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New aspects of the theory of ionic solvation and
ion—ion interactions in solution
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Abstract — The theory a-f the ferrous—f erric electron exchange

in solution leads to new insights and new questions about both
ion—ion interactions and ian—solvent interactions.'

INTRODUCTION

Traditionally, the study of homogeneous electrolyte solutions is divided

into the study of soivation, represented to some degree by Latimers book
(ref. 1) , and the study of ion—ion interactions, represented by the Harned
and Owen book (ref. 2). Up to the present time there seems to be a division
a-f labor along these lines. But sometimes a problem comes up that deely
involves both branches of our field. Thus we find that in elucidating the
ferrous—ferric electron exchange, a prototype oxidation--reduction reaction in

solution, we encounter novel aspects of the solvent—mediated ion—ion

interactions as weii as novel aspects of the ion--solvent interactions.

IONIC STRENGTH EFFECTS

The classical theory + or the effect of ions on a reaction rate constant is

asssociated with the Livingston diagram (ref. 3.4) which relates to the rate
constant kAB -for the reaction

A ± B - (AB) products

of ionic species A and B in solution. Using the Debye—Hueckel
approximation f or single—ion activity coefficients as functions of molar
ionic strength I gives a family of straight lines of the form

- 1/2 - -=
zAzBal U)

which make up the Livingston diagram. An extended Debye-Hueckel approximation
1/" l/ 1/2gives a similar result with I /[1+I 3 in place of I

the range of validity remains below I=O.OZM -

Much more generally we may write the rate constant for an activation--
controlled reaction as (ref. 5)

=
S g(r) kAB(r) d3r (2)

where g(r) is the equilibrium pair correlation function (ref. 6,7) + or
the AB pair and kAB(r) is the local rate constant, the rate constant when
A and B are held at a separation r . In this formulation we have no

single—ion activity coefficients; the effects of changing the ionic medium
are all or nearly all in 8(r) . In the Debye—Hueckel approximation it is
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g8(r) 1ZAZBXe/r (3)

where > is the Bjerrurn (or Landau) length and is the Debye shielding
factorS More generally the pair correlation functions, which collectively
provide a description of the equilibrium structure o-F a fluid that can be

related to numerous measurable averages, can be calculated from models that

specify the forces between the particles of the system (ref. 6,7).

We have been making a detailed study of the theory of the electron exchange
reaction

_+ * "l- *
Fe(L2O) + Fe(L2O) Fe(L,,O) + Fe(L,,O) (4)

where L=H or D and
* denotes an isotopic label (Initially we take LH .) It

is interesting to compare the electron exchange rate with a certain NMR
relaxation process written as a chemical reaction

27 3+. .2+ 27 3+ .2+
Al un) + Ni Al (m ) + Ni ()

'7 _+where rn4m' denotes a change in nuclear spin state of the Al
because for both of these activation controlled processes the rate constant
has the form

= g23 k2.(r) 4rrr4dr , (6)

where g,,..(r) is the spatial pair correlation function for the +2,÷3

species pair Ceither Fe2+,Fe or Ni,Al] while k23(r) is the local rate
constant.

27 3+In the case of reaction (), k... is 1/TI f or the spin relaxation of Al

while k23C) has the well—known Solomon—Bloembergen farm (ref. 9,10). It
is essentially a known function of r because it is controlled by the very
fast electron spin relaxation rate in the aquonickel ion, which has been

investigated independently (ref. 11).. It is insensitive to the modulation of

the spin—spin interaction by the diffusive motion of the ions (ref. 12). We

assume that the hexaaquo ions of given charge look sufficiently similar in

solution so that g.,3(r) is the same f or a ferrous—ferric pair as for an
aluminum—nickel pair. Therefore we can 'tune' g2. to fit the spin
relaxation data and then use it in Eq. (6) f or the electron transfer process

(ref. 8).

