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Abstract - Selected theoretical and experimental aspects of vapor-liquid
equilibria involving supercritical (noncondensable) components are reviewed.
The focus is on the rigorous thermodynamic basis on which high-precision
methods for the determination of Henry coefficients have to rest. A
condensed outline of current theories and correlations for the prediction
of auxiliary quantities, such as virial coefficients and partial molar
volumes, is presented. Finally, attention is given to recent work on
relatively simple aqueous solutions of nonelectrolytes, which may
contribute towards a better understanding of hydrophobic effects.

INTRODUCTION

The years since 1970 have been marked by intense activity in the field of solutions of non-
electrolytes in general, and of the solubility of gases in Tiquids in particular. The wealth
of new and precise experimental data (often a consequence of novel designs of apparatus),
the development of refined solution theories, and the recognition of the central role in
science of effective communication and dissemination of data, are documented representatively
by Refs.(1-32). This activity can be traced to requirements originating in rather diverse
areas of the pure and applied sciences. For instance, chemical process design often needs
reliable estimates of vapor-liquid equilibria (VLE) for mixtures containing one or more
components at rather low concentrations (trace components), which are either supercritical
(noncondensable) or only slightly subcritical. Other areas, where gas solubility data are
frequently needed, are geochemistry, environmental science (pollution control) and bio-
medical technology. Since Tife cannot exist without water, studies of simple aqueous
solutions, in particular of the rare gases and of hydrocarbons, have held a prominent
position in biophysics. Perhaps most important, studies on such model systems have provided
information on hydrophobic effects, which are thought to be of importance in complex
biological processes. By way of example we 1list a few application-oriented topics of recent
interest: strongly enhanced solubility of oxygen in perfluorinated hydrocarbons (33) as
compared to the solubility in the parent hydrocarbons - these substances are chemically
inert enough to be used as blood substitutes and as gas carriers in liquid breathing (34,35);
solubility of gases in Tong-chain alcohols (36) and its relation to anesthetic potency (37,
38); solubility of Freons in water (39), and of oxygen and ozone in water (waste water
treatment) (40,41); removal of CO2 and HZS from sour natural or synthetic gases by mixed-
solvent absorption (gas sweetening) (42-44); solubility of hydrogen and other light gases

in high molecular weight solvents (45,46), which is of importance for a number of
engineering processes such as hydrofining of 0il and coal, and enhanced 0il recovery;
solubility of gases in aqueous solutions of surfactants (solubilization) (47).

Given this wide scope it is not surprising that the subject of gas solubility in liquids has
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such a vast literature, as evidenced by the various representative reviews, state-of-the-art
reports and data compilations cited above. Because of this diversity, a certain variation

of experimental as well as theoretical methods used in each of these areas is almost in-
evitable, and makes it impossible to cover all of them in one short review. Far from being
exhaustive, this article will therefore focus on just a few selected areas with the bias
reflecting current research interests of the author. First, a rigorous discussion of the
thermodynamic fundamentals relevant to the solubility of gases in liquids will be presented.
This will be followed by an appraisal of recent experimental developments and of advances
pertinent to data reduction and correlation. A condensed outline of current methods for the
prediction of important auxiliary quantities, such as virial coefficients and partial molar
volumes, will be included. The last section will be devoted almost entirely to recent work on
relatively simple aqueous solutions of nonelectrolytes (with special attention to hydrophobic
effects).

In a Toose way, the expression "solution of gas(es) in Tiquid(s)" is usually meant to
characterize VLE in multicomponent mixtures where one or more of the components are super-
cuitical or only s8ightly subcritical at the experimental temperature, and where the 1iquid-
phase mole fraction X, of the "gas" is much smallen than that of the solvent. At room
temperature and at a partial pressure of “gas" of about 100 kPa, mole fraction solubility
values for gases 1ike Ar, N2 or CH4 dissolved in 1iquids such as benzene, methanol or water
are roughly between 10—4 and 10'2. Clearly, some arbitrariness is involved and such a
classification is to be taken as a mere heuristic convenience to deal with corresponding

VLE data, i.e. with "gas-solubility data". Most of what follows will concern the solubility
of a pure gas in a pure Liquid. Gas solubilities in mixed solvents, though undoubtedly of
considerable practical as well as theoretical interest, will only be touched upon. Further,
problems associated with solutions of chemically reacting gases will not be treated to any
extent. Those with a specific interest in these topics are referred to Refs. (1,20,23,48-53).

THERMODYNAMICS

When discussing equilibria of phases containing more than one component, it is frequently
convenient to distinguish between a mixture or a solution, and a dilute solution. In a
mixture all components are on equal footing; thermodynamically they are all treated in the
same manner, that is to say symmetrically. On the other hand in a dilute solution, one (or
several) of the components is/are present in great excess and form(s) the sofvent or mixed
sofvent, while the remaining component(s) at usually rather Tow mole fraction(s) is/are
classified as 4ofute(s). In general, the thermodynamic treatment of dilute solutions focuses
on the solute(s), that is to say it will be asymmetric. These statements will be quantified
below. There is nothing fundamental in this distinction between a dilute solution and a
mixture, and although not always stated explicitly , thermodynamic analysis of gas-solvent
systems proceeds essentially along the 1ines as for other phase equilibrium problems. It
seems thus permissible to present here only a rather condensed treatment and to refer for
details to the appropriate reviews (22,31) and monographs (1,20,24), in particular to the
excellent recent book by Van Ness and Abbott (24), which contains a section on the reduction
and correlation of gas-solubility data.

