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three-component systems 
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Abstract - The concepts of local compositions around a solute and preferential 
solvaton of a solute are defined in terms of the Kirkwood-Buff integrals. The 
difference between the local'and the bulk composition is a measure of the 
preferential solvation of a solute with respect to the various components of the 
solvent. 

A statistical mechanical theory is developed that leads to simple relationships 
between local compositions and experimentally measurable quantities. These are 
applied to both two- and three-component systems. 

INTRODUCTION 

The problem of preferential solvation (PS) arises almost in any physical chemical study of 
solutes in mixed solvents. The study could be thermodynamic. spectroscopic, o r  kinetic 
(ref. 1). However, in order to understand how the solvent composition affects the solute 
behavior, we need to know the composition that the solute "sees," i.e., the composition in 
its immediate vicinity. This is, in general, different from the bulk composition of the 
mixed solvent. 

The simplest approach to answer the question of how to measure PS is  to follow some property 
of a solute in a mixed solvent. 
spectroscopic quantity) characteristic of the solute S in pure solvent A and 6B the 
corresponding quantity for pure solvent B, then one might relate the observed chemical shift 
of S in a mixture of A and B, ~ A , B ,  to 6~ and 6~ by the equation 

For example, if 6A is the NMR chemical shift (or  other 

6A,B = xA(local) 6A + [l-~~(local)]6~ 

where xA (local) defined in Eq. 1.1. is a measure of the local composition of the solution 
near the solute. 
solvent mixture, XA being the mole fraction of the component A in the mixture. 

Although Eq. 1.1. can serve as an operational definition of xA (local), it does not really 
tell us what 9 the local composition in the vicinity of the solute S .  
surprised to find that different properties of S ,  used in Eq. 1.1., will result in different 
values of xA (local). 
that 6 is an average of 6 and as implied in Eq. 1.1. Therefore, the approximation 
involved in using Eq. 1.1 will, in general, be different for different properties of S in 
mixtures of A and B. 

What we need is an unambiguous definition, and a method of measuring, of the local composi- 
tion of the solvent, which is independent of a specific property of 2. 

Perhaps the first thermodynamic treatment of the problem of PS was presented by Grunwald et 
al. (ref. 2 ) .  who were interested in the solvation of ions in mixtures of water and dioxane. 
This approach was further developed by Covington and Newman (ref. 3 ) .  However, the ambigu- 
ity in the very definition of the local composition has not been removed. 

In this paper an attempt is made to define the concept of PS unambiguously and independently 
of any modelistic assumptions on the system. 
presented in the next section. 
Some illustrative results are also presented. 

This may, or  may not, be different from the bulk composition xA of the 

We should not be 

The reason is that there is no theoretical support to the assumption 

A,B A 

The definition of the local composition is 
This is then applied to three and two-component systems. 
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THE FORMULATION OF THE PROBLEM OF PS IN THREE-COMPONENT 
SYSTEMS 

Consider a mixture of two components, NA molecules of A and NB molecules of B, at some temp- 
erature T and pressure P. 
XA = NA/(NA + NB) will be the same at any point Ro within the system. 

We shall refer to xA as the bulk composition of the system. 
solution of a solute S in our two-component solvent mixture. 

Qualitatively, the question we would like to ask is quite simple. 
of the liquid in the immediate vicinity around the solute S? 
- S toward A might be different from its affinity towards B, we should expect that the compo- 
sition near the solute 2 will differ from the bulk composition x 

The main question is how to define the local region in the vicinity of S. in which the compo- 
sition is expected to be affected by the presence of S .  

Consider first a simple spherical solute, say argon, in a two-component solvent, say water 
and ethanol. Let dR' = dx'dy'dz' be an element of volume at a distance R' from the center 
of 2. 

In such a system the composition measured by the mole fraction 

Next consider a very dilute 

What is the composition 
Clearly, since the affinity of 

A' 

The average number densities of A and B in this element of volume will be 

PA(R' ) = PA(bulk)gAS(R' ) c2.11 

where PA(bu1k) andPB(bu1k) are the bulk densities of A and B, respectively, and gAS(R') and 
g~s(R') are the-radial distribution functions for the pair of species A,S and B,S, 
respectively. 

Clearly, if we had the full information on these two radial distribution functions, we could 
have defined the local composition at any distance R' from the center of S by 

Furthermore, this local composition will be different at different distances, say R' and R" 
(see Fig. 1). 

