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Abstract - A brief review is given of the existing theories of prefer- 
ential and total sorption of a mixed solvent in a macromolecular coil at 
high polymer dilution. An application, unpublished as yet, of the 
Guggenheim-Barker quasichemical theory leads to the following predictions: 
The preferential sorption is materialized not only in the solvent shell 
adjacent to the polymer chain, but - depending on the sign and magnitude 
of mutual interaction of the two components of the solvent - also in the 
next layers. The preferential sorption affects the total sorption not only 
by means of the concentration disproportionation effect, included in the 
general equilibrium condition, but also through the contact balance 
effect, predictable only by theories considering nonrandom mixing. The 
contact effect compensates the disproportionation effect partly in some 
cases and fully in other ones. The shape of the preferential and total 
sorption dependences on the mixed solvent composition is affected, among 
other things, by nonrandom mixing. The effect is considerably stronger 
with molecules containing strongly interacting polar groups bound to an 
inert residue rather than for molecules with a homogeneous surface. 

INTRODUCTION 

The sorption equilibrium between macromolecular coil and mixed solvent has a considerable 
effect on the thermodynamic, transport and optical properties of dilute polymer solutions and 
may also influence the kinetics of solution polymerization. 

If we have a polymer solution in a binary solvent, two data are needed for the description of 
sorption equilibrium; data on the total and preferential sorption are those which can best be 
determined experimentally. The total sorption characterizes the degree of expansion of the 
coil, while the preferential sorption gives the difference in composition of the mixed sol- 
vent inside and outside the coil. 

The following problems are dealt with in this study: form of the dependence of total and 
preferential sorption on the composition of mixed solvent; thickness of the layer adjacent to 
the polymer chain and representing the concentration difference called preferential sorption; 
and, finally, the effect of preferential sorption on the magnitude of total sorption. The 
tool used in the study are theories of mixtures in which nonrandom mixing is considered, in 
particular the theory of quasichemical equilibria, the application of which to sorption in 
ternary polymer systems has not yet been reported. This is preceded by a concise survey of 
results based on the random-mixing approximation. 

BASIC DEFINITIONS 

The following indexes are assigned to components of the ternary mixture: 1 better solvent, 
2 poorer solvent, 3 polymer. 

The distribution of polymer segments in the domain of the coil is not uniform, and it should 
therefore be borne in mind that the magnitude of preferential sorption in the coil varies 
from one volume element to another. Hence, the total difference in the content of component 1 
between the domain of the coil and the same volume of the bulk solvent is given by an inte- 
gral over the volume of the domain: 

X = (NA/M) /(1-03)E($3)dV (1) 

where X is the preferential sorption related to the mass unit of the polymer, NA is the 
Avogadro constant, M is the molar mass of the polymer and $i is the volume fraction of 
component i in an element of the domain of the coil. Local preferential sorption E is defined 
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by relations 
i - $10 E = U  
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where u .  is the local volume fraction of component i in the coil domain related to the volume 
of the hxture of liquids 1 and 2 ,  and $10 is the volume fraction of component i in the domain 
outside the coil. In this study we concentrate on the case of a very strongly swollen coil 
(very small $3); in this limit the local preferential sorption is proportional to the volume 
fraction of the polymer, and the proportionality constant A is the coefficient of preferen- 
tial sorption: 

A = lim E / + ~  = lim A / ; ~  
$ 3 4  

( 4 )  

where y 3  is the partial specific volume of the polymer. For the given system, A depends only 
on the composition of the bulk solvent and on temperature. The coefficient of preferential 
sorption can be determined by e.g. the method of dialysis equilibrium or by the light scat- 
tering measurement. 

Measure of the total sorption of the solvent in the coil is represented by the linear expan- 
sion coefficient 

in which <s2> is the mean square radius of gyration of the coil, and index 8 denotes the 
Gaussian conditions. The expansion coefficient can be determined directly from the ratio of 
the radii of gyration determined by light scattering, or indirectly from viscosity values 
(ref.1). The statistical thermodynamical theory of equilibrium expansion of the coil has led 
to several different equations (refs 2 , 3 ) ,  in which the Shultz-Flory sorption potential (ref. 
4 )  defined by the equation 

is calculated from the expansion coefficient; here, IT is the osmotic pressure related to the 
solution of volume fraction $3 of a polymer with infinite molar mass, and Vi is the molar 
volume of component i. 