We have calculated the ion—ion pair correlation functions in the solutions
relevant to the study of the electron transfer reaction by beginning with
McMillan-tlayer level models (ref. 8,13,14), i.e. models f or the solvent—
averaged force between the ions. It is often said that such models replace
the molecular solvent by a continuum, but this need not be the case: In
Mctlillan—Mayer theory the solvent is treated as a molecular fluid that is
projected out of the equations f or the ion—ion pair correlation functions
under the conditions corresponding to osmotic equilibrium (ref. 14). On the

other hand the assumption that three—body and higher solvent—averaged solute—

solute potentials can safely be neglected has not been adequately tested. The

ion—ion pair correlation functions were calculated from the models by the HNC

approximation (ref. 6,7).It is interesting to notice that the picture
emerging from the first calculations of MM ion—ion pair potentials from BO—
level models (ref. l,I8) is that the resulting pair potentials show more
effect of the structure of the solvent than our Gurney type models which have
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FigS i k:y function of

DH is an extended Dbye—HueckeI

appro<imation

, granular model— Gurney model

[From ref 8 where details may be foundS]

been adjusted to fit various solution properties (ref. 8). However our

granular models, which are intermediate with respect to manifestations of the

structure of the solvent, give rate constants that agree with those from
Gurney models in the present study (ref. 8).

The local rate constant in the electron exchange process can be calculated by
adapting the theory established by R. A. Marcus. (ref. 8,17) A crucial new
ingredient is the large—scale quantum calculation of the interaction of the
initial and final states in the electron transfer proces. (ref. 18,19)

It was found for both electron transfer and spin relaxation that, if the
minimum separation of the hexaaquo ions was 6.9A, where the spherical
envelopes of the hexaaquo complexes touch, then the calculated rate constant
was far smaller than the experimental. However the closest approach of two
hexaaquo ions is obtained in a hou1der lit arepit configuration, in which the

octahedral complexes approach on a common axis in a staggered

orientation so the lobes on one aquo complex fit into grooves on the other.

Then it is estimated that the separation can be as small as 4.6A the rates

calculated on this basis agree with experiment. (ref. 8) This remarkable

result has been confirmed by the neutron diffraction studies of Enderby and

coworkers who find that in 4mNiCL,(aq) there are many pairs of hexaaquo

nickel ions with center—to—center distance as small as 4.6A (ref. 20). [Of
course it is necessary to construct the solvent—averaged pair potentials in

the model calculations of g2(r) so they are consistent with this small
closest center—to—center distance and with limited orientational freedom when

r is less than 6.9A ]

Another test of the adequacy of these calculations is the comparison of

calculated and experimental ionic strength dependences of the rate constant
for the electron transfer reaction: the feature we set out to study. Fig. I
shows a significant improvement over the ionic—strength dependence calculated

by means of extended Debye—Hueckel theory. There is some support for an

explanation of this improvement in terms of a tendency to form ion pairs

(most likely between Fe and C104), which is captured by the HNC
approximation (ref. 21). Then the rate constant may be expected to depend on

the specific composition of the electrolyte rather than solely on the ionic

strength. Specific effects are indeed observed (ref. 21,22).
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SOLVENT ISOTOPE EFFECTS OF IONIC SOLVATION

Nw we turn to the investigation of the solvent isotope effect on the ferrous—

ferric electron transfer, which is 2—fold slower in D,O than in H.,O (ref

23,24).(cf Eq 4) The seat of this effect is surely not in the g23 factor
in Eq (6Y Can one expect that the k23 is sufficiently sensitive to whether
L=D or L=H to account for the solvent isotope effect on k2,. ?

We know from the outset that the change of solvent from H20 to D.,O has

significart thermodynamic consequences for metal hydration complexes (ref
25—27). The solvent—isotope effect on thermodynamics is mainly due to

chrges in vibrational frequencies in the hydration complexes when H is
changed to D, hji it turns out to be the corresponding changes in distances

that give the kinetic effect in reaction (4) Even so, the free energy
effects for +1 and +2 ions are so small, in the sense we next describe, that

one may dou?t that there can be a measurable kinetic isotope effect for an

outer—sphere electron transfer mechanism. Thus we consider the process

M(in H,O) —* M(in D,,O) (7)

for which we define G°aG S°sS, and H0sH,. The data for H20—+D,O
transfers for many electrolytes are characterized by extensive entropy—
entheipy coepensat1or (ref. 25). It may be recalled that, for a series of
similar processes in which one of the reactants V is varied at a given
temperature T, the equation

