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Abstract - The antitwr agent blecanycin is believed t o  mediate its thera- 
peutic effects a t  the level of DNA strand scission; th i s  process requires 
oxygen and an appropriate m e t a l  ion and proceeds via oxidative damage to 
the carbhydrate miety of DXA. Wtalloblecarrycins participate catalyti- 
cally i n  DNA cleavage, apparently via the intem-ediacy of high valent 
n~tal-oxo mrplexes, which delivers a reactive form of oxygen t o  a DNA 
sugar subsequent t o  binding of the metalloblecerrycin to the DNA duplex. 
Also investigated were t w  structural series of natural products that have 
been shown for the f i r s t  t in-e t o  cleave DNA. 
(-)-epicatechin and procyanidin B2, was identified ini t ia l ly  as  constitu- 
ents of Celastrus pringli Rose. 
cinols isolated from + trifurcata. 
strand scission by h t h  types of agents required a mtal ion and 02. How- 
ever, for bth the flavanoids and 5-alkylresorcinols, DNA cleavage did not 
require any reductant and was actually diminished i n  the presence of thiols. 

One series, exemplified by 

Also studied was a series of 5-alkylresor- 
In commn with blecerrycin, DNA 

INTRODUCTION 

The identification and characterization of mlecules that mediate DNA strand scission has led 
to the developmnt of strategies for determining DNA sequences (ref 1) , DNA conformation 
(ref 2) and the way i n  which d l  mlecules bind to DNA (ref 3) .  Of considerable interest 
in recent years have been species that effect DNA cleavage subsequent t o  DNA binding, as the 
&ination of these tvm events has the potential t o  provide considerable selectivity. 
Qlemical agents that act  on DNA i n  this  fashion include bth natural products and syntheti- 
cally derived ccanpounds, as w e l l  as previously characterized DNA binders that have been 
altered structurally t o  faci l i ta te  DNA cleavage (ref 4 ) .  
(ref 5, 6) and cleavage (ref 7)  are of continuin9 and natural product rrodels can 
contribute importantly in this  regard. 

The present report describes recent efforts t o  characterize the mechanism of DNA binding and 
strand scission by the antitunxlr agent bleanycin (EEt9. Also sumnarized is the status of a 
study whose objective is the identification of additional natural products that bind and 
cleave DNA by novel mechanisms. 

New principles for DNA binding 

BLEOMYCIN-MEDIATED DNA STRAND SCISSION 

Figure 1 il lustrates the sequence-selective cleavage of a 3'-32P-end labeled DNA restriction 
fragment by Fe-WI A2 
occurred primarily a t  GT and GC sequences, and in an overall fashion Gte similar 
for the t vm mtalloblecarrycins. 

t$ presyce39f 02; as i s  clear f m  the figwe, strand scission 
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Also investigated was the actual chemistry of Dl? strand scission; 
of self-ccanplenwtary oligonucleotides such as d(CGCTITAAACXX;)3 and d(CXl'AGCG)3 , 
which have preferred BLN cleavage sites near the 5'-end. It was found (refs 8, 9) that 
blemycin produced two tyFes of damage a t  each site that was W f i e d  ( S c k  1). For the 
cctanucleotide depicted in Schem 1, one lesion produced =-3-(cytidin-l'yl)propenal (L) , m, and a dinucleotide terminating with a 3'-phosphomglycolate rroiety (2). In addition, 
each site of damage also contained an alkali labile 4'-hydroxyapurinic acid (s), which formed 
w i t h  conccnnitant release of the heterocylic base. Base treatrent of the alkali labile lesion 
produced strand scission, with rearrangerent of the deoxyribase ring to  produce 
diastereamxic 4-hydroxycyclopentenones (4) . 
Eased on oxygen consmption and other physicochemical data (refs 10,  ll), the concentration 
dependent activation of Fe(II)*BISI i n  the absence of external reducing agents and the extent 
of product formation by activated bleomycin i n  the presence of excess DNA (refs 8 ,  1 2 ) ,  it 
is believed that activation of Fe(II)*BLEI in the presence of 02 requires an additional 
electron. 
proprtionation of Fe(I1) .BLEI mlecules h the presence of 02 (refs 9,  10) . 
oligonucleotides by b l e q c i n  gives a pattern quite different than that which obtains with 
species that generate diffusible oxygen radicals (ref 9 ) .  
F e - W  and Cu-BLEI exist  as high valent metal-oxo complexes capable of oxidizing and 
oxygenating substrates such as DNA. 
substrates strongly supports th i s  view (refs 13-15). 

Thislwas done by $he use 

This can be provided by an external reductant, or  else by the collision and dis- 
Cleavage of DNA 

It is  suggested that activated 

The chemistry of b l e q c i n  with l o w  mlecular weight 

IDENTIFICATION OF OTHER NATURAL PRODUCTS THAT CLEAVE DNA 

In order t o  identify additional natural products capable of DNA strand scission, he employed 
a highly sensitive assay t o  detect the presence of such compounds in extracts prepared from 
a nmber of plants. The assay, i l lustrated in Fig. 2 ,  involved the use of a negatively 
supercoiled covalently closed circular DNA (cccDNA) containing several thousand nucleotide 
base pairs. DNA strand scission a t  any one of these produced relaxed circles; 
both strands within several base pairs resulted i n  conversion t o  linear duplex DNA. Also 
shown in  the figure is  the relative mbi l i t i e s  of these three forms of DNA on agarose gels 
and a "typical" conversion that might be observed with an agent capable of producing both 
single- and double-strand nicks (e.g., bleamycin) . 
Fractionation of Celaskrus pringli  RDse yielded epicatechin (5) and procyanidin B2 (6) (ref 4) ,  
both of which mdiated relaxation of supercoiled cccDNA a t  micrmlar  concentrations in the 
presence of Cu2+ and 02. 
increased in proportion t o  the concentration of ligand present. 
agents such as allcyl thiols did not enhance the extent of DNA cleavage by 5 and 5, suggesting 