GENERAL CONDITIONS OF EQUILIBRIUM 

The treatment based on the mean field theory is based on general conditions of osmotic equi- 
librium between the volume element of the domain of the coil and external solvent (refs 4 , 5 ,  
6 ) .  In the limit for infinite dilution of the polymer ($3+O), these conditions become (ref.7) 

A = - M  /M 13 1 1  

Here, the symbols Mij denote the limiting values of partial derivatives 
2 Mij = lim ( 3  Gu/3uiau.) u3+0 3 

i;j = 1;3 

where Gu is the Gibbs energy of mixing the polymer (-1 with a unit volume of the mixed 
solvent . 
Eq.(7) can be rewritten to 

The first term in the sum on the left-hand side is a measure of the change in the Gibbs 
energy after a small volume of component 1 has been transferred from the bulk phase into the 
coil domain having the same solvent composition, while the same volume of component 2 has been 
transferred in an opposite direction. The other term gives the change in the Gibbs energy 
connected with the concentration disproportionation of the solvent; the derivative M11 is 
always positive in stable systems, Hence, the fraction on the right-hand side of Eq.(7) can be 
interpreted as the ratio of the thermodynamic “driving force” of preferential sorption to the 
thermodynamic “resistance” against the concentration nonhomogeneity. 

In Eq.(8) multiplication carried out on the right-hand side yields two terms which describe 
two contributions to the osmotic pressure. The first term in the limit for pure solvent ($1+0 
or becomes the known expression (1/2-~)/V1. The second term can be rewritten to - E ~ M  1 1  
and represents a consequence of the concentration disproportionation caused by the preferen- 
tial sorption. In stable systems (at the infinite molar mass of the polymer) the first term 
is always positive, while the other term is always negative. 
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In the light scattering theory (refs 7,8), similar equations expressing preferential sorption 
and the second virial coefficient of osmotic pressure have been derived by means of partial 
derivatives of chemical potentials with respect to molalities. Such choice of the variables 
is preferred when one of the low-molar mass components (e.g., water) is present in excess, 
compared with the other component (e.g., salt). 

THE FLORY-HUGGINS EQUATION 

Shultz and Flory (ref.4) have derived equations for the dependenceof preferential and total 
sorption on composition, using the Flory-Huggins equation for the ternary system. The equa- 
tions show that the preferential and total sorption are affected not only by values of the 
interaction parameters, but also by the ratio of molar volumes of both low-molar mass 
components. Characteristic features of the dependence of sorption on the composition of the 
mixed solvent, i.e. asymmetry of the A vs. $10 dependence and nonlinearity of the Y vs. $10 
dependence (Fig.l), can very well be explained qualitatively by the effect of interaction 
between two components of the solvent as characterized by the Flory-Huggins parameter g12. 
Since in systems with complete miscibility this parameter usually assumes much broader 
absolute values than the difference between parameters g13 and 823 which characterize the 
solvent-polymer interaction, one could expect that the dependences mentioned above would be 
quite dramatic. In fact, however, the effect of interaction 1-2, though almost always a dis- 
tinct one, is nevertheless weaker than predicted by the Flory-Huggins theory (refs 10, 11). 
Read (ref.l2), who was aware of this fact, was the first to introduce parameters of ternary 
interaction into the Flory-Huggins equation when interpreting data on preferential sorption. 

The extension of the Flory-Huggins equation by introducing the ternary parameter gT:g123 made 
possible a much more adequate description of experimental data, if the concentration depen- 
dence of interaction parameters was admitted. In our studies (refs 7,13,14) we used the 
generalized Flory-Huggins equation in the form 

where n is the amount of substance of the i-th component, and the functional dependences i 

are valid. By substitution into Eqs ( 9 ) ,  expressions were obtained for the limiting deriva- 
tives Mij, in which the parameter gT could be transferred into the common term with the para- 
meter 812; this also concerns derivatives of both parameters. For this reason, an assumption 
has been made and verified by many reported experimental data (refs 15,16) that with the 
exception of the proportionality constant the dependence of gT and its derivative with re- 
spect to 43 on the composition of the mixed solvent u 1  are the same as the dependence ofpara- 
meter 812: 

in which ag,a' are the proportionality constants. Expressions for the derivatives then assume 
the form which in the limit holds for $3+0: 

where 1 = V /V and in the limit for I$~+O we have 1 2  

By substituting from ( 1 4 1 ,  ( 1 5 )  and (16) into Eqs (7) or (81, we obtain expressions for 
preferential sorption and for the potential of total sorption. Of the quantities contained in 
Eqs (131, ( 1 4 ) ,  (15), g12($10) can be determined independently from activity measurements in 
binary mixtures of liquid components; x13 and x23 can be evaluated from the expansion coef- 
ficient of the coil in pure solvent, The parameters g13, 923 cannot be identified with x13 
and ~ 2 3 ;  if the dependence of parameter xi3 on $3 is known, the parameter g13 can be deter- 
mined by an integration procedure (ref.17). Such data on binary systems are not always avail- 
able, however; in such cases, the difference 813 - lg23 must be adjusted so as to adequately 
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Fig. 1. The dependence of preferential sorption (A) and of the potential of 
total sorption (Y) on the composition of the mixed solvent $10. According 
to the Flory-Huggins equation with concentration-independent parameters; 

1 = 1  
Values of (1 - ag)g12 in the plot A = A($10), or of (1 - 2aX)g12 in the 
plot Y = Y($10): 1 0.3 2 0.15 3 0 4 -0.15 5 -0.3, 