We know from the general theory of liquids that the radial distribution functions normally 
will tend to unity at distances of the order of magnitude of a few molecular diameters. 
Thus, at these distances from the center of S, all local densities will be identical to the 
bulk densities. 

At short distances, however, large deviation from the bulk densities are expected. A typi- 
cal form of the radial distribution function for a one-component simple liquid is depicted 
in Fig. 2. 

Fig. 1. The average local density of the solvent around a spherical solute S depends only 
on the distance R' and R" from the center of S. 
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Unfortunately, there is no experimental data on the separate radial distribution functions 
in two or more component systems. Even if we had such information, it would have been too 
detailed t o  be useful for practical purposes. Instead, we are interested in the overall 
composition in the local neighborhood of the solute, which roughly coincides with the region 
in which g(R) is significantly different from unity (Fig. 2). Fortunately, this information 
may be obtained from thermodynamic quantities. 
Kirkwood-Buff integrals (ref. 4,5). These are defined as follows 

The relevant quantities are the so-called 

m GAB = jgAB(R)-l]4nR 2 dR 

0 
C2.41 

where gAB(R) is the radial distribution function for the pair of species A and B. 
integration is extended from zero to infinity. 

differs from unity only at distances of the order of magnitude of a few molecular diameters. 
Therefore, practically the main contribution to the integral comes from the region in which 
gAB differs considerably from unity. 
correlation region around A (or B, depending on the vicinity of which molecule we are 
interested in). 

The significance of the quantity GAB with respect to the question of preferential solvation 
is the following. 
volume 4nR2dR at the distance R from the center of the solute 2. 
&4nR2dR is the average number of A molecules in the same element of volume but taken rela- 
tive to an arbitrary center in the liquid. Therefore, PA[gAs(R)-1]4nR2dR 
measures the excess, or  deficiency, of A molecules in the spherical shell 4nR2dR around 3 
relative to the same spherical shell but an arbitary location in the liquid. The quantity 
&GAS, according to the definition C2.41, is simply the overall excess or deficiency of A 
molecules in the entire volume around 3. 

In the next section we shall use the Kirkwood-Buff theory of solution (ref. 4,5) to relate 
GAB to thermodynamic quantities. It should be noted that these relationships are derived in 
an open system (i.e., in the T,V,p ensemble) where the number of particles in the system are 
not fixed. 

The 
However, in most practical cases gAB(R) 

This region can be conveniently referred to as the 

2 PAgAS(R)4nR dR is the average number of A particles in the element of 
On the other hand, 

The normalization condition for GAB is (ref. 4,5). 
- -  

m NANB - N 6 6AB 

0 iAiB NA 

2 A B - -  GAB = f[gAB(R)-l]4nR dR = V - 

where 6AB is the Kronecker delta function. 

If we were in a closed system (i.e., T,V,N ensemble), then NA and iB are fixed quantities 
and NANB = iAiB; hence, the corresponding normalization condition is - 

0 :‘L 1 .o 

1 2 3 4 5 6  
Rlo 

Fig. 2 .  Schematic form of the pair correlation function g(R) for a pure liquid of simple 
spherical particles. 
molecular diameters u. 

Note that g(R) is practically unity at distances of a few 
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Thus, i f  A=B, the in tegra l  i n  [2.6] is -1 as  it should be, since the t o t a l  deficiency of A's 
around a fixed A is  exactly the one pa r t i c l e  tha t  w e  have placed a t  the center.  
other hand, f o r  A=B the in tegra l  is zero. Placing o f ,  say, one A a t  the center does not 
change the t o t a l  number of pa r t i c l e s  i n  the en t i r e  system. 

We can now explo i t  the f a c t  tha t  gm(R) decays t o  unity beyond some distance R 2 Rm, where 

RAB may be referred t o  a s  the correlation distance f o r  any pa i r  of species i n  the system. 
We define the correlation volume as  

On the 

C2.71 Vcor = ( 4 n / 3 ) R c  3 

- RC 2 

Since a l l  the  pa i r  cor re la t ion  functions are prac t ica l ly  equal t o  unity a t  R 1. Rc, w e  may 
write the average number of A par t i c l e s  i n  the correlation volume around S as 

NA , s ( Rc = PA! g m  ( R - 1 14nR dR = 
0 

Eq. 112.81 simply means tha t  the average number of A ' s  i n  the  correlation volume ds the sum 
of the average number of A ' s  i n  the same region, before placing S a t  i ts  center,  PAVcor plus 
the change i n  the number of A ' s  i n  the same region caused by placing S i n  the center of t h i s  
region, PAGA. 
Using a similar def in i t ion  fo r  ( R  ) B,S c - 

NB,S(Rc) =hGBS + pBvcor 
we can define the loca l  composition i n  the correlation region around S as 

A where x 

Fig. 3 .  

