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Abstract - Peptides having a primary amide func t iona l i ty  a t  the carboxyl terminus 
a r e  formed by oxidative cleavage of two carbons from glycine-extended precursors by 
pept idylglycine a-amidating monooxygenase (PAM) i n  the presence of oxygen, copper 
and ascorbic acid. This enzyme w a s  pur i f ied  from porcine p i t u i t a r y ,  and the  
stereochemistry and mechanism of its oxidation of D-tyrosyl-L-valylglycine l t o  D- 
tyrosyl-L-valinamide 2 and glyoxylate I w a s  invest igated.  
developed based on react ion j f  glyoxylate with nitrosobenzene t o  give N-hydroxy- 
formanilide 4. 
pure 4-benzyloxycarbonyl-3-bromo-5,6-diphenyl-2,3,5,6-tetrahydro-l,4-oxazin-2- 
with tritium gas i n  [3Hlwater. 
decoupled tritium NMR of t h e i r  (lS)-(-)-camphanamide der ivat ives  and by a modified 
D-amino acid oxidase assay which employs n i t r o s o  enzene t o  capture glyoxylate. 
Conversion of the s te reospec i f ica l ly  labeled [2- Hlglycines to corresponding D- 
tyrosyl-L-valyl- [2-3Hlglycines and subsequent PAM oxidation demonstrated t h a t  the 
p r o 4  hydrogen of the glycine residue is  removed. The possible  mechanism of PAM 
and the s ignif icance of these r e s u l t s  f o r  determining subs t ra te  s p e c i f i c i t y  and f o r  
designing i n h i b i t o r s  or drugs a r e  discussed. 

A new assay was 

R- and S-12- Hlglycines were prepared by reduction of op t ica l ly  

Yes Their stereochemical pur i ty  was determined by H- 

9 

INTRODUCTION 

Peptides having a primary amide func t iona l i ty  a t  the carboxyl terminus a r e  widely 
d is t r ibu ted  i n  animals and e l i c i t  important physiological  e f f e c t s  ( r e f .  1 , 2 ) .  Examples 
include compounds such as  vasopressin from the p i t u i t a r y ,  lutenizing hormone re leas ing  
hormone (LHRH) from the hypothalamus, gas t r ins  from the g a s t r i c  antrum, and substance P from 
the  s p i n a l  ganglia. In the cases studied so f a r ,  the  peptide amides a r e  generated by post- 
t r a n s l a t i o n a l  stepwise cleavage of la rger  precursor pro te ins  ( r e f .  3,4). These pro te ins  
general ly  have a glycyl residue attached t o  the amino acid which w i l l  become the carboxy 
terminal amide. In 1982 an enzyme was detected i n  porcine p i t u i t a r y  which is able  t o  c leave 
a synthe t ic  t r ipept ide ,  D-tyrosyl-L-valylglycine l, t o  D-tyrosyl-L-valinamide 2 and 
glyoxylate 2 (Fig. 1, re f .  5 ) .  Subsequently it was shown t h a t  t h i s  enzyme, pept idyl  

glycine a-amidating monooxygenase (PAM) , 
requires  copper, oxygen and ascorbate, 
occurs i n  multiple forms ( re f .  6), and is 
present  i n  a host  of mammalian t i s s u e s  
( r e f .  7 )  a s  w e l l  a s  i n  frogs ( r e f .  8). 
Since all published assays f o r  the PAM 
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enzyme(s1 r e l y  on detect ion of a s p e c i f i c  
product amide (e.g., radioimmunoassay), 
they a r e  l imited t o  unique subs t ra tes  and 
do not permit examination of events a t  the  
carbons and hydrogens of the glycine 
residue. The present  study describes: a 
new assay f o r  PAM based on capture of 

[2- Hlglycines and new methods f o r  deter-  
mination of t h e i r  stereochemical pur i ty ;  
and the  stereochemistry of hydrogen removal 
from l-by PAM. The resu l t ing  information 
a ids  i n  understanding the steric require- 
ments and mechanism of PAM and may be 
usefu l  i n  design of inh ib i tors  or ora l ly-  
ac t ive  peptide hormone prcdrugs. 