Y calculated from single-liquid approximation. 823 - 813 = 0.2 

describe the dependence of preferential sorption on composition. Linearization procedures 
have been suggested, which allow the constants ag and 813 - lg23 to be determined from dataon 
preferential sorption (ref. 15), and ax to be determined from the potential of total sorption 
(ref. 16). Chu and Munk (ref. 18) suggested an integration procedure of the calculation ofthe 
gT vs. u1 dependence using data on preferential sorption independently of the assumption 
expressed by Eq.(13). Figueruelo et coll. (ref. 19) confirmed the validity of this assumption 
by calculating gT(u1) according to ref. 18 and comparing with the gl2($10) dependence; they 
also suggested an equation for the prediction of the ternary parameter using binary para- 
meters. As expected, the absolute majority of systems evaluated in refs 15, 16, 19 yieldedthe 
ag and 2aX values in the range between 0 and unity. Hence, the parameters gT and XT have the 
same sign as 812, but in accordance with Eqs (15), (16) they reduce the effect of 812 on the 
form of the sorption dependences. The seemingly paradoxical character of this conclusion can 
be explained by analyzing changes in the number of interaction contacts during dilution ofthe 
polymer with a mixed solvent (ref. 20). 

Let us now examine characteristic features of the dependence of preferential sorption on the 
composition of the mixed solvent recorded in our version of the Flory-Huggins equation. The 
conclusive role of parameter 812 is evident from Eq. (15) in connection with Eq. ( 7 ) .  As far 
as g12*0, the A vs. $10 dependence is asymmetrical, and at a sufficiently high 812 a point of 
inversion may appear on the curve, where M1?=0, and thus also A=O (Fig. 1). An analysis 
reported in refs 5 ,  15 shows that an approximate criterion of the occurrence of the point of 
inversion (exact for 812 independent of $10) is given by the condition 

In the surroundings of the point of inversion the system may behave in two ways: (1) the 
component lacking in quantity compared with the system in the point of inversion is sorbed 
preferentially. Such type of the inversion point is called the "inversion point with converg- 
ing surroundings"; it can be proved that the condition of its occurrence is the positive sign 
of the parameter g12 (the sign at g12 usually coincides with that of the function GE of the 
mixture of components 1 and 2 ) .  (2) The component present in excess compared with the point 
of inversion is preferentially sorbed into the coil. The point of inversion has "diverging 
surroundings"; such case may occur at negative 812. 

In the analysis of total sorption (refs 6, 16) we assume that the effect of preferential 
sorption, i.e. the effect of the second term in Eq. (8) can be neglected. From Eq. (16) we 
have, then, that at positive 812 a maximum may appear on the Y($10) dependence, while at 
negative g12 there will be a minimum. For the occurrence of an extreme we give a condition 
analogous to Eq. (20): 
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OTHER R A N D O M - M I X I N G  THEORIES 

The ternary interaction parameter, the introduction of which into the Flory-Huggins equation 
considerably improved agreement with the experiment, usually represents a correction for 
various inaccuracies of the simple theoretical model, rather than a real three-body inter- 
action. To reveal the real physical meaning of parameters gT and XT, we have to resort to 
more elaborate theories. The ternary system polymer-mixed solvent is a very suitable object in 
verifying theoretical models, due to the fact that 
of GE of the binary mixture of components 1,2 on composition. Usually, this dependence can be 
expressed more exactly than that for binary solvent-polymer systems; in the former case, the 
activity of both components can be measured simultaneously and independently, while in the 
latter only the activity of the solvent can be measured, mostly in a limited concentration 
range. Thus, in the evaluation of the ternary system, there is a smaller danger that short- 
comings of the theory will be concealed by adjustment of the parameters. 

Noel et al. (ref. 10) used the Miller-Orr-Guggenheim theory; later on, various authors turned 
their attention to the Prigogine-Flory-Pattersonequation-of-state theory (refs 21, 2 2 ,  23, 2 4 ) .  
A common feature of these theories consists in the use of surface fractions instead of volume 
fractions in expressions derived from the energy balance of intermolecular contacts. The 
number of contacts 1-2 which disappear after the mixed solvent has been transferred into the 
bulk of the coil is then determined by the surface and not by the volume of the molecules, 
Under these assumptions, the relations 

one of the input data is the dependence 

1 - a = s3/s , 
8 

can be derived, in which 53 is the molecular surface-to-volume ratio of the,polymer, s is the 
mean value of this ratio for the mixed solvent. A typical value of s 3 / s  calculated according 
to Flory (ref. 25) is 0.6.  

Another, less pronounced contribution ensues from the difference in the thermal expansion of 
solvent and polymer, which is considered in the equation-of-state theory: energy of cohesion 
decreases with increasing thermal expansion, and therefore the interaction energy per one 
contact of the 1-2 type in the solvent phase is lower than in the polymer phase. The contri- 
bution of this real many-body interaction to the ternary parameter is proportional to the dif- 
ference between the reduced heats of solvent and polymer and to the ratio between their re- 
duced pressures. 