- XAGAS + "A'cor 

" A ~ A S  + "B~BS + 'tor 

C2.91 

[2.10] 

is the bulk composition i n  the system. 

0 1 
XA 

Schematic dependence of the loca l  composition x 

composition xA. 

e n t i a l  solvation of s. 
e n t i a l  solvation. 
changes. 

( l oca l )  as a function of the bulk 
The diagonal l i n e  corresponds t o  the case when there is no prefer- 

A,S 

Curves a and b correspond t o  pos i t ive  and negative prefer- 
In  curve c the preferen t ia l  solvation changes sign as XA 
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The l o c a l  composition x 

solvat ion of S. I f  x 

Thus, w e  def ine t h e  p r e f e r e n t i a l  so lva t ion  of S with respec t  t o  A simply by t h e  d i f fe rence  

( l o c a l )  can now be compared with xA t o  determine t h e  p r e f e r e n t i a l  
A,S 

( l o c a l )  > xA, w e  may say t h a t  S i s  p r e f e r e n t i a l l y  solvated by A. 
A ,S  

6A,s = ~ ~ , ~ ( l o c a l ) - x ~  = 
X ~ ~ ( G ~ ~  - G ~ ~ )  

X ~ G ~ ~  + X B ~ B S  + 'tor 
[2.11] 

Clear ly ,  the  s i g n  and ex ten t  of p r e f e r e n t i a l  so lva t ion  might depend on t h e  composition of 
the so lvent .  Figure 3 depic t s  a few possible  cases where there  are p o s i t i v e ,  negat ive,  or 
mixed signs of p r e f e r e n t i a l  so lva t ion  according t o  whether x 
diagonal l i n e .  

( l o c a l )  i s  above or below the 
A,S  

Note t h a t  i n  a l l  cases 

eA,S 

i f  XA --> 0 

--> 0 [ or xA --> 1 

or GAS - GBS --> 0 

[2.12] 

The quant i ty  which i s  l e f t  ambiguous i n  
cor re la t ion  volume, we obta in  

[2.11] is Vcor. C lear ly ,  i f  w e  take a very l a r g e  

6A.s --> 0 f o r  Vcor --> - 
On the  o ther  hand f o r  too small Vcor, t h e  approximate e q u a l i t y  of gAs(R) - 1 presumed i n  
[2.8] ( f o r  R>Rc) w i l l  not  hold. I n  p r a c t i c e ,  we can choose, f o r  each s p e c i f i c  system, a 

reasonable Rc (and hence Vcor) according t o  the  behavior of t h e  funct ions g i j  a t  l a r g e  
dis tances .  

Theoret ical ly ,  however, we can g e t  r i d  of Vcor by taking t h e  f i r s t  o rder  term i n  t h e  expan- 

s ion of 6 -1 i n  [2.11] i n  power series about E E Vcor , thus 
A,S 

6A,s = 0 + ExAxB(GAS - Gss) + . . . C2.131 

We define t h e  l i m i t i n g  l i n e a r  p r e f e r e n t i a l  so lva t ion  as 

C2.141 

Since xAxB > 0, t h e  s ign  of  6' 

course, independent of t h e  c o r r e l a t i o n  volume. 

Thus, we have def ined i n  C2.141 a quant i ty  t h a t  unambiguously measures t h e  p r e f e r e n t i a l  
solvat ion of  S with respec t  t o  a two-component solvent .  

measures the  a f f i n i t y  of  S toward A. 

between t h e  a f f i n i t i e s  of S toward A and B. We next tu rn  t o  t h e  quest ion of  measurability 
of t h e  quant i ty  GAS - GBS. 

i s  determined by the  s ign  of GAS - GBS, and t h i s  i s ,  of 
A,S 

As noted earlier (5,6), GAS 

Thus, the  d i f fe rence  GAS - GBs measures the  difference 

RELATIONS BETWEEN PREFERENTIAL SOLVATION A N D  MEASURABLE 
QUANTITIES IN THREE- AND TWO-COMPONENT SYSTEMS 

In  t h i s  sec t ion  w e  s h a l l  present  t h e  re la t ionships  between p r e f e r e n t i a l  so lva t ion  and 
measurable q u a n t i t i e s  ( r e f .  7-10). The d e t a i l e d  deviat ions may be found i n  previous 
a r t i c l e s .  