Consider a PvT-system with uniform temperature T and pressure P containing K components in
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each phase. The fundamental relations characterizing phase equilibrium between two phases
are those which equate the chemical potential of each component i = 1, ... , K in one phase
to its chemical potential in the other. This equilibrium condition may be replaced
advantageously by the rigorously equivalent criterion of equality of the component fugacities
fi' For VLE this can be expressed in compact notation as

-V(T,P,{xv}) = {."(Tng"g) , i=1,..,K, (1)
where the superscripts V and L indicate the vapor phase and the 1iquid phase, respectively,
{x } denotes the set of (K-1) independent vapor-phase mole fractions {Xgs eev s XK 1} and
{x } denotes the set of (K-1) independent 1iquid-phase mole fractions. As indicated in Eq.(f)
the fugacities depend on temperature, pressure and composition. Two methods are commonly used
to establish the 1link with experimental practice. In the first, the equilibrium condition
is rewritten in terms of the fugacity coefficients

#.(T,Pix}) = f./P) (2)

in both phases L and V. In the second method the fugacities in the vapor phase are again
expressed in terms of ¢¥ » while the Liquid-phase fugacities are expressed in terms of
liquid-phase activity coefficients

L _ /L oL
W (LR = fo/(<607) > (3)
is an appropriate standard-state fugacity. Setting {y} = {xv} and dropping the

superscript L where permissible, Eq.(1) may be recast in the following two entirely
equivalent ways:

where fgL

yt (TR = x (TR ix}) P K @
vt (TRAYNP = xen(BRx)f (T P) L K 5)

Each equation may serve as a rigorous basis for the treatment of VLE problems. Note that both
Eqs.(4) and (5) in fact represent K highly complex equations relating 2K variables
(T,P,{x}{y}). Hence - in accord with the phase rule - K variables have to be specified to
allow solution for the remaining K unknowns. The decision as to what approach should be
preferred is by and large a matter of convenience and of taste. For high pressure VLE in-
volving fairly simple substances, the use of a single equation of state (E0S) valid for both
phases has often computational advantages and a certain aesthetic appeal, and thus Eq.(4) may
be selected. Eq.(5) is the one most frequently used in the thermodynamic analysis of VLE
(data reduction or VLE calculations) at low to moderate pressures. In this case, an EOS is
required only for the Low-density vapor phase (often the virial EOS is useful), while for the
Liquid phase usually an adequate activity coefficient model (or more precisely an analytical
expression for the excess molar Gibbs energy GE as a function of the xi) is introduced; see
however also Refs. (54,55) for numerical methods. Since the emphasis of this review is on gas
solubilities at rather Tow pressures and temperatures well below the critical temperature
Tc.q of the solvent (see Note a), only the (,¢ )-method, Eq.(5), will be considered; the

Note a: Throughout this article, a subscript c will denote a "critical quantity", and reduced
quantities Qr g Q/Qc will be designated by a subscript r. A subscript s indicates "orthobaric
(i.e. saturation) conditions". Superscripts ° identify either "standard-state quantities" or
"perfect-gas-state quantities", * is reserved for "pure-substance quantities", and
indicates "infinite dilution".
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(¢, ¢ )-method will not be pursued further. In what follows now on binarny systems, component
1 will always be the subcritical solvent and component 2 will be the dissolved gas (usually,
but not necessarily a supercritical fluid).

So far nothing has been decided as to the choice of standard states, which is in fact again
largely a matter of convenience. Two conventions are in common use. One is based on ideal
behavior in the sense of the Lewis-Randall nufe, that is to say for aflf components we
identify f° with f* the fugacity of the pure component i in either a real or hypotheticatl
Tiquid state at (T P) of the solution. Thus, reality is compared with the behavior of the
model fluid "ideal solution (Lewis-Randall)", where

id *
fo = xufi(TP), i=dor2. (6)

The other convention distinguishes between the solvent and the solute and is based on ideal
behavior of the latter in the sense of Henry's faw, that is to say for component 1 (solvent)
f? = f%¥, whereas for component 2 (solute) 3 is identified with the Henny coefficient H2 1
all at (T,P) of the solution. Thus, reallty is compared with the behavior of the model f1u1d
"ideal-dilute solution (Henry)", where

ﬁid i "4]{4*(7-/ P) (7)
)frfd Y 24(T F)

constant(T,P)
A4 Ha
,/
f, o
/, *
L, > f2 f
,, =7 =t _2— if.z
1,, ’,’ Hz'i—lér;no xz-(dXZ);z:O (HL)
‘ -’ df
rd rd
S 4 = lim (—2) (LR)
,’ ’,/ 2 X2"1 X2 dx 12=
W2
0 Xy — 1

Fig. 1. Composition dependence of component fugacity f2 in a binary
solution at constant (T,P). f is the fugacity of pure substance 2 and H2 1
is the Henry coefficient. The dashed 1ines represent Henry's law (HL) and
the Lewis-Randall rule (LR), respectively.
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Corresponding to these two conventions, the 1iquid-phase activity coefficients are
normalized either symmetrically

% 1 as Xy = 4

(8)
72—-1 as x2—~4
or unsymmeirically
L (9)

75-—*— | as X, — 0

The prime in Eq.(9) is to serve as a reminder that the unsymmetric convention of
normalization has been used, that is to say V=T /(x 1) and 72 = fz/(sz2 l) We re-
iterate that the numerical value of the activity coeff1c1ent depends on the se1ected

standard state and has no significance whatsoever unless the value of f; is specified
concomitantly. The two choices of convention for the standard states are shown in Fig. 1

Note that for a supercritical component 2 no experimental value for the Tiquid-state fugacity
of pure 2 exists, and that f2 is known from experiment only for X, <1.