S O M E  PROBLEMS RELATED TO N O N R A N D O M  M I X I N G  

The equation-of-state theory allowed a number of data to be adequately interpreted without 
taking resource to ternary parameters, and also brought evidence regarding the effect of 
molecular surface and thermal expansion on the thermodynamic properties of polymer solutions. 
On the other hand, however, it cannot provide a sufficiently full picture of the behaviour of 
ternary polymer systems, if those contain polar components whose interactions involve devi- 
ations from random mixing. This phenomenon, which consists in the preference for contacts 
possessing a lower Gibbs energy, cannot be without a pronounced influence on the form of the 
sorption isotherms. The only theory so far used, in which nonrandom mixing is considered, is 
the theory of association equilibria (refs 2 6 ,  2 7 ) .  A comparison of this theory with exper- 
imental data has confirmed, that considerable deviations from the classical Flory-Huggins 
equation in systems of the hydrocarbon/alcohol/polymer type can be explained by the strongly 
preferred occurrence of hydrogen bonds between alcohol molecules (ref. 20) .  Some results of 
the theory of association equilibria are summarized in the following chapter. 

Nonrandom mixing is closely connected with the problem of space distribution of preferen- 
tially sorbed molecules around the polymer chain. The assumption of random mixing implies the 
view of uniform concentration distribution in the polymer phase; hence, the preferential 
sorption would affect the whole domain of the coil, including molecules of the solvent which 
are not in direct contact with the polymer chain. Other authors (ref. 28)  regard it as useful 
to assume that the preferential sorption is localized in the monomolecular shell adjacent to 
the chain. The problem is of importance for the kinetics of solution polymerization: If the 
preferential sorption of the monomer is to have a considerable influence on the rate of chain 
propagation, it should be concentrated in the close vicinity of that chain; the concentration 
difference in the case of uniform distribution would be too small. 

The range of preferential sorption is also related to the problem of its effect upon thetotal 
sorption. In terms of Eq. (8) and of the analysis attached to it, the preferential sorption 
can be regarded as the concentration disproportionation of the solvent, leading to a decrease 
in the potential of total sorption. Quite often, however, a more or less intuitive view is 
forwarded that due to the preferential sorption the domain of the coil is enriched in the 
"better" solvent, which brings about a "more favourable" balance of polymer-solvent contacts, 
and thus also a drop in the Gibbs energy and a rise in the potential Y. Yamamoto and White 
(ref. 28) argue, that the "disproportionation effect" prevails, if the preferential sorption 
takes place uniformly throughout the coil. If, however, it is concentrated in the thin layer 
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adjacent to the chain, the effect of improved polymer solvent contacts ("contact effect") 
prevails. The equations derived assuming random mixing and for $3'0 do not predict sucheffect. 
If the application of the theories which consider non-random mixing led to an expression for 
M33, which would contain a sufficiently great positive term identifiable as "contact term'', 
a single-liquid approach to theories based on non-random mixing would be justified. Such 
approximation consists in neglecting the second term in Eq. (8) and is consistent with the 
assumption that both opposite effects considered here just compensate each other. In many 
cases, when applied to data treatment it gave more plausible results than the use of complete 
Eq. (8) (refs 16, 21). 

THEORY OF ASSOCIATION EQUILIBRIA 

The ternary mixture of specifically interacting nominal components can be regarded as a multi- 
component mixture of complexes AiBjCk in mutual equilibrium. Assuming that the mixture of 
complexes obeys the Flory-Huggins equation and that the change in the Gibbs energy due to non- 
specific interactions is not affected by the complex formation, the relation for the equilib- 
rium concentration of the complex SZAiBjCk is 

i j k  
us = KSPAPBPC 

Here, vs is the amount of substance in moles of the complex per one mole of sites in the 
Flory-Huggins lattice, KS is the equilibrium constant, and PA, PB, pc are the concentrations 
of unimers (molecules not included in the complexes). At the given values of nominal concen- 
trations of components VA, VB, vc the concentrations of unimers can be calculated by solving 
the mass balances for nominal components combined with equilibrium relations (23). 

For the preferential sorption, equations have been derived (ref. 27) from the model of associ- 
ation equilibria 

A = Z / Z  

Z 
A o  

2 2 
= (rB<jj>+rArB<ij>)($ +r i )-(r r <ij>+r <ii>)($ +r j ) 

2 2 
= r <ii> + 2r r <ij> + r <jj> 

A A A b  A B  A B B b  

'0 A A B  B 

The equation derived for the potential of total sorption is 
2 -1 - Y = (rA/2) [(I+rAib+rBjb) z0 kal 

In these equations, rA and rB are the numbers of segments in molecules of the nominal 
components A, B; $A and $B are their respective volume fractions. The moment function 
given by 

2 2 2 2 <ii> = x i  u = zi K pipjpk = a zvS/a(ln PA) s S S  s S S A B C  s 
Moment functions <ij>, <jj>, <ik>, <jk>, <kk> are given by analogous relations. The ex- 
pressions ib, jb and ka are defined by 

The first two quantities give the 
action to one polymer segment; the latter quantity characterizes the selfassociation of the 
polymer. All concentrations and moment functions are related to the infinitely diluted ter- 
nary phase. The equations may be supplemented by the Flory-Huggins parameters characterizing 
nonspecific interactions (refs 20, 27). 