.Ba OoH glygxylate; preparation of R- and S- 
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Fig. 1 
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GLYOXYLATE-BASED P A M  ASSAY 

Most published procedures f o r  detect ion of glyoxylate i n  biochemical systems appeared t o  
lack the necessary s e n s i t i v i t y  or s p e c i f i c i t y  and frequently required extensive sample 
preparation. Hence an a l t e r n a t i v e  assay was developed based on the unusual and highly 
s p e c i f i c  react ion of glyoxylic acid A w i t h  nitrosobenzene under aqueous conditions t o  form 
N-hydroXyformanili.de 4 (Fig. 2, re f .  9) .  The product 4 i s  formed reproducibly (*2%) i n  

high y ie ld  and is e a s i l y  extracted from the aqueous 
media with e t h y l  e ther .  Control experiments i n  
deuter ia ted water showed t h a t  the react ion does not 
exchange the formyl hydrogen of 3 or 4 with solvent. 

eOOH - 
3 Radioisotopic label ing was used t o  obtain the  

necessary s e n s i t i v i t y  f o r  po ten t ia l ly  small amounts 
of PAM enzyme and glyoxylate production. The 
t r i p e p t i d e  &, i n  which both glycine carbons a re  
carbon-14, was syn esized by standard so lu t ion  phase 

thods from [ l  , 2-*C21glycine 2 (1  13 m€i/mmol, 96% 
'%). The PAM enzyme was i so la ted  by a modified 

chromatography with unlabeled t r ipept ide  1 bound t o  
Affi-Gel 15 t o  give pro te in  of an estimated 90-95% 
puri ty .  The enzyme was assayed by incubation with 

4 l i t e r a t u r e  procedure ( re f .  10) which employs a f f i n i t y  

F i g .  2 

the  radioact ive t r i p e p t i d e  & i n  the presence of oxygen, ascorbate, copper s u l f a t e ,  and 
potassium iodide a t  37 OC. 

%labeled N-hydroxyformanilide 3. The l a t t e r  was extracted with e ther ,  dr ied,  and 
analyzed by s c i n t i l l a t i o n  counting. 
confirmed t h a t  the rad ioac t iv i ty  res ides  i n  %and is  due t o  PAM-catalyzed conversion of the  
labeled t r i p e p t i d e  la. 
various PAM enzymes toward a large var ie ty  of subs t ra tes  bearing a carboxy terminal  
glycine. 
forms of the enzyme. In addi t ion,  t h i s  assay permits examination of the stereochemistry of 
hydrogen loss from the glycyl residue during PAM oxidation of t r ipept ide  1. 

Radioactive glyoxylate &formed by t h i s  react ion was trapped by 
l u t i o n  with unlabeled glyoxylic acid and addi t ion of excess nitrosobenzene t o  generate 

A var ie ty  of isotope d i l u t i o n  and control  experiments 

This new assay w i l l  allow rapid comparison of the a c t i v i t i e s  of 

Hence t h i s  may a id  assignment of a p a r t i c u l a r  biological  function t o  d i f f e r e n t  

SYNTHESIS A N D  ANALYSIS OF STEREOSPECIFICALLY LABELLED 
[2-'Hl GLYCINES 

To determine the s t e r e o s p e c i f i c i t y  of hydrogen removal by PAM, it was e s s e n t i a l  t o  obtain 
c h i r a l  samples of glycine bearing tritium labe ls  i n  the pro R and pro S posi t ions.  Most 
previously-reported chemical syntheses of s te reospec i f ica l ly  deuter ia ted or t r i t i a t e d  
glycines employ multiple s teps  and introduce labe l  ear ly  i n  the sequence. Although 
enzymatic exchange of the glycine hydrogen with solvent  using ser ine  hydroxymethyltrans- 
fe rase  or  a lanine aminotransferase requires  only a s ing le  s tep,  such approaches can be 
problematic due t o  excessive non-enzymatic or  incomplete exchange. 
of Williams and coworkers f o r  synthesis  of s te reospec i f ica l ly  deuter ia ted glycines 
introduces l a b e l  i n  the f i n a l  s tage ( re f .  111 ,  it was adapted f o r  use with t r i t i u m  gas a t  
one atmosphere pressure. Bromination of the (5RI6S) oxazinone 5 and its enantiomer 2 with 
N-bromosuccinimide gave the bromo compounds 8 and 2, respect ively (Fig. 3). Hydrogenation 
of these with pure tritium gas and palladium chlor ide c a t a l y s t  i n  a mixture of t r i t i a t e d  
water (50 Ci/mL, 0.91 Ci/mmol) and tetrahydrofuran produced (R)-[2-3Hlglycine 2 and i ts  S- 
isomer & respect ively.  
and the s p e c i f i c  a c t i v i t i e s  were 1.0 and 0.78 Ci/mmol, respect ively.  The stereochemical 