The symmetric convention is the most natural one for mixtures where all T i T, and where
the interest is on the composition dependence of the various thermodynam1c quant1t1es in the
whole range 0<x € 1. When T 2< T and/or when the interest is on the thermodynamics of
component 2 in the dilute reg1on the unsymmetrnic convention is usually selected. It has the
advantage that the Henry coefficient and hence 72 are unambiguously defined according to an
experdmental procedure (as indicated in Fig. 1); these quantities may be obtained, at least
in principle, to any desired degree of accuracy. However, as an alternative in the case

Tc,2 < T one may obtain the fugacity of pure solute in a hypotheticat liquid state through
essentially anbitrary extrapolation of the function

enf = x4fn(f4/x1) + xzen(fl/xz) > constant (T; P) (10)

1: f is the mixture fugacity, and tn(fi/xi) is the partial molar quantity associated
with £nf. The resulting pure-component fugacity f§ may then be adopted as an arbitrary
standard-state fugacity for the solute and the symmetric convention may be applied. We note
that for each extrapolation recipe a corresponding different set of liquid-phase activity
coefficients ensues (56), each satisfying Y5 = f3/%5 .

to x2

The various quantities corresponding to these conventions are, of course, related. At
constant (T,P)

¥ = - g (11)
bnfy = bnHyy = lny?
tny, = tny, + try, (12)
where the activity coefficient at infinite dilution is given by

ton] = Ly (o) = = fim (o) )

The equilibrium criteria for VLE, Eqs.(4,5), provide relations at temperature T and
equilibrium pressure P of the solution. For isothewmal conditions, P varies with Xos and
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hence for each composition ¢;, 7Y and 'yé, f1 and l“lz’1 will refer to a different pressure
and not to a fixed reference pressure. Thus the pressure dependence of these quantities
must be known and the pertinent formulae are summarized below. For the reduction (or
correlation) of gas-solubility data it is advantageous to choose the vapor pressure Ps,1

of the solvent as the constant reference pressure. Conversion to any other reference
pressure is - at least in principle - straightforward. The fugacity of the pure solvent at
(T,P) is related to its vapor pressure by

FHmP) = fULEDETP) = Bagu BTP) a
")

}4)(7:/3) = exp f\/‘R*f-dP . (15)
’

Here, ¢S 1 = ?IV(T P 1) is the fugacity coefficient of pure saturated solvent vapor, V*L
is the mo1ar voTlume of pure liquid, and 3’(T P) is called the Poynting correction. For the
Henry coefficient we obtain

H2’1(7:P) = H2)4(T;’:4)?£(7: P, (16)
5 P
T
B(T,P) = exp f‘%)—#’ ) (17)
£

where V;°L is the partial molar volume of dissolved gas at infinite dilution. The
appropriate relations for the activity coefficients are

AN TP
w(TBx) = %(T By ,xy)exp U XETV‘ (r.P) dPi (18)
Lo

L
AU RN U I ""Pf Ve (1, x’) (/’P) » (19)

where VE(T,P,xZ) is the partial molar volume of component i (= 1 or 2) at mole fraction X
As concerns the fugacity coefficient ¢i of species i,we present two perfectly general
equations valid for V as well as for L, which allow its determination either in terms of a
presswre-explicit or a vofume (density)-explicit EOS, provided of course, that the EOS are
valid over the entire ranges of integration. When a pressure-explicit EOS

P/?RTaZ= Z(T,y,{x}) is used

i

tng, = onZ Ao dp - tnZ , constant (T,{x}). (20)
0 T #ty

Here yzlv'1 is the molar density of the mixture, n, is the amount of substance i, n= 2:"1’

and Z is the compressibility factor of the mixture. The corresponding expression for a
volume (density)-explicit EOS Z = Z(T,P,{x}) is
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P
fn ¢ = /(Zi = 1)P-‘JP > constant (T; {x}) , (21)
0

where Zi = PVi/RT and Vi = (anV/ani)T’P’n. . is the partial molar volume of i in the
solution. Since the majority of EOS are p;3§sure-exp1icit rather than volume-explicit,
Eq.(20) is more useful in VLE problems than Eq.(21). The appropriate formulae for the
pure-substance fugacity coefficients ¢§ are, with obvious notation,

§t
Engi = { (ZF - ()7 + ZF -1 - thZ], constant T (22)
and
p
tn ¢f = f(zr" ")P-ldp, constant T . (23)
0

We now have at hand the thermodynamic formalism for a rigorous discussion of the reduction
and conrelation of gas-solubility data on the basis of the (17, ¢ )-approach in the un-
symmetrical version (22,24,31). Isothermal conditions are assumed throughout and the vapor
pressure Ps,I of pure solvent is always chosen as the nreference pressure. For the solute
the equilibrium criterion Eq.(5) may be replaced by

P L
v, )
Y.$:(T,P,y,)P = "272(7')5,4”‘z)Hz,4(T/5,4)exPf&g&)dp @)
P

sA
where use was made of Eqs.(16,17,19). Analogously, for the solvent we now have

v - P YT P )
WPy )P = (T, Ry x) R 1451 exp j—'—R’T'AdP . (25)
P

sA
Note that both Y1 and 7; of Eqs.(24,25) are constant-pressure activity coefficients which,
at fixed temperature, depend only on liquid-phase composition. They are by definition
independent of the system pressure. Their advantages have been discussed in detail by
Prausnitz (1). In particular, they satisfy the isothermal-isobaric Gibbs-Duhem equation

x1d€n'y1(7jlz’4,xz) + xzdﬂny,’_(ﬁli’“x,_) =0 . (26)

