0 20 60
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(H,°
L - HV)/RT = - + (56)

where HOL is the partial molar enthalpy of the gas at infinite dilution in the solvent, and
is the molar enthalpy of pure component 2 in the ideal-gas state. The first term on the

rhs of Eq.(56) is obtained from one of the selected fitting equations. The temperature
dependence of the vapor pressure of the solvent may be calculated from any suitable vapor
pressure correlation, for instance from the Antoine equation, the Lee-Kesler equation (for
nonpolar liquids) (106) or the Scott-Osborne equation (107). For temperatures far below

Tci , the second term on the rhs of Eq.(56) will frequently be rather small as compared

to the first term. Eq.(56) evidently provides a set of values &1(T,P5 ) , which yields,

by an argument analogous to that used above, the heat capacity change upon solution.

The Oit.txi2d coed LcLent L2 1 is another widely used practical measure of the solubility of

gas 2 in solvent 1 (108). Let the conventional Ostwald coefficient be defined by

Lzj(T)P) (c/41)eue ) (57)

where c2 n2/v, with the appropriate superscript, is the amount-of-substance concentration

(or simply, concentration) of solute 2 either in the liquid-phase solution or in the

coexisting vapor-phase solution at (T,P). Its Lôn.Lt.Lrig vaJLae for vanishingly small

concentration is denoted by

L' L(7 P) = . (58)

P_,4
Eq.(57) in conjunction with the equilibrium condition formulated on the basis of Henry's

law yields (22), after some algebraic manipulation, the rigorous relation

v/.
RT ZT,P)y)z(l)F,y1)

L24(P =
y(T1P,)

(59)

where vL(T,p,x2) is the molar volume of the liquid solution. Hence in the limit of 4 -O
we obtain, with limV (T,P,x2) =

V1 (T,P

ck+o

RT—

H2 (7; 1A V*L
.. 7 . (60)

At low to moderate pressures Eq.(43) may be applied, whereby

Z(T,4) = + .

Alternatively, we may use the virial equation in its volume-explicit form, whence after

series expansion

Z°"(Ti,/4) = + + (#)s11(zB42—B44) (62)

As reported by Wilhelm (22), Eq.(60) provides a rigorous expression for the £imA.tLrig jct&

of the Henry coefficient as T*Tci and 51cl

eHll/i2,l(T,1'4)
=

, (63)



Solubiityofgasesinliquids: acriticaireview 319

whtcb equation was also given by Beutier and Renon (109). Lt mwst be incorporated Ln any

rational Lde-teinpeiuttwie ing correlation for H21(T,P51) extending up to the critical

region. In particular we note that the empirical extrapolation recipe of Hayduk and Laudi.e

(1:10) is in variance with Eq.(63).

The Ostwald coefficient is of central importance in the theory of hydrophobic (soltophobic)

phenomena. Following Ben-Naim (18), when discussing pow.Lse. hydiwpkobLc thtvuzctLovi (HI.)

we refer to the Ldxei,t part G(r) of the Gibbs energy change AG(r) required to bring the

solute particles from fixed positions at infinite separation in water to some close distance

r at constant temperature and pressure. In other words, we are interested in the ove'zt-

£ndacd contribution augmenting the d'LeeJ part that is due to the solute-solute pair

potential U5(r)1

(r) = U6(r) + oG'() . (64)

The link with experimentally accessible quantities i.s established by the appxoxixnczt relation

HI, = r_) = —
) (65)

where r_ = 0.1533nm is the carbon-carbon distance in ethane and

0 — _r)rft jOO . cu tuu
,I-I2.o

tc.i
L)HjO

1. Lr14 or t..1ri6
. (66)

The approximation indicated by Eq.(65) is easily generalized to discuss HI among many solute

particles (18,111).

CONCLUDING REMARKS

Quantitative investigation of the solubility of gases in liquids has a long and well

establ ished tradition in physical chemistry. Essentially it started in the fifties of the

last century with the work of Bunsen (112), and throughout the years many a distinguished

scientist has contributed to this subject. One can only marvel about the careful experimental

work of some of the early researchers; for instance about Winkler's contributions (113)

almost a century ago, which are still qui.te acceptable (± 1 %) in the majority of cases.

The assortment of modern instrumentation accessible to todays experimental ist, however,

has now made possible the study of highly dilute binary solutions of gases in liquids with

unparalleled precision, accuracy and speed over wide ranges of temperature and pressure.

Cross-fertil ization with other discipl ines, for instance with calorimetry, is becoming
increasingly important (104,105). In fact, one of the objectives of this article was to

indicate new and active interdisciplinary topics (see the Introduction); while our own
perception of their relative importance may not be shared by all, it appears safe to state

that they will greatly stimulate applied research in the coming decade.

This review was primarily concerned with the rigorous thermodynamic formalism relevant to

VLE involving supercritical compounds, and its rational implementation in high-precision

experimental work directed towards the determination of Henry coefficients and related

quantities. Alternatives to the classical approach have been indicated, for instance the

use of an EOS valid for both the liquid and the vapor phases. This method may gradually

become more prominent when relatively simple solutions are considered. Yet as long as the

scientist's interest is focused on phenomena involving significantly anisotropic molecules
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-in dilute solutions, in particular in aqueous solutions, the Henry's law approach appears

to be naturally superior to the others, and It is hard to imagine its replacement. Little

space was devoted to experimental details, and recent theoretical advances have been mdi-

cated only briefly. Our understanding of nonpolar, nonassociated liquids and of simple

solutions has increased considerably during the last decade (7,13,15,17,25,114-118). This

is niuch less so for liquid water, and aqueous solutions even of rather simple solutes, such

as hydrocarbons, remain a major challenge to a statistical—mechanical interpretation of

solubiii.ty phenomena. High-precision measurements of the kind discussed here in the

experimental section evidently occupy a key position in the development of new theorettcal
approaches.
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