Since the elegant  method 

The y ie lds  of %and % a f t e r  HPLC pur i f ica t ion  were 28% and 31% 

Ph' , P h' PdCi2 H ~ N  "xT k 

ph''e%, 
COOCH2Ph bOOCH2Ph 

6 8 5b  

7 enantlomer 9 enantlomar 5 c enantiomer 

F i g .  3 

pur i ty  of these glycines was analyzed by two methods. In the f i r s t  approach, the t r i t i a t e d  
glycines and %were converted t o  t h e i  correspondi g (lS)-(-)-camphanarnide der iva t ives  
( r e f .  1 2 )  which were examined by 320 MHz 'H-decoupled 'H-NMR spectrometry. Integrat ion of 
t h e  s igna ls  showed t h a t  93% of the t r i t ium i n  the camphanamide of 2 was i n  the R pos i t ion  
(upf ie ld)  whereas i n  the corresponding der iva t ive  of 2 it was 88% i n  the S pos i t ion  
(downfield) (Fig. 4). 
amide) species  was evident from lack of s igna ls  due t o  t r i t ium-tr i t ium coupling. Clear ly  
t r i t i u m  NMR spectrometry can be an e f f e c t i v e  a l t e r n a t i v e  t o  enzymatic analysis  f o r  

The complete absence ( <  1%)  of doubly-labeled ( [3H21g1ycine camphan- 
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determination of t r i t ium stereo-  
chemistry, provided t h a t  a s u f f i c i e n t  
l e v e l  of labe l  is present. 

A common enzymatic determination of 
glycine stereochemistry employs D- 
amino acid oxidase t o  re lease  the pro 
S hydrogen i n t o  the aqueous media with 
concomitant formation of glyoxyl ic  
acid ( r e f .  13,141. The water is then 
i so la ted  and its i so topic  content  i s  
determined. Its major l imi ta t ions  a r e  
the requirements f o r  quant i ta t ive  
water capture and f o r  complete 
oxidation of a l l  glycine because of 
the  primary isotope e f f e c t  f o r  S- - labeled molecules. These d i f f i c u l t i e s  

l . ~ ~ . r ~ - ~ . I . . ~ ' I . . . .  n be avoided by addi t ion of [ l  , 2 -  cs 6.0 3.5 
PPM PPM 

Fig. 4 .  'H-decoupled 3H-NMR spec t ra  (320 MHz) of prior to to D-amino acid 
camphanamides of ( l e f t )  and ( r i g h t ) .  Oxidasel and then capture Of 

labeled glyoxylate using the ni t roso-  
benzene procedure. During t h i s  

process half of the carbon-14 is l o s t  as  C02, a l l  of the i n i t i a l  t r i t ium i n  the  R-[2-3Hl- 
glycine 2 is retained,  and a l l  of the i n i t i a l  t r i t ium of any S-[2-3H]glycine 2 which is 
oxidized is  l o s t  (Fig. 5 ) .  Hence the 3H/14C r a t i o  of the N-hydroxyformanilide w i l l  be twice 
the  i n i t i a l  glycine r a t i o  f o r  the R-isomer, it w i l l  go t o  zero f o r  the S-isomer, and it w i l l  

5 s  

H2N R COOH - H O y C O O H  . cop i Oyh-Ph ' 
I 

PhNO I H)(T - DAO I 
T I T  

5b  
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s tay  constant f o r  a racemic mixture. 
This new assay is  t ransparent  f o r  the 
primary t r i t ium isotope e f f e c t  
(provided t h a t  doubly- t r i t ia ted 
species  a r e  absent)  because the  
product of the S isomer is  not radio- 
act ive.  Our r e s u l t s  show t h a t  the  
combined e f f e c t s  of the secondary 
t r i t i u m  isotope e f f e c t  during t h e  
enzymatic s t e p  and the primary carbon- 
14 isotope e f f e c t  during the ni t roso-  
benzene react ion a r e  r e l a t i v e l y  small 
( <  5%). Hence t h i s  assay gives 
accurate  r e s u l t s  with only p a r t i a l  
conversion and el iminates  the need f o r  
quant i ta t ive  water entrapment. 
Analysis of 2 and 
cood agreement with those obtained by 
'€I-,, spectra  of t h e i r  camphanamides. 

gave values i n  

H2N s COOH - T OyCOOH 2_ - co Oyk-Ph 

PhNO 
H H 

TxH DAO 

5c 4c  

DAO D-Amino Acid Oxidara 0 % of 'H 

Fig. 5. Fate of labeled atoms ( 0  = 1 4 C ,  T = 3H) during 
Pamino acid oxidase/nitrosobenzene assay. 