At the vapor pressure PS 1 of the solvent, the Henry coefficient is rigorously accessible
through determination of the 1imiting value of experimental (VLE) ratios of the fugacity
of the solute over the corresponding mole fraction (see Fig. 1):

V
Loy o op %8 Thy)P
Hz,4(7/’?,4> 'xzé"a(fz/"z) 'XE.'."b = X, . (27)

Thus, according to the prescription Eq.(27), H2’1(T,PS’1) is obtained as the intercept in a
graph of (yzng/xz) against Xy at constant T. Since for X, > 0 also Yy -0, application of
de 1'H6pital's rule (see Fig. 1) yields several entirely equivalent expressions for the
Henry coefficient (24,31), relating it to Limiting sLopes. For instance
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H,,(TF,) - tim @f/d%) = ¢1 2, e:m(olyz/dx), (28)
2

] 7

which is perhaps the most useful version. Here ¢? is the fugacity coefficient of component
2 at infinite dilution in the vapor phase.

Determination of the Henry coefficient is only the first step in a comprehensive reduction
of gas-solubility data. Since actual solubility measurements are sometimes performed at
several different pressures P > PS’1 and hence at different {.inite mole fractions Xos they
contain not only information on H2,1, but also on the composition dependence of the activity
coefficient. The influence of total pressure upon liquid-phase fugacities has been separated
formally from the influence of composition through Eqgs.(24,25), whence extraction of
constant-pressure activity coefficients becomes feasible. The key nelation for the
determination of 3‘y§(T,PS’1,x2)£ at constant T is a more compact and convenient form (31)
of Eq.(24),

Pix,) . (29)

0 Vz¢2(r yz)P flé(TPx,_) AP = bn (

x,H, (TP "

2724 /5,4
s4

The argument of the logarithmic term on the lhs of Eq.(29) is a dimensionless group
containing the experimental isothermal data, the Henry coefficient H2’1(T,PS,1) already
extracted therefrom, and the vapor-phase fugacity coefficient of the solute, which must be
calculated from a suitable EOS, see Eqs.(20,21). To proceed further, that is to say in order
to evaluate the integral in Eq.(29), information is needed on the composition dependence
as well as the pressure dependence of the partial molar volume v; in the 1iquid phase. These
two terms may then be combined to yield constant - pressure activity coefficients for each
data point, which in turn may be correlated with X, by any appropriate correlating equation.
This is, then, the reward for exacting and tedious experimental work on the solubility of a
gas in a 1iquid: the Henry coefficient HZ,T(T’Ps,1) and a correlating equation for
7E(T,Ps’1,x2).

A final caveat concerns the extension of the methods just described to multisolute/multi-
solvent systems. The activity coefficient of any supercritical component may again be based
on either the Henry coefficient or the fugacity of the pure solute in a hypothetical 1iquid
state. Both approaches are thermodynamically equivalent, though implementation of the
unsymmetric formalism leads to somewhat more complex equations. The ensuing problems have
been discussed in depth by Van Ness and Abbott (49), see also Ref.(24). Let it here suffice
to present the general situation for a ternary solution in which a supercritical component 3
(the gas) is dissolved in a mixture of two solvents 1 and 2. For this case Fig. 2 shows
schematically the surface

nf = ‘.Z:xi tn o /x0) (30)

as a function of the composition at constant T and P. The two curves £nf = an(x3;x2= 0) and
nf = nf(x3x,= 0) characterize the constituent binary solutions [3,1] and [3,2]. For
component 3 dissolved in solvent i, H (T P) is by definition the Timiting value at
constant T and P of the partial molar quantlty ﬂn(f3/x3) as x3> 0, and 1s thus given by the
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intercept on the X4= 1 axis of the tangent drawn at (x3= O,xi= 1). For the gas dissolved in
a binary mixed solvent [1+2] with composition (XgsX5) 5 ﬂnH3’[1+2]( T,P) is obtained
analogously. The curve results now from the intersection of the Znf surface with the vertical
plane characterizing the constant composition ratio x1/x2, and the tangent is drawn at

(x3= 0,x1,x2= 1-x1), yielding the Henry coefficient again as the intercept on the X3= 1 axis.

In the Timit x3->0

En H3) [+2] xE—TO (en. "3> b fﬂ * XSL"B(ax3 )7; P, x4/xa

where I_nf[“z] is the fugacity of the binary (solute-free) solvent mixture [1+2]. Evidently,
Hy [1+2]depends on the composition of the mixed solvent [1+2] , and has of course the
L]
limiting values H for x, = 1 and H for x,= 1.
3,1 1 3,2 2

3 (31)

lnHa'z

’

. AInH3 e
’ /l \lnH3J
N

constant (T,P)

7’ /7 N
/ / \\
’ ’ R
I ,/ / \\
'
Inf ,/, an‘*
4
4
/,,
p Nt
P 1
/4
Inf) ¢ N\
2 Xq X3
X2=‘ Xy —= X1=]

Fig. 2. Schematic representation of the &nf surface for a ternary solution
of a gas, 3 ,in the mixed solvent [1+2]: the Henry coefficient in the pure
solvent i (= 1 or 2) is H3,1‘. , and in the mixed solvent it is H3’[1+2] .