For a three-component system i n  which S i s  very d i l u t e  i n  a mixture of A and B the  r e s u l t  is  
( r e f .  9). 

where AG; i s  the  so lva t ion  f r e e  energy of S i n  our system ( r e f .  6 ) .  
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Thus, by measuring the slope of the sovation free energy as a function of xA, we can extract 
the difference GAS - GSs. 
preferential solvation of S with respect to A. 
and B. 

Within the realm of the traditional concept of solvation thermodynamics, only very dilute 
solutions could be treated. 
a three- ( o r  more-) component system: a solute and a two-component solvent. 

However, the question of PS can also be asked in a two-component system, say of A and B. 
any composition xA, we may focus on one A molecule and ask what is the PS of A with respect 
to the two components, A and B in its immediate vicinity. Likewise, we may focus on one 
B-molecule and ask the same, but indewndent, question of the PS of B with respect to the 
two components of A and B. 

As we have seen in section 2 ,  this is a measure of the limiting 
Next we turn to a two-component system of A 

Therefore the concept of PS could have been dealt with only for 

At 

Consider an A molecule, placed at the center 
arbitrary radius Rc, the average number of A 

of a spherical volume of radius Rc. 
and B molecules in this sphere is given by 

For an 

C3.31 

0 
where PA and pB are the number densities of A and B, respectively, and gab is the angular 
averaged pair correlation function for Che pair of species a and B .  In the following treat- 
ment we focus on a'single A molecule to which we refer to as an A-solvaton (ref. 6). 
similar treatment applies to a B-solvaton. 

For any radius R 

A 

we define the local mole fraction of A-molecules around an A-solvaton by 
C' 

As in the three-component case 
simply by the deviation of the 

6 ~ , ~  = 

Using the same arguments as in 

- 
NA, A ( Rc) /['A, A (Rc) + 'B , A (Rc) 1 13-53 
we define the PS of an A-solvaton with respect to A-molecules 

from the bulk composition, i.e., 

"A, A(~C) - X ~  C3.61 

section 2 we define 

X ~ ~ ( G ~ ~  - G ~ ~ )  

X ~ G ~  ' " B G ~  ' 'cor 
13.71 

similarly for the PS of B in the same system we have 

Note that GAB = GBA, and that 6A,A and 6A,B are in general independent quantities but 

6A,A - -6B,A and 6 

Since all the G are computable from thermodynamic quantities, using the inversion of the 
Kirkwood-Buff theory of solution (ref. 8), one can compute ~ A , A  and ~ A , B  for any choice of 

= -6A,B which follows from the definitions [3.7] and C3.81. B,B 

aB 

'C. 

C3.91 

C3.101 

Thus, besides the product xA% the difference GAA - GAB characterizes the linear coefficient 
of PS of A ,  and likewise GAB - GBB characterizes the linear coefficient of the PS of B. 



Preferential solvation in two- and in three-component systems 31 

SOME REPRESENTATIVE RESULTS 

In  the following we have used a s  our main source of data,  tables of G t ha t  were computed 

by Matteoli and Lepori ( r e f .  11,12).  These tables were obtained by the inversion procedure 
of the Kirkwood-Buff theory ( r e f .  8 ) ,  using experimental da ta  f o r  mixtures of water and an 
organic l i qu id ,  and similar mixtures of carbon tetrachloride with the same organic l iquids.  

In  order t o  gain some fee l ing  f o r  the order of magnitude of the cor re la t ion  distance,  we 
took the values of the e f fec t ive  molecular diameters as used i n  the scaled pa r t i c l e  theory 
( r e f .  13).  

water - 2.88, methanol - 3.38, ethanol - 4.28, propanol - 4.68, n-butanol - 5.18. 
define the distance of c loses t  approach between two d i f fe ren t  molecules a s  

ij 

The following values of the diameters were used i n  our calculations:  

We a lso  

f-=j7, 
O 

H 1 

u, 

u, u, 

1 

O 
H 1 

0 H 1 
u, 

-5 O h  

-55 
O H 1 

I* 

XA u, 

Fig. 4.  Preferen t ia l  solvation i n  four systems of water (component A )  and an organic l iquid 
(component B ) .  
indicated i n  the figures) w e  present the loca l  mole f rac t ion  of A around A ,  the 
l y a l  mole f rac t ion  of A around B and the l i nea r  coef f ic ien ts  i n  the preferen t ia l  
solvation of both A and B. 

d i f f e ren t  values of n,  defined i n  equation C3.121. The la rger  the value of n the 
c loser  the corresponding 'curve t o  the diagonal l i ne .  