H(T,Y) H*(T)÷T*(T)S(TV) (8)

is a statement of the Barclay—Butler rule. Here AH* and T* are coefficients
which do not depend on V although they do depend on T. The experimental
and theoretical basis for this rule in solvation processes has been discussed

by H.5. Frard< (ref. 28). Lumrys law (ref. 29) states a stronger condition,
namely T*(T)T for processes in aqueous solution near room temperature if
they are dominated by effects in the solvent in the neighborhood of the

solute particles.

For Eq. (7) in the case c-f many z±i and z=2 ions, all at T=29B., it is
found that the Barclay-Butler rule applies with aH*0 and r298 , an
ceptional ly sicnple and striin example of Luery s law (Fifl. 24 of rei.
25) The requirement that this enthalpy—entropi correiaton be maintained
consistently -for ions of charge --2, +1, and —1 yields relatively small values

+ + + .,-j-for GiRT Li ,—0.07; Na , 0.07 K , 0. 18; Nq 0.23; Ca , 0. L3;
0.34. Over- this range of ions H/RT varies over a unit ref. 25). It is a
challenge to find the molecular significance of this compensation effect.

ccordinly, Newton and Friedman calculated the O—L stretch and the libration
frequencies of water molecules in ion—hydrate complexes by an ab ir,itio

application of Schroedinger's equation to ion—hydrate clusters (ref. 26,
27). Previous ab ir,itio studies of M(H 0) z clusters, with either an
metal ion or a point charge, and n=l or 3 ,indicated that the 0—H bond

strength was appreciably sensitive to the ionic charge. We studied larger
ionic clusters with n=8 , and with M+ either Na+, Mg+, or Al+ . In each
n=6 case the total cluster energy was minimized, subject to the constraint
of Th symmetry (octahedral MOL framework).The resulting frequenes and
distances are given in Figs. 2 and 3.
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Fiq. 2 Effect of ion of charge z on

freqency v for OH stretch and
for libration. From ref. 26.

Fig. 3. As in Fig. 2 but showinq variat.on

of OH and MO distances. From ref. 27.

The remarkable difference in charge—dependence of C 1 ig.
the clue for resolving the puzzle in the 6 data. A qualitative
interoretation s that increae 4ith increasing z because of the
enhancement of hydrogen bonding to second—shell water as well as the

increased charge—dipole interaction with the metal jon. The 0—H stretch

frequency I5 n contrast to L ' decreases because of the effect of

Coulombic interaction of Mz with the C and H atoms of the inner shell

water, giving a smaller MO distance arid longer, and hence weaker, OH bonds.

The non—linear dependence on z is striking.

The calculated 11L values are somewhat larger than those observed in various
salt hydrate crystals (ref. 27). For example, the cesium alums exhibit IL
in the range from 500 to 1000cm', with the larger values presumed to
characterize water in the Al(H O) comp1ex while v, -from 534 to 836cm16 •

has been assigned to water in AlCl.6H2O. For this and other reasons we

shall scale VL by a factor of 0.7 as described below (ref. 26).

To calculate the solvent isotope effect (free energies of transfer) in

terms of the frequencies of the water modes, assuming that they contribute

additively, we may write

6 /RT = — + (v—I'9)
_3 3 .3 .3

(?)

where v is the frequency of the intermolecular or intramolecular mode
of the water in the hydration shell, v •is the corresponding frequancy in
bulk water, and f. is the zero—point energy factor

f. = .E1—(. 'M )]
.3 jH jD

where jL is the reduced mass of the th mode.