While the solubility of gases in mixed solvents is important in many industrial applications,
relatively few experimenta] data are available. Thus, heavy use is made of prediction
schemes which endeavor to correlate the multisolvent quantity t"Hgas, 14243+ ... with the
much more frequently known K"Hgas,i characterizing the solubility of the particular gas in
solvent i= 1,2,3 etc. In addition to work already cited,Refs. (57-60) further illustrate
activities in this area.

We conclude this introduction to the thermodynamics of mixtures containing supercritical
components with a section devoted entirely to various approximations to the exact
relations obtained so far. These approximations are indispensable when application to
experimental reality is desired.Additional details will be given together with the dis-
cussion of experimental techniques. Consider for instance the key relation Eq.(29). Though
thermodynamically rigorous and fairly straightforward, this formalism for separating the
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influence of composition upon the 1iquid-phase fugacity from the influence of pressure is

marred by the following (22,31):

(a) Rigorous evaluation of the Poynting term would require detailed knowledge of the pressure
dependence as well as the composition dependence of the partial molar volume,and this
at each temperature of interest. Such comprehensive information will be available only
in very few cases; for the great majority of solutions, however, approximations at
various levels of sophistication must be introduced (1,22,24,31,61,62) to make the
problem tractable. Similar comments apply to Eqs.(14),(16) etc. The situation is
particularly unsatisfactory at high pressures and when approaching the critical region,
where the Poynting corrections become significant.

(b) Frequently, the calculation of ¢g cannot be based on experimental results, say second
and third virial coefficients (63), but must use semi-empirical correlations, the
reliability of which may not always be high. This may impede satisfactory reduction of
data obtained at elevated pressures (64,65).

(c) With few exceptions, typical gas solubility measurements do not cover large composition
ranges. At the same time, experimental scatter often tends to obscure the composition
dependence of the derived constant-pressure activity coefficients. Thus for purely
practical reasons, the correlating equations for'Yiusua11y contain only few adjustable
parameters, that is to say very rarely more than two (1,66).

Against this background several popular approximations to the key relation Eq.(29) will be

given in order of decreasing restrictiveness. The assumption ¢¥ = 1 (the vapor phase

behaves as an ideal-gas mixture), together with 7%(T,Ps.1,x2) = 1 (usually quite reasonable

for small solubilities) and ignoring the Poynting term (acceptable for pressures PF:PS’1 well
below the critical region) leads to the simplest and most familiar relation

i, (32)
B =P = xhhy

which is often called "Henry's Law". A series of similar approximationsto Eq.(25) results
in "Raoult's Law" for the solvent,

= = (33)
R=wP=xR, .
If only the simplification concerning the vapor phase is relaxed, we obtain for the solute
V —-—
28 (TP )P = xiHyy (3)

Adding the Poynting term with V;(T,P, x2)= Vé"’L(T,Ps 1), yet still retaining 7£ =1,
independent of composition, yields

ol __
W(2E2GPwP\ o (P-BY (TR)
sz1,4(7; P) RT

(35)

This expression is known as the Kricheuvsky-Kasanovsky equation (67). For a long time it has
been used for the determination of V;°L from gas solubility measurements at elevated pressures
and accounts, in fact, for a large portion of the existing data. However, the mole fraction
solubility may then be already appreciable and hence the assumptions 7; =1 and V; = V;°L

too severe., Values for VS°L obtained in this way should always be regarded with caution

and may be unreliable (68,69). The preferred experimental method for determining v;’L is
either precision densimetry (70) or dilatometry (71) at very small mole fractions.

As concerns the modeling of the composition dependence of 75, the correlating equation has
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to be compatible with the number and the precision of the experimental data points. Because
of the interconvertability of symmetrically and unsymmetrically normalized activity
coefficients, Eqs.(11) through (13), the selection of such correlations usually follows
rather closely the well established recipes for the symmetrically normalized -activity
coefficients. The simplest possibility corresponds to the two-suffix Margules equation,
that is to say for the constant-pressure activity coefficients at PS 1 and T we obtain

= 2 y 1 _
by = Ax; 5y, = Alx 1) . (36)
Insertion into Eq.(29) and maintaining the same level of approximation with respect to V%

gives

waCRWPY _ (P- BV (TR

"t e) &7

A(x42 -1, (37)

which is known as the Krichevsky - TLinskaya equation (72,73). There can be 1little doubt that
even Eq.(37) is not particularly realistic at high pressures and/or high solubility. How-
ever, we emphasize again that an indispensible prerequisite for the use of more elaborate
correlating equations is the availability of experimental data on the composition dependence
of the partial molar volume as well as on its pressure dependence.

The magnitude of the Poynting correction, evaluated with a generally applicable 1iquid-phase
EOS, is indicated by the fo]]ow1ng specific exampie. Consider a fictitious 11quid at
298.15 K, with molar volume V = 120 cm?’mol'1 and isothermal compressibility BT 10' Pa
and let the pressure dependence of V L be accounted for by the modified Tait equat&on (22,
26,31,74), which is satisfactory for pressures up to several tens of megapascals. Upon
insertion into Eq.(15) and integration

) m-1
:L (4 + mB’-;-:;AP) moo-
mre  “P)RT (m-)85, ’

-1

(38)

where AP = P - Ps’ and m is a pressure-independent parameter. For many organic 1liquids
experimental values cluster around m = 10, with very small temperature dependence (74,75).
For an applied pressure AP = 0.2 MPa we obtain ?aTE= 1.01, and for AP = 2 MPa the result
is MTES 1.10, quite a significant correction. Qualitatively similar comments apply

for the solute.