[ A l l  a t  25 ' C  and atmospheric pressure]. For each system (as  

The various curves of x ~ , ~  and x ~ , ~  correspond to  
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am = (aM + aBB)/2 C3.111 

where aM and aBB are the e f fec t ive  molecular diameters of A and B,  respectively. 
above def in i t ion  of om we define a series of correlation distances. 

Rc = om(" + 1 ) / 2  

With the 

C3.121 

Thus, n = 1 corresponds roughly t o  the f i r s t  coordination sphere. We used values 
n = 2,3 ,4 ,5  t o  compute x ~ , ~  (Rc) . 
mole f rac t ion  of water, xA i n  the  various mixtures. 

In  a l l  cases we found tha t  f o r  n = 6 the r e l a t ive  deviation ( x ~ , ~ ( R ~ ) - x ~ ) / x ~  becomes less 
than 0.01, which we consider t o  be an e f fec t ive  l i m i t  of the cor re la t ion  distance. 
words, fo r  Rc > 6am the loca l  composition approaches the bulk composition. 

For each of the systems reported i n  Figure 4 we have a l so  calculated the  l i nea r  coefficient 
of the PS of both A and B. 

The case of water-methanol is outstanding i n  the sense tha t  the PS of both water (component 
A)  and of methanol (component B) are pos i t ive  i n  the e n t i r e  range of compositions. This 
means tha t  a t  any composition, water molecules are preferred by both water and by methanol 
as solvaton. The absolute magnitude i s  c lear ly  la rger  f o r  the PS of water around water as 
compared with water around methanol. 

In  the case of ethanol we observe a st i l l  posit ive PS of water around water ( t h i s  is actual- 
l y  the same behavior fo r  a l l  the systems studied i n  t h i s  repor t ) .  
around ethanol changes sign as the composition becomes more and more r i ch  i n  water. 

These were plotted i n  Figure 4 as a function of the bulk 

In other 

However, the PS of water 

''Or 

0 0.2 0.4 0.6 0.8 1.0 

XCCI, 

F i g .  5 .  Values of Gll - G12 f o r  CC14 (component 1) and an organic l iqu id  (compound 2 ) .  
curves correspond to: 1 - methanol; 2 - ethanol; 3 - n-propanol; 4 - n-butanol; 
5 - THF; 6 - p-dioxane. 

The 

A l l  curves are fo r  25 'C and atmospheric pressure. 



Preferential solvation in two- and in three-component systems 33 

= -6°B,B it follows tha t  the PS of ethanol with respect A,B This i s  not unexpected. 
t o  ethanol becomes pos i t ive ,  i n  the water-rich region. This trend becomes even more 
pronounced fo r  the cases of propanol and n-butanol. 

In  Figures 5 and 6 we report  similar da ta  of Gll - G12 (1 being CC14 and 2 the second 
organic l iqu id  as indicated i n  the captions) and of G12 - GZ2. 

curves we observe a maximum of the PS of C C l 4  around C C l 4  i n  the region of 0.7 < Xccl4 < 0.9 

and a minimum of the PS of C C l 4  around the alcohol. 
G 1 2  - G22 are  almost an order of magnitude la rger  than the corresponding values of 

G 1 1  - G 1 2 .  
CC14-THF and CCl4-dioxane system. 
en t i r e  range of concentration i s  indicative of a symmetrical idea l  behavior of the mixture, 
i .e. from 

Since 6’ 

In  a l l  of the CC14-alcohol 

It should be noted tha t  the values of 

I n  cont ras t ,  the values of both G 1 2  - G 2 2  and G 1 1  - G 1 2  are nearly zero for  the 
A small value of both G 1 2  - G 2 2  and G 1 1  - 012 i n  the 

G 1 1  - G12 ” G 1 2  - a22 - O 
it follows 

Gll + GZ2 - 2G12 - 0 
i . e . ,  the systems CC14-THF and CC14-dioxane behave very nearly as symmetrical idea l  solu- 
tions. 

Fig. 6 .  Values of G12 

XCCI,  

- GZ2 fo r  the same systems as i n  Figure 5 .  
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