(10)
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For- the present purpose we retain each mode that satisfies twD

conditions; its frequency is significantly z—deperidertt arid it involves

primarily L—atom motion, ie D'H2 Thus we are left with the stretch
and libration L m05. Employing the information displayed in FigS 2 we
obtain (ref. 26)

S/RT = B0
÷ IBZBL + l2zB9 (11)

whare , and where B0=6/RT is
taken as an adjustable parameter; is formally the transfer free energy

for a discharged ionS (60/RT= OO83 for r)

In this way we find, using the unscaled ''L

G/RT = 226-296z+O.496z (12)

where G has been adjusted to make Gi=O in view of the thermodynamic data
for the transfer reaction. Then we find G/RT—O.88 and a,/RT—O.36 , in
poor agreement with the data. However the qualitative aspect,
the possibility of substantial cancellation of the and terms for 1÷
and 2+ ions, is promising.

if we redetermine the coefficients and B. in t (11) by a least
squares fit (with the given 8) to the data (ref. 26), then we have, in
place of Eq. (12),

G/RT = l.13—1.832+O.696z (13)

giving G1/RT=O.O, G,/RT=O.25, G,JRTr1.9O, and (G—62)/RT=l.65, in good
agreement with the thermodynamic data. The —1.83 coefficient of implies a
scaling ; a 30X reduction, which brings the calculated librational

frequency for Al(H2O)' just within the upper range of crystal hydrate data.
We may conclude that the (state—dependent) librational modes are critically
important to the solvent isotope thermodynamics.

While the calculations in ref. 26 give results that are reasonably close to
the Hartree—Fock limit, there must be some question, as to whether similar
results would be obtained if the calculations could be made for hydration
clusters with many (say ZO or more) water molecules in the neighborhood of
each ion. A further question concerns the changes which would be found if
electron correlation were incorporated in the calculations. Moreover, to
complete the analysis of the thermodynamic data using model calculations, we
need dvLfdT and dv9/dT , both as functions of z . These coefficients
cannot be obtained by the methods used in ref. 26. These temperature
derivatives are not well known even in real water. The important effect is

expected to be strong dependence of VL on temperature since the Lumry's law
behavior requires temperature—dependent thermodynamics different from what
one derives for a simple harmonic oscillator with temperature—independent

force constant. The librational modes are the leading candidates for

temperature dependent force constants; for them the effective potential is

entirely due to intermolecular interactions and therefore is temperature—

dependent. All of these considerations invite the study of relevant models,

having one ion and many water molecules, by molecular dynamics simulation,
with the incorporation of path integral techniques to accommodate the nuclear

quantum effects and, conceivably, the configuration interaction contributions
to the electronic quantum effects.
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SOLVENT ISOTOPE EFFECT ON RATE CONSTANT

iJe denote by kH the rate constant in Eq. (6) for reaction (3) when LH
(L=D). The relevant theory, a modest extension beyond what was already

available (ref. 30) is given in ref. 27 where it also is applied to evaluate

kH$LD with the help of the data in Fig. 3. The HD shift in vibrational
frequency, which is the dominant factor in the thereodyriaic isotope effects
considered above, is not so important for the kinetic isotope effect kH/kD -
The dominant factors here are the shifts in geometry between the H and D
systems; these shifts enter the rate constant through the Franck—Condon

factors. Accordingly, in the calculations, we can safely employ mean

frequencies, averaged with respect to z2 and z3.

The results are shown in Table I in terms of multiplicative contributions to

from the various modes of motion of the six water molecules in the

hydration complex of a ferrous (2) or ferric (3) ion. Taken together thsse

results give a factor in the range from 1.8 to 2.1, which is satisfactory

agreement with the experimental data. The uncertainty in the librational
contribution could be reduced in a calcuLation with many morm watmr clec.1e
of the sort mentioned above.

TABLE 1. Contribution of Various Modes tc kH/k

Class M I
Description
of local mode M—0 stretch 0—H stretch Libration
g

(b) 12 24 36

i/dalton 18 0.948 0.550

j1da1ton 20 1,79 0.930

v() 1cm1 390 3484 853

/cm' 490 3016 1033

/pm 212 (c) 99(c) 7 Jfj)

(3) (c) (c'
dM 1pm 198 102 0

kHfkD 1.11 1.43 1.14 (i.3i)

(aa).Adapted from ref. 27.

(a) As in ref. 26 the effect of librational motion was

investigated by considering the wagging mode.
(b) Number of local modes in class.
(c) 0-L distance. See ref. 26
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