Whatever method for determining H2’1(T,PS’1) is selected, say for instance recipes Eq.(27)
or Eq.(28), evaluation from an experimental isothermal data set requires a vapor-phase EOS
for calculating the fugacity coefficient. The majority of gas solubility measurements are
in the low to moderate pressure domain, say with P not exceeding several megapascals. Hence
for many systems the virial equation

PART = 4+ B+ () @)

is conwenient (26,31), and often yields entirely satisfactory results even when truncated
after the term which is 1inear in molar density p. For a mixture of K components, each with
mole fraction Yi

K K
B(7, iy} ZZyL y;B;(T) (40)
d

¢
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K K K

C(Tixh) =Zzzk: %y Cpe(T)  ete. (an)
T

Coefficients with identical subscripts refer to pure substances, whereas mixed subscripts
designate composition-independent interaction virial coefficients (or cross-coefficients)
characterizing the molecular interaction between molecules of species i with those of species
j (Bij)’ of species i with those of species j and k (Cijk) and so forth. They are functions
of temperature only. Insertion of Eqs.(39-41) into Eq.(20) yields for a two-component
mixture

V
e"¢z (Vszz %Bu)+ 5 (9)( Cona* Ly Cagg * i m) , (42)
oY L™ ' =V
bag’ = 288, + 3(9Y)'C,, - 2] (43)

Unfortunately, experimental information on third virial coefficients is rather limited and
one has to rely heavily on correlation methods, such as those advanced by Chueh and
Prausnitz (76), or more recently by De Santis and Grande (77), and Orbey and Vera (78).
This, and the computational convenience associated with a volume-explicit rather than a
pressure-explicit EOS, Teads to the widely used approximation for Low pressures

{1+ £3f3/117r ) (44)

where B of the mixture is again given by Eq.(40). The corresponding expression for the
fugacity coefficient is now

v Py 1
tng, = 57 By * %i8y) » (45)
ooV P
tng) = z7(18,-B,) » (46)
where 812 = 2812 - (B11 + Bzz). We emphasize that the quite popular rule of thumb
v
$,(TPy,) = #34T,P) (47)

may frequently be a rather unsatisfactory assumption (22), and is in general inapplicable
for the evaluation of 9F;v. Eq.(47) can be justified only if the vapor phase is an ideal
solution.

EXPERIMENT

Advances in experimental technique for the determination of Henry coefficients may be

classified as follows:

(a) novel designs of apparatus which significantly improve experimental precision and
accuracy;

(b) designs which increase the accessible pressure and temperature ranges of already
existing instruments;

(c) efforts towards simplifying and accelerating data acquisition.

In this article only recent contributions to (a) will be considered. Some of the older,

more popular types of apparatus have been reviewed in detail by Battino and Clever (79) in

1966, and a decade Tater in 1975 (8); see also Refs.(6,13,17,21,25).



Solubility of gases in liquids: a critical review 315

The most significant recent advance belonging to group (a) is undoubtedly due to Benson and
Krause (BK) (80,81). They use an analytical method in which the composition of the 1iquid
phase and of the vapor phase in equilibrium is determined via classical PvT measurements.
The precision (and accuracy) which may be achieved with BK-type equipment surpasses that of
any previous design, including the one of Cook and Hanson (82). A schematic representation
of the experimental situation (31,81,83-85) is provided by Fig. 3. The flow diagram contains
the essential parts of the apparatus as well as the auxiliary thermodynamic quantities, which
have to be either measured separately, or extracted from the Titerature, or estimated. The
average random error of H2’1(T,Ps’1) obtained in this way is usually about *0.05 %. The
method's reliability has been impressively demonstrated by the reported interlab accord on
oxygen solubility in water: between 275 and 328 K, the difference between the data reported
by Benson et al. (81) and those reported by Rettich et al. (83-85) amounted to about 0.1 %.

As shown in Fig. 3, the essential parts of this apparatus are a degassing device (86), an
equilibrator (81,83), an extractor (same design as for degassing), the Topler pump (87) for
transferring the dry gas to the manometric system, the high-precision manometric system
itself (PvT-measurements) and, of course, powerful thermostats (temperature drift <+ 0.003 K
during 24 h) and platinum resistance thermometers. Quantities measured are the temperature
at equilibrium, and the amounts of gas n; and ng contained in precisely known volumes of the
liquid solution, vL, and of the vapor phase,vv. As was shown in Ref.(83), Henry

coefficients of sparingly soluble gases may be obtained according to

. V, v
H (TR = x‘z‘;"o["uz TPy, 2. (T, Py, )], (48)
hyy = Gl /mS) Y/ VORTIVE (49)
L L

OL ~ VL - H;._(‘/zw - Vz* ) ) (50)

EXTRACTOR
>— 3 >
TUPLER-PUMP
EQUILIBRATOR (T.P): oY T-NEASUREPENTS
VL. Vv n;' n;

Y

hz'l Z(Tchyz)

'

Hy,1(T-Pg,)

GAS (2): DEGASSED SOLVENT (1):

Ba.p., vyLa.m viLa.e

Fig. 3. Determination (schematic) of Henry coefficients H2 1(T,Ps 1.) with
£ ] ]

a BK-type apparatus (81,83). Auxiliary quantities needed for rigorous

data reduction are also shown (31,83-85).
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Note that the total equilibrium pressure P does not appear explicitely in Eq.(48). It has
to be known, however, for the evaluation of the correction term Zvybg, and is obtained by an
iterative procedure described in detail in Ref.(83).