Eqs (24)-(26) are general ones; for a system with the given pattern of specific interactions 
it is sufficient to write (if possibly, in the closed form) the function 

average number of molecules A or B bound by specific inter.- 

and to subject it to partial differentiation so as to obtain the necessary moment functions. 

To illustrate the physical meaning, let us rearrange the equations for preferential sorption 
for two limiting cases. (1) If the polymer is inert, we have ib = 0, jb = 0 and ka = 0 and 
complexes (AiBj) are formed by the solvent components only. Eq. (24) can then be rearranged 
to the form 
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in which - 
= Cr i v h i  v 

r(A) s S S S s S S  ' 
rS = rAiS + rBjS (34) 

The expression rs is the measure of molar volume of the given complex, ;(A) and ;(B) represent 
the average values of rs, the average in the former case being taken over all molecules A 
present in the mixture, and in the latter, over all molecules B. Let us compare Eq. (32) and 
the Flory-Huggins equation for a system of inert components with zero interaction parameters: 

A s  can be seen, in the latter system only the ratio of sizes of the molecules, 1 = rA/rg, 
decides about the preferential sorption. In Eq. 
average magnitudes of the association complex, which of course obey the association equilib- 
rium, and thus depend on $A. Various special features observed in the dependence of preferen- 
tial sorption on $A,  such as inversion and its type, can then be interpreted as a consequence 
of the concentration dependence of and P(B). 
no other interactions than the binding of components A ,  B onto the polymer C, Eq. (24) is 
simplified to (assuming that rA = rB) 

(32) rA and rB have been replaced by the 

(2) In the case that in the system there are 

This equation can also be obtained from a simple mass balance, assuming that ib moles of 
component A and j, moles of component B are bound to one mole of the segments. Hence, in such 
limiting case the preferential sorption is localized to the closest vicinity of polymer sites 
of the specific interaction. 

THE QUASICHEMICAL THEORY 

Molecules with homogeneous surface 
In a liquid system approximated by a lattice with the coordination number z a molecule of the 
i-th component occupying ri lattice sites may enter into zqi binary contacts with other 
molecules. If we denote the number of such contacts between molecules of components i, j by 
Nij, contacts of component 1 in the ternary system obey the balance equation 

2Nl, + N12 + N13 = ZqlN1 (37) 

in which N1 is the number of molecules of component 1. According to the quasichemical theory, 
the frequency of various types of contacts is controlled by the equation 

Nii N . .  (38) 
Nij 2 = 4nij 

J J  

where nij is a temperature-dependent constant. Eq. (38) has been derived assuming mutual 
independence of the contacts. At random mixing, for each pair of components i, j we have 
nij = 1. 

Let us define, now, 

where 6 is the Kronecker delta, and ii 

Eq. (38) then becomes 

Yij = nijYiYj 

y1 + n12y1y2 + 

and the balance equation 
2 

of component 1 is 

n13y1y3 = '1 
where 81 is the contact site fraction (surface fraction). Similar equations can be written 
for components 2,3. For the Gibbs energy of mixing, the relation 

AG /RT = Tn. In $i + (z/2)Tniqi ln(Oi/$i) + 2Cn.q. 1n(yi/ei) (43) 
M 1 1  1 1 1 1  

is valid. In this study we examine only the case where both liquid components have the same 
molar volume and surface: 

rl = r2 = 1 q 1  = q2 = 1 (44) 
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If the expression in Eq. (43) is subjected to operations prescribed by Eq. (9), after major 
rearrangements we obtain 

V 1 M 1 1  /RT = (x1x2)-l + s[y12/(x1x2) - 11(2x1x2 - yl2)-' 
V1Ml3/RT = -s3(Cl3 - x1)(2x1x2 - y12) -1 
V M /RT = 1 - ( S - S 3 )  2 /(2S) + (s3/s)[l 2 - L + (s13-x1) 2 (2x x -y ) - 1  1 

(45) 

(46 1 

(47) 1 33 1 2 12 
Here, 53 = zq3/r3 is the measure of the molecular surface-to-volume ratio (according to Eq. 
(441, for components 1 ,  2 we have s = z ) ;  XI, x2 and y12 are related to the volume phase out- 
side the coil. The expression C l 3  is defined as 

St3 = lim (Y / e  1 (48) 
e3+0 13 3 

and gives the fraction of polymer contact sites interacting with molecule 1: 

(49) -1  sl3 = lim [y13/(y13 + yZ3)1 = vl3y1(nl3yl + n23~2) 
e 3'0 

The expression L is defined by 
2 (50) 

and gives us  the ratio of the number of polymer-polymer contacts to that of these contacts at 
random mixing. The relation 

L = lim (y / e  ) 
e3+0 33 3 

is valid. 