STEREOCHEMISTRY A N D  M E C H A N I S M  OF P A M  OXIDATION 

The R-, S-, and RS-[2-3H,]glycines Sb, 5c, and M were individual ly  mixed with [l,2-14C2]- 
glycine 2 and transformed t o  the corresponding D-tyrosyl-L-valylglycines lb ,  lc ,  and Id. 
respect ively,  by standard so lu t ion  phase peptide synthesis  methods. These t r ipept ides  were 
then exposed t o  the pur i f ied  PAM from3pof$ine p i t u i t a r y ,  the radioact ive glyoxylates were 
trapped with nitrosobenzene, and the H/ C r a t i o s  of the resu l t ing  N-hydroxyformanilides 
were compared t o  those of the s t a r t i n g  t r ipept ides .  The r e s u l t s  c lear ly  show loss of the  
pro S hydro en of the glycine u e  of 1 and re ten t ion  of the pro R hydrogen during the  
PAM reactio:. The changes i n  %;% r a t i T w e r e  not as complete as i n i t i a l l y  expected 
because of some p a r t i a l  epimerization during chemical synthesis  of the t r ipept ides  1. 
was confirmed by hydrolysis of the t r ipept ides  2 and 
stereochemical analysis  of these by the D-amino acid oxidase/ nitrosobenzene procedure. 
This showed t h a t  as  expected, the PAM oxidation is completely s te reospec i f ic .  

This 
t o  regenerate glycines and 
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I n i t i a l l y  it was proposed t h a t  PAM dehydrogenates the glycine residue of A t o  an N-acyl 
imine 2; t h i s  adds water t o  form g which then cleaves t o  the peptide amide and glyoxylate 
(Fig. 6, re f .  5). A new more generally-accepted mechanism involves d i r e c t  hydroxylation of 

carbon t o  give E; t h i s  is supported both by the  
cofactor  requirements of PAM and by i ts  a b i l i t y  
t o  transform glyoxylic acid phenylhydrazone t o  
oxa l ic  acid monohydrazide ( re f .  15). Although 
l e s s  l ike ly ,  another p o s s i b i l i t y  may be N- 
hydroxylation t o  generate 2 followed by t rans-  
formation t o  C and z. 
oxidation of N-aroylglycines provides a chemical 
precedent f o r  t h i s  sequence ( r e f .  16). These 
p o s s i b i l i t i e s  may be dist inguished using an 
analog of 1 i n  which the glycine nitrogen is  
replaced with oxygen (i.e.,  a glycolate  e s t e r ) ;  
only a d i r e c t  C-hydroxylation mechanism should 
be capable of forming glyoxylate. Such 
compounds have been synthesized and t h e i r  
i n t e r a c t i o n  with PAM is  under invest igat ion.  
Since enzymatic C-hydroxylations general ly  
proceed with re ten t ion  of configuration ( r e f .  
171, the  removal of the pro S hydrogen by t h i s  
process would require  t h a t  a m i n a l z p o s s e s s  S 
configuration. This suggests t h a t  pept ide 
analogs t h a t  bear a hydroxyl i n  t h a t  pos i t ion  
but a r e  incapable of cleavage may be i n h i b i t o r s  
of PAM; t h i s  is i n  accord with experimental 
observations ( r e f .  10). The stereochemistry of 

MI 0 0  
AH 
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JJ$ 0 0  - R u o o  
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0 0  
A 

X ’  
R k H 2  ALO0 

Fig. 6. Possible mechanisms PAM oxidation c lear ly  shows why t h i s  enzyme w i l l  
of PAM oxidation. not permit replacement of the glycine residue 

with L-amino acids  but w i l l  accept a terminal 
D-alanine residue ( re f .  18).  Since a terminal D-amino acid is l i k e l y  t o  afford some 
protect ion aga ins t  peptidase cleavage, peptide hormones bearing such extensions possess 
p o t e n t i a l  to  be oral ly-act ive prodrugs. Invest igat ion of t h i s  p o s s i b i l i t y  and fur ther  
s tud ies  on PAM enzymes a r e  continuing. 
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