cleavage on 

As shown in Fig. 3, the extent of DNA cleavage a t  fixed [Cu2+] 
The addition of reducing 
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Fi 1. Site selective cleavage of a 
%-end labeled DNA by BLM A2 i n  
the presence of Fe, and Cu + 
dithrothreitol. Reaction mixtures 
contained: lane 1, 10 pM BLEl + 20 
pM Fe(I1); lane 2,  5 pM F3I.M + 10 $f 
Fe(I1); lane 3, 10 pM ELM + 20 fl 
CU(I1)  + 1 mM MT; lane 4, 5 w BLM 
+ 10 flf ~ ~ ( 1 1 )  + 1 DTT; lane 5, 
G-specific reaction; lane 6 ,  DN& 
alone. 
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Fig. 2. Conversion of Form I DNA t o  
Form I1 (nicked circular) DNA and 
Form I11 (linear duplex) D m  
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Fig. 3. Relaxation of OX174 Form I 
DNA by procyanidin B2 (6) in the 
presence of Cu(I1). Lane 1, DNA + 
10 pM Cu(I1); lanes 2-7, 10 w Cu(I1) 
+ 1, 5 ,  10, 25, 50 and 100 pM 
procyanidin B2, respectively. 
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Fig. 4 .  Cleavage of QX174 Form I DNA 
by a CH2C12 extract prepared from 
H a k e a  trifurcata. Lane 1, DNA 
alone; lane 2 ,  10 pM Fe(I1) + 0.1% 
H202; lane 3, 10 @l Cu(I1); lane 4 ,  
20 pg of extract + 10 $1 Cu(I1) ;  
lane 5, 10 pq of extract + 10 pM 
Cu(I1). 

that the mechanism of D?& cleavage by these agents differs fundamntally fr 
n&alloblecqcins such as Fe'BM and Cu*BLEI. In exprinwts that employed '??-end labeled 
DNA as a substrate for Cu-epicatechin (i.e. , analapus to  Fig. 1) , cleavage was found t o  
wcur at  every nucleotide position. In the aggregate these data are consistent with a 
mechanism involving binding of Cu2+ by the catechol mieties i n  e p i c a t d i n  and procyanidin 
B2; reduction of the bound Cu2+ with concomitant ligand oxidation muld produce an inter- 
d i a t e  capable of reduction of 02. The oxygen radicals so produced should be capable of 
mdiatinq the observed DNA strand scission. 
tion subsequent to  DiW binding is suggested by a few different lines o f  evidence, including 

that of 

That 2 and 5 actually do mediate DNA degrada- 
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the inability of structurally related flavanoids to rnediate DNA cleavage to nearly the m 
extent, and the alteration of the circular dichroism spectrum of DNA and the ultraviolet 
spectrum of epicatechin upon admjxtwe of the two. 
Assay of a Cli2C12 extract prepared f r m  a dried s p e c h  of 
presence of same species capable of M a t i n g  DNA strand scission in the presence of a*+ 
and 02 (Fig. 4). When the extract containing this activity was employed a t  high concentra- 
tions, a marked shif t  in the mbi l i ty  of Forms I and I1 DNA on agarose gels was also 
observed, suggestive of the presence of one or n-ore compounds that b m d  DNA strongly. 

Bioassay-guided fractionation of this extract afforded three ccsnpounds (1 - 9) capable of 
mdiating cccDNA relaxation in the presence of Cu2+ and 02. 
DNA cleavage was not potentiated by added reducing agent, and cleavage of 32P-enB labeled 
DNA was found t o  produce cleavage a t  each nucleotide position. 
that incuhtion of 2 - 2 under conditions (e.g., high pH i n  the presence of Cu2+) hm to 
result in oxygenation of the a r m t i c  nucleus (refs 16, 17) dramatically enhanced the 
potency of these agents as DNA cleaving agents: approximtely the 
observed for the 5-alkyl-1,3,4-trihydroxykenzene derivatives containing structurally 
comparable 5-alky1 substituents. 
these agents involves in i t ia l  oxygenation of the -tic nucleus, producing spec'es whose 
behavior parallels that of epicatechin and procyanidin B2 in utilizing ligated Cut'+ t o  
effect reductive activation of 02. 

As regards the mchanisn of DNA binding by 2 - 9, it is  interesting to  note that synthetic 
5-alkylresorcinols and 5-alkyl-1,2,4-trihydroxybenzene derivatives exhibited DNA cleavage 
efficiencies in rough proportion to the lengths of the individual substituents. It  m y  be 
possible that the n-echanim of association of such agents with INA is primarily hydrophobic 
in nature, i.e. that upon dissolution in an aqueous rnesLim containing DNA, campounds 2 - 9 
simply associate w i t h  the least  polar component of that msLiun (i.e. , w i t h  the interior 07 
the DNA duplex). 

t r i fwcata  indicated the 

As with ccsnpomzs 5 and 6, 
Interestingly, it m s  founa 

order of potency was 

W e  suggest that the chemical mchanim of DNA cleavage by 
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