According 

(51) -2 
L = (Q13Y1 + v23Y2) 

Y1 = (x 1 -y 12 )1/2 
y12 = 1 1  - [ l  - 4 ( 1 - ~ - ~ ) x  x 11'21[2(1-n~~)l- 1 

A = E{l - (s-l)[l - y12/(x1x2)]l-1 

The yl, y2, y12 values can be calculated from 

(52) 

(53) 

1/2 , Y* = (X2-Yl2) 

12 1 2 

to Eq. (7), for the coefficient of preferential sorption we have, then, 

(54) 

(55) E = s3 ( 5  13-x1) 

In an approximation given by the assumption of mutual independence of contacts, 5 1 3  can be 
regarded as the composition of that part of the solvent which is in direct contact with the 
chain. Hence, E in the same approximation is the contribution to preferential sorption 
originating in molecules which are in contact with one segment of the polymer. At random 
mixing of components of the solvent (012 = 1; y12 = ~1x2) we simply have A = E; preferential 
sorption is then localized in the monomolecular layer near the chain surface. According to 
Eq. (541, in a general case the relation between A and E depends on the constant 012. If 
n12 < 1 ,  the tendency of  clustering of molecules of the same type becomes operative, so that 
preferential sorption established in the layer adjacent to the polymer is partly reproduced 
in layers close to it. In this way, a polymolecular envelope layer is formed, which diffusely 
passes into the bulk phase, and A/E > 1. If q12 > 1 ,  the component which in the layer (n-1) 
has negative adsorption accumulates in the n-th layer; consequently, the sign of sorption 
should oscillate from one layer to another. Due to the damped oscillation of partial contri- 
butions, the sum of preferential sorption is smaller than adsorption in the first layer. 

Let us now concentrate on the potential of total sorption Y. The nonathermal part of the 
expression on the right-hand side of Eq. (47) contains two terms. The first term,proportional 
to 1 - L, gives the contribution of polymer-polymer contacts. According to Eq. (501, the 
tendency of the polymer to self-association (L > 1) leads to a decrease in Y, while solvation 
of  the polymer (L < 1) has the opposite effect. The second term proportional to E2 is always 
positive, and it may be supposed to express the influence of preferential sorption in the 
first layer on the rise in total sorption. What we have here is obviously the longed-for 
"contact" term, which does not occur in equations derived assuming random mixing for an 
infinitely diluted polymer component. In Eq. (a) ,  along with the expression 
course a negative term -A2M1 j ,  which we call the disproportionation term and which reduces 
the total sorption. By substitution for A from Eq. (54) and dividing, we obtain 

contact term : disproportionation term = - s-'{l+(s-l) [yl2/(xlx2)-1]} 

M33, there is of 

(56) 

Thus, in the case of an ideal behaviour of the binary mixture (q12 = 11, the contact term is 
a mere s-th part of the disproportionation term; in a general case, however, the ratio also 
depends on the value of  1712. In this paragraph we assume a homogeneous molecular surface and 
s = z .  Hence, compensation of one term with the other is only partial. 
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Let us now compare the concentration dependences of preferential sorption according to the 
quasichemical theory with those derived from the extended Flory-Huggins equation, using 
a series expansion for small values aij = -In qij. For binary interaction parameters weobtain 

g12 = sa12(1 - a12x1x2 + . . . I  

gi3(e3=O) = s 3 a i3 i = 1;2 

By comparing equations for preferential sorption, integration and rearrangement we obtain an 
expression of the asymmetry index of preferential sorption 1-ag, cf. Eq.(13), in terms of the 
parameters of the quasichemical theory 

On the right-hand side the first term predominates, known already from the treatment of the 
problem by means of the equation-of-state theory. This is obviously characteristic of each 
theoretical model, in which an energetically homogeneous surface of the molecule is considered 
to be the site of interaction. Due to the factor (l/s), terms originating from nonrandom 
mixing are minor ones; for the same reason, the I-ag vs. x 1  dependence introduced by these 
expressions is not pronounced. It should be borne in mind that the symbols gij in Eqs (57 ) -  
(59) denote contributions of contact interactions to the respective parameters and not the 
full values of these parameters. 

Qualitatively similar conclusions can also be derived from the equation for the nonlinearity 
index of total sorption, where the term ( S ~ / S ) ~  predominates, while terms of nonrandom mixing 
are of minor importance. 