As already indicated above, for gaseous mixtures at low pressures the virial EOS in its
volume-explicit form is convenient. While there is often sufficient information on the pure-
substance virial coefficients Bii’ experimental results on the cross-coefficients B12 are
frequently lacking (63). Cross-coefficients may be estimated with reasonable confidence by
several well-established correlations, such as the Hayden-0'Connell method (88) or the
Pitzer-Curl-Tsonopoulos corresponding-states method (89,90). When using the latter, the
reduced pure-substance virial coefficient at a reduced temperature Tr is given by

BR
RE

“)(T) (51)

- 89T) +

where B(o) and B(1) are polynomials in T;1 , and w is the acentric factor. It is assumed
that the same relation holds for the cross-coefficient B12, but with characteristic para-
meters (interaction parameters) Tc,12’ Pc’1
Tc, Pc and w , to which they are related by conventional recipes known as combining rules.
Specifically, the reduced temperature is now Tr,12 = T/Tc’12 s and

2 and ©49 replacing the pure-substance quantities

Tn = (- “41)(7:,47;1 )4/2 > (52a)
4/3 4/3 -3

E,4Z = 47;42(]2,4 V</4/Tc)4 + ZV 1./T 2)( ) R (52b)

= (o + @,)/2 . (52¢)

The quantity k12 is another binary interaction parameter (usually much smaller than unity).
It is similar to the binary interaction parameters used in the more fundamental combining
rules for unlike energy parameters of two-parameter pair potentials (26,91,92). Mixture
compressibility factor 7.V and component fugacity coefficient ¢g may then be ca]cu1ated by
Eqs.(40,44,45). Alternatively, one may use any appropriate analytical EOS to obtain 7Ad ¢2 .
Examples for calculations of this kind have been presented in Refs.(93) and (94). In the
former, a modified Redlich-Kwong equation is used, while the latter utilizes a perturbed-
hard-sphere EOS similar to that introduced by Carnahan and Starling (95).

In our method (31,83-85) of determining H2’1(T,PS’1), the partial molar volume at infinite

dilution has to be known. Recent measurements with a vibrating-tube densimeter (70) yielded

V§°L for 20 fluids (about half of them supercritical) dissolved in water; a dilatometric

method was used in Ref.(71) to obtain this quantity for several gases (CH4, C Hg etc.) in
n-alkanes and 1-alkanols. V“’ in Tiquid water is well correlated with VC 2 s that is to

say at 298.15 K our resu]ts are represented to within ca. *10 % by V°°L/cm mol” ' = 10.74

+ 0.2683 V 2/cm mol -1 . For the noncondensables this is comparable to the performance

of the Bre1v1-0 Connell correlation (96), which should not be used at temperatures sub-

stantially below the critical temperature of the solute T 20 Scaled particle theory has
been used by Pierotti (12,97) and Wilhelm et al. (14), amonqst others, to calculate V2

for nonpolar and polar gases 1n both nonpolar and polar solvents according to
ool
V= Veav 37- 4( T RT) . (53)

Here VCAV = (BGCAV/aP)T > and G,y and GyNT @re the partial molar Gibbs energy of cavity
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formation (98) and interaction (12,14,97,99,100), respectively. Agreement with experiment is
satisfactory in most cases. For a review of the literature on V§°L see Handa and Benson (62).

Over 1imited ranges of T , the temperature dependence of H 1(T P 1) is usually adequately
represented by either the Clarke-Glew (CG) equation (101)

tnlHy o/Pa) = Ag + A(T/K)™ « Agtn(T/K) + A(T/K) 5 AL (T/K)P+ - s
or by the BK equation (80,81)

tn by /Pa) = 3 agT/K)E (55

i=0

T T T T T )

12 5 Experimental oy

---- Calculated(SPT) .

-

- —

0 20 { — 40 60
Fig. 4. Henry coefficients H, ((T,P ,) for (HZO +N,) and (H,0 + C0) as
£ 5
functions of temperature: t = T/K - 273.15. O, experimental results; — ,
either CG or BK smoothing equations; —— —, obtained via scaled particle
theory (84,85).

Fig. 4 shows measured Henry coefficients for CO and N2 dissolved in water (84,85) as a
function of temperature, the correlations provided by the appropriate smoothing equations

(CG or BK), and results obtained by application of scaled particle theory in its simplest
version (12,14,97,99,100). Substantial improvement of the temperature dependence of H2 1

(for instance, reasonably accurate prediction of the usually observed maximum of the curve
Hz’f vs. T) is possible by introducing the concept of effective, hence temperature-dependent,
hard-sphere diameters (102) into the formalism, as recently shown by Prausnitz et al. (46,
103).

With very few exceptions precision measurements of H2’1(T,PS,1) over sufficiently large
ranges of temperature constitute the only source of information on enthalpies of solution,
H%, and a fortioni on heat capacity changes upon solution, AC = (aAH°/aT)P, of sparingly
soluble gases in liquids (14,104,105), see also Refs.(26,31). Spec1f1ca11y,
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. ool
T dH (T, R4) + Vi 4B

el o
aHyRT = (K~ - sz)/RT =

(56)
)
where H§°L is the partial molar enthalpy of the gas at infinite dilution in the solvent, and

HEV is the molar enthalpy of pure component 2 in the ideal-gas state. The first term on the
rhs of Eq.(56) is obtained from one of the selected fitting equations. The temperature
dependence of the vapor pressure of the solvent may be calculated from any suitable vapor
pressure correlation, for instance from the Antoine equation, the Lee-Kesler equation (for
nonpolar 1iquids) (106) or the Scott-Osborne equation (107). For temperatures far below
Tc 1 the second term on the rhs of Eq.(56) will frequently be rather small as compared
to the first term. Eq.(56) evidently provides a set of values AH°(T P 1) » which yields,
by an argument analogous to that used above, the heat capacity change upon solution.