In this paragraph we examined systems with a homogeneous molecular surface. A more detailed 
analysis of the derived equations leads to a conclusion that in these systems we usually have 
small deviations from random mixing. Also, preferential sorption in the first layer is not 
great; if, of course, 712 approaches the critical value, preferential sorption may increase 
significantly, due to its reproduction in the second layer and the following ones, 

The cause underlying small deviations from random mixing is the fact that the interaction 
energy of the molecule is uniformly divided between qz contact sites. In the subsequent part 
we investigate molecules with heterogeneous surface containing a strongly interacting group 
which may become the source of strongly preferred contacts. 

Molecules with heterogeneous surface 

Barker has extended the Guggenheim quasichemical theory by including systems of molecules, the 
surface of which contains several types of coiltact sites. Theory in this form is applied to 
a ternary system in which the molecular surface of each component contains polar (strongly 
interacting) groups and a nonpolar (inert) residue. Polar groups of components 1, 2 ,  3 differ 
from each other and are denoted respectively A ,  B, C; the nonpolar part is the same in all 
components, and the sum of nonpolar residues of all components is denoted with R. Indexes 1, 
2 ,  3 are related to the components, indexes A, B,C,R are related to surface groups. The 
symbol C~A is used to denote the fraction which in the surface of the molecule of component A 
is occupied by groups A; a ~ s ~ r l  give the number of contacts entered by groups A present in 
molecule 1. In a similar way, C ~ B  and ac can be defined. The contact balance equations must be 
written for groups A, B, C and R; in the equation for the Gibbs energy of mixing the individ- 
ual terms of the last sum are also related to groups A, B, C, and R and not to thecomponents; 
unlike Eq. (431, the expressions characterizing the initial state must also be explicitly 
included. Let us also introduce the assumption that, along with equations (441, the relation 

is valid. 

The derived relations have become much more complicated. If, for instance, we are interested 
in the fraction of preferential sorption due to the direct polymer-solvent contacts, thereare 
two contributions to be considered, viz., contribution E ensuing from the interaction of 
polar groups C in the polymer, and contribution ER due to nonpolar residues of the type R 
which belong to the macromolecule. The total preferential sorption in the layer adjacent to 
the polymer, E, is the sum of these two contributions. For the former of these, a relation 

C 

can be derived from the mass balance; here, SAC and SBc are given by the equation 
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CKc = lim (Y /e 1 = a n y / Z r l  Y e3+o KC 3 C KC K L LC L 

where K;L = A;B;R. For the contribution of nonpolar groups of the polymer, the relation 

has been derived. It is not the sum EC + ER, that enters the equation for the preferential 
sorption A, but a linear combination of these partial contributions, which moreover have con- 
centration-dependent coefficients. As a consequence, in the equation for the potential of 
total sorption identification of the contact term is not unambiguous. For these reasons, we 
investigate below only two special cases for which the simplifying condition E = 0, and thus 
E = Ec, is valid. A more general analysis will be published elsewhere (ref. 297. (1) The case 
of strong interactions A-C and B-C (when ~ A C  > 1 ;  ?BC > 1); for the other interactions,random 
mixing is valid (nAB = rlAR = nBR = ncR = 1). In this case we have 

(64) C A = E  

Preferential sorption is localized on binding sites of the polymer, because in the mixture 1-2 
mixing is random. The nonathermal part of the potential of total sorption is given by the 
equation 

where 

The first term on the right-hand side is obviously a contact one. The ratio of the contact 
term to the disproportionation term is - l : ( a s ) ;  hence, full compensation of both terms takes 
place in the case where molecules 1 and 2 contain one strongly interacting group each, and 
this group occupies one contact site (as = 1) .  (2) The case where ~AR+O, ~ B R + O  and n c p 0  
(strong aversion from the part of the sites A, B towards contacts with nonpolar residues). 

G 
tial sorption we have 
E of the mixture of liquids 1 ,  2 has now the same sign as the expression l-nAB. For preferen- 

For as  = 1 ,  A = EC, in spite of the fact that the mixing of components 1 ,  2 is nonrandom. It 
should be pointed out, namely, that only contacts A-B, A-C, B-C and R-R are permitted. In 
such limiting case "induction" of preferential sorption from the layer adjacent to the chain 
into neighbouring layers is possible only through contacts between polar groups; since 
molecule 1 or 2 which contributes to the value of EC is by one group - A or B - engaged in 
an interaction with the polymer site C, the molecule must possess at least one additional 
group A or B (as L 2), in order to be able to interact with the molecule in the second layer. 

We have, also 

(68) V 8 /RT = ECs 2 -1 (2ax,x2 - yAB)-' - ( s3 /s ){Lc-aC/a  2 2 + (a-a 2 [2a(l-a)1 -1 1 1 33 C 

and 

contact term : disproportionation term = -(as)-l{l + (as-l)[yAB/ax x ) - 111 (69) 1 2  

Again, both terms are fully compensated, if as = 1. 