The Ostwald coefgicient L2 1 is another widely used practical measure of the solubility of
gas 2 in soTvent 1 (108). Let the conventional Ostwald coefficient be defined by

. L
L2,4(T>P) = (Cz/cx)equif 4 7

where CZ‘ nz/v, with the appropriate superscript, is the amount-of-substance concentration
(or simply, concentration) of solute 2 either in the 1iquid-phase solution or in the
coexisting vapor-phase solution at (T,P). Its Limiting value for vanishingly small
concentration is denoted by

[lm L“(T P) = e.-m (C'Z'/CY)QQM X (58)

P P P*%A
Eq.(57) in conJunct1on w1th the equ111br1um condition formulated on the basis of Henry's

Taw yields (22), after some algebraic manipulation, the rigorous relation

RT PAUIAALAIAN) 50
A PVTRx) — 1(TRx,) ’

2 14

Lyy(T,P) =

where V (T,P x2) is the molar vo1ume of the 1iquid solution. Hence in the 1imit of c2-’0
we obtain, with 11mV (T,Pux,) = V (T P 1),

RT *V w

Ly = *L (T (60)
/ H2)4(7: /314)1/3’4 54 ¢2
At low to moderate pressures Eq.(43) may be applied, whereby
*V o0 - (61)
Zes 91 (T e""{z? By * (5’54) m} '

Alternatively, we may use the virial equation in its volume-explicit form, whence after
series expansion

VooV _ Ri RV oy 62
Ly (LR =1+ 2<§T)Bn * (ﬁ“f-) By(2By, - By) - (62)
As reported by Wilhelm (22), Eq.(60) provides a rigorous expression for the Limiting ualue

of the Henry coefficient as T-’TC 1 and Ps 1=

, oV
7.5_';";:'/2,4(7»/3,4) = Rag2 (T4,R 0 (63)

]
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which equation was also given by Beutier and Renon (109). It must be incorporated in any
rational wide-temperature nange correlation for HZ,T(T’PS,I) extending up to the critical
region. In particular we note that the empirical extrapolation recipe of Hayduk and Laudie
(110) is in variance with Eq.(63).

The Ostwald coefficient is of central importance in the theory of hydrophobic (solvophabic)
phenomena. Following Ben-Naim (18), when discussing paiuwise hydrophobic interaction (HI)

we refer to the .indirect part GGHI(r) of the Gibbs energy change AG(r) required to bring the
solute particles from fixed positions at infinite separation in water to some close distance
r at constant temperature and pressure. In other words, we are interested in the so0fvent-
Ainduced contribution augmenting the direct part that is due to the solute-solute pair
potential Ugc(r),

. H1
aG(r) = Ugg(r) + 8G (r) . (64)
The Tink with experimentally accessible quantities is established by the approximate relation

HI = = ) - o
86 (r=r_c) BEE e H,0 ~ ZBRCH, 0 > (65)

where ro-c = 0.1533 nm is the carbon-carbon distance in ethane and
o -z - L . =

The approximation indicated by Eq.(65) is easily generalized to discuss HI among many solute
particles (18,111).

CONCLUDING REMARKS

Quantitative investigation of the solubility of gases in 1iquids has a long and well
established tradition in physical chemistry. Essentially it started in the fifties of the
last century with the work of Bunsen (112), and throughout the years many a distinguished
scientist has contributed to this subject. One can only marvel about the careful experimental
work of some of the early researchers; for instance about Winkler's contributions (113)
almost a century ago, which are still quite acceptable (* 1 %) in the majority of cases.
The assortment of modern instrumentation accessible to today's experimentalist, however,
has now made possible the study of highly dilute binary solutions of gases in liquids with
unparalleled precision, accuracy and speed over wide ranges of temperature and pressure.
Cross-fertilization with other disciplines, for instance with calorimetry, is becoming
increasingly important (104,105). In fact, one of the objectives of this article was to
indicate new and active interdisciplinary topics (see the Introduction); while our own
perception of their relative importance may not be shared by all, it appears safe to state
that they will greatly stimulate applied research in the coming decade.

This review was primarily concerned with the rigorous thermodynamic formalism relevant to
VLE involving supercritical compounds, and its rational implementation in high-precision
experimental work directed towards the determination of Henry coefficients and related
quantities. Alternatives to the classical approach have been indicated, for instance the
use of an EOS valid for both the 1iquid and the vapor phases. This method may gradually
become more prominent when relatively simple solutions are considered. Yet as long as the
scientist's interest is focused on phenomena involving significantly anisotropic molecules
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in dilute solutions, in particular in aqueous solutions, the Henry's law approach appears
to be naturally superior to the others, and it is hard to imagine its replacement. Little
space was devoted to experimental details, and recent theoretical advances have been indi-
cated only briefly. Our understanding of nonpolar, nonassociated liquids and of "simple"
solutions has increased considerably during the last decade (7,13,15,17,25,114-118). This
is much less so for Tiquid water, and aqueous solutions even of rather simple solutes, such
as hydrocarbons, remain a major challenge to a statistical-mechanical interpretation of
solubility phenomena. High-precision measurements of the kind discussed here in the
experimental section evidently occupy a key position in the development of new theoretical
approaches.
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