Thus, the single-liquid approximation is fully justified, if molecules of liquid components 
contain one small site of strong interaction each, and when preferential sorption is brought 
about exclusively by these sites. A similar conclusion may be reached using the theory of 
association equilibria in that case which in the paragraph devoted to this theory has been 
analyzed sub (2). Let it be added that both cases treated in the present chapter are lim- 
iting ones. The opposite limit can be seen in the system of molecules with homogeneous 
surface, when in terms of the quasichemical theory the contact term is z times smaller by its 
order of magnitude than the disproportionation term. 

The effect of nonrandom mixing on the shape of the sorption curves is discussed in case 2), 
where the parameter g12 may 
defined, cf. Eqs (13) and (19). Unlike systems with homogeneous molecular surface, when these 
parameters are a function of s3:s ,  in our case the parameters ag, ax at the given values of 
constants QAB, ~ A C  and ~ g c  depend on (acs3):  ( a s ) ;  hence, the surface of strongly interacting 
groups, and not the surface of whole molecules plays the decisive role in this case. The 

assume a nonzero value, and, consequently, ag and ax can be 



Sorption equilibria in ternary systems 1095 

1- 2 O X  

1 -o9  

1.5 - 

1.0 - 

0.5 - 

‘. 0 -  

Fig. 2.  The dependence of the asymmetry 
index 1-ag (solid lines) and of the 
nonlinearity index 1-2aX (broken lines) 
on the constants n .  
s = s3 = 8;  cis = ucs3 = 1 
1 QAB = ll ‘1AC = 1 nBC = 1 
2 ~ A B  = 0 TIAC = 1 nBc = n 
3 “B = q llAC = rl QBC ll 

dependence on values of the constants q is illustrated for some cases in Fig. 2 ;  the geo- 
metrical parameters were chosen so  as to eliminate their effect completely. In this case the 
effect of nonrandom mixing is much stronger than in the case of molecules with homogeneous 
surface. 

REFERENCES 

1 .  M. Bohdaneckq and J. KovA?, Viscosity of Polymer Solutions, Elsevier, Amsterdam ( 1 9 8 2 ) .  
2 .  W.H. Stockmayer, Makromol. Chem. 3 5 ,  54 (1960) .  
3 .  H. Yamakawa and G w e K  Phys. 5, 3991 (1967) .  
4 .  A.R. Shultz and P.J. Flory,-. 15,  231 (1955) .  
5. A. ZivnG and J. Pouchl9, J. Polym. Sci., P a x  A-2, lo, 1467 (1972) .  
6 .  J. Pouch19 and A. Zivn?, J. Polym. Sci., Part A-2, 10,  1481 (1972) .  
7. J. Pouchl9, A. Zivn9 and K. s o l c ,  J. Polym. Sci., Part C, 23,  245 (1968) .  
8.  J . G .  Kirkwood and R. J. Goldberg, J. Chem. Phys. l 8 x 1 9 m ) .  
9. W.H. Stockmayer, J. Chem. Phys. 1- 

10. R. Noel, D. P a t t e m m z n s k y ,  J. Polym. Sci. 42, 561 (1960) .  
1 1 .  A. Dondos and D. Patterson, J. Polym. Scy., Part A-2,  I, 209 (1969) .  
12. B.E. Read, Trans. Faraday SOC. 56, 382 ( 1 9 6 0 7  
13. A. Zivn9, J. Pouch19 and K. solc, Collect. Czech. Chem. Commun. 3 2 ,  2753 (1967) .  
14. Z. M6Sa, J. Pouchl9, J. PFibilov6 and J. Birog, J. Polym. Sci., Polym. Symp. 53, 271 

15. J. Pouch19 and A. Zivn?, Makromol. Chem., 183, 3019 (1982) .  
16. J. Pouch19 and A. Zivn9, Makromol. Chem., 184, 2081 (1983) .  
17. R.M. Masegosa, M.G. Prolong0 and A. Horta, Macromolecules 2, 1478 (1986) .  
18. S.G. Chu and P. Munk, Macromolecules 1 1 ,  879 (1978) .  
19. J.E. Figueruelo, B. Celda and A. Camp=, Macromolecules 18, 2504 (1985) .  
20. J. Pouch19 and A. Zivn?, Macromol. Chem. 186, 37 (1985).- 
21. J. Pouch19 and D. Patterson, Macromolecules 9, 574 (1976) .  
22. A. Horta, Macromolecules 12, 785 (1979) .  
23. A. Horta, Macromolecules 18, 2498 (1985) .  
24. J.B. Wedgeworth and C. J. Glover, Macromolecules 20, 2268 (1987) .  
25. P.J. Flory and H. HEcker, Trans. Faraday SOC. 67,2258 (1971) .  
26. J. Pouchl9, Collect. Czech. Chem. Commun. 2, E 3 6  (1969) .  
27. J. Pouchl?, = i n - .  Czech. Chem. Commun. 37, 988 (1972) .  
28. M. Yamamoto and J.L. White, Macromolecules 2, 58 (1972) .  
29. J. Pouchl9, prepared for publication. 

- 
(1975) .  




