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ABSTRACT 

In recent years, the development of phase diagram calculations for 
multicomponent systems using a thermodynamic approach has proved to be 
very important in resolving industrial problems. This development is 
is mainly due to the progress in the description of the thermodynamic 
behaviour of solution phases particularly of alloys and to advances in 
computer software. Realistic statistical models have been developed to 
take into account chemical ordering in solution phases. 

Moreover, methods of predicting thermodynamic stabilities from fundamental 
physical calculations have been developed which provide a sounder basis 
for the thermodynamic description of metastable phases. 

The significant progress in the modelling of the thermodynamic properties 
of solution phases examples of evaluated 
and assessed phase diagrams. 

is presented together with some 

INTRODUCTION 

The study of phase diagrams has long been an important tool in the development of science and 
technology. In metallurgy, it has made a major contribution to the design of new alloys, 
partly due to considerable improvements in experimental techniques which have reached a high 
level of accuracy. However, with increasing demands of new high technological materials, 
which are generally complex, it is important that theoretical predictions guide the work of 
materials scientists. One such possibility is to apply the principles of physical-chemistry 
in order to compute multicomponent and multiphase equilibria. Such an approach can be very 
powerful in both planning and also reducing considerably the number of costly experiments. 

After the pioneering work of Meijering (ref. l), followed by the important contributions of 
Kaufman (ref. 21, great progress has been observed, since the "NBS Workshop on Phase 
Diagrams", in the application of calculated phase diagram generated from the underlying 
thermochemical data. This is due mainly to the improvement of models for the solution 
phases, and an increasing amount of reliable and consistent assessed data is now being 
generated. The calculation of phase diagrams has been used successfully in a wide range of 
applications, including crystal growth of semi-conductor materials by liquid phase epitaxy, 
prediction of phase equilibria for super-alloys, light metal alloys or high speed steels, and 
chemical vapor deposition. This has been possible because of the development of sophisticated 
application software, which is now being used in numerous thermochemical computer data banks 
throughout the world. 

A further important aspect of phase diagram calculation is its use in the teaching of 
thermodynamics and Materials science in general. Very simple computer programs have been used 
to demonstrate graphically how changing interaction parameters or lattice stabilities affects 
the phase diagram, while the more powerful application programs used in their simplest modes, 
can be used to illuminate the deceptive simplicity of concepts such as Gibbs Phase rule. 

The calculation of phase diagram requires the knowledge of the thermodynamic properties of 
the pure components, the compounds and solution phases, in both stable or metastable physical 
states, and clearly consistency of such data between different phase systems is very 
important. 

ELEMENTS 

Lattice stabilities 
Let us first consider the elements. As many elements can dissolve in a phase which is not a 
stable for that element itself (e.g. Cr(bcc) dissolves extensively in Ni(fcc)), it is 
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necessary to estimate the thermodynamic properties of elements in states which are metastable 
at all temperatures. Kaufman (ref. 2,3) presented sets of estimated parameters for the 
enthalpy and entropy differences between the bcc and hcp and the fcc and hcp structures of 
the transition metals applying Richard's rule for the entropy of melting to many of the 
elements. Later, it was shown that this rule is not satisfactory for refractory metals, whose 
entropy of fusion increases with increasing melting temperature. However, Kaufman's values of 
the Gibbs energy differences, also called lattice stabilities, have been extensively used 
throughout the world in conjunction with solution phase data to compute phase diagrams of 
metallic systems. 

Very recently, Saunders et a1 (ref. 4), evaluated the lattice stabilities for the metastable 
fcc(Al), bcc(A2) and hcp (A3) forms of 43 elements. Their results are based on assessed 
stable phase data, phase boundary extrapolations from binary alloys, extrapolations from 
pressure-temperature phase diagrams, relationships between the crystal structure, the entropy 
of fusion and the melting temperature, stacking fault energies and first principle electronic 
energy calculations. 

For the transition metals, the lattice stabilities are now much close in magnitude to ab- 
initio predictions. This is due mainly to the recent reassessement of stable phase data and 
the assumption that the entropies of fusion of metastable forms behave in a similar fashion 
as the stable one, and to advances in electronic energy calculations. 

However, most early expressions for lattice stabilities implied that the heat capacities of 
the two phases involved are the same at all temperatures. This in general is not true for two 
phases even at their transition temperature and Anderson et a1 (ref. 5) has described a 
better, but not perfect, approach used by the Scientific Group Thermodata Europe (SGTE). The 
heat capacity of the liquid phase of an element is assumed to approach that of the stable 
form at a temperature of about 0.5 Tfus, and similarly, the heat capacities of all solid 
phases above the melting temperature should approach that of the liquid at higher 
temperatures. In this assumption, the difference in heat capacities at the melting 
temperature is taken into account, its effect being less important as the temperature 
difference with respect to the melting temperature increases. A better estimate of the 
lattice stability below the melting temperature could certainly be made if a reliable model 
for the thermodynamics of the transition from liquid to glass were available. 

Magnetic heat capacity 
The magnetic contributions to the Gibbs energy for magnetic materials were not, until 
recently, treated explicitly. It was merely included in the overall expression of the Gibbs 
energy of transformation with respect to temperature. 

Inden (ref. 6) proposed an empirical and approximate analytical formula for the magnetic 
specific heat which represents the experimental data below and above the critical temperature 
Tc by the following equations : 

for t = T/T < 1 

for t > 1 

K and K are constants for an element in its ferromagnetic and paramagnetic states. They can 
be determined from experimental data and they are related to the total magnetic entropy 1 2 

where is the mean atomic moment expressed in Bohr magnetons. 

The expressions of the Gibbs energy obtained by integration are rather lengthy and 
complicated. Hillert and Jar1 (ref. 7) preferred to expand the expression of C in power 
series and suggested the following expressions : P 

C = 2. K1 . R . (t3 + t9/3 + tI5/5) 

C = 2. K2 . R . (t-5 + t-I5/3 + t-25/5) 

for t < 1 
P 

P 
for t > 1 (3) 

for which the integrations to give S and H give much shorter expressions and represent 
satisfactorily the experimental data. The magnetic ordering is evaluated with respect to the 
completely disordered paramagnetic state. 

Recently, Chuang et a1 (ref. 8) have also suggested an expression for the heat capacity due 
to magnetic ordering which is given by the following equations: 

Cp = Kilt exp (-4 (1-t)) 
Cp = KI2t exp (8 p (1-t)) 

for t < 1 

for t > 1 ( 4 )  

where p = 1 for bcc lattice and p = 2 for the fcc-lattice. 
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The quantities K' 
compares the magnebc heat capacity calculated from equations 2, 
results, in general, are similar except in the vicinity of the critical temperature. 

Pressure dependence 
Outside the geological field, rather little work has been undertaken to include the pressure 
dependence of the Gibbs energy of the pure elements. Fernandez-Guillermet (ref. 9-12) has 
recently reassessed the thermodynamic properties of iron, molybdenum, cobalt and zirconium 
while Gustafson reevaluated those of tungsten (ref. 13). Fig.2 shows an assessed pressure- 
temperature diagram for iron. 

and KO2 are related to the entropy of magnetic disordering. Figure 1 
3 and 4 for bcc-iron. The 
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Figure 1 : 
Comparison of the magnetic heat 
capacity of bcc-iron calculated 
from equations 1, 3 and 4. 

COMPOUNDS 

In a series of paper which eventually led 
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Figure 2 : 
Pressure-temperature diagram 
for Fe (ref. 9). 

to the publication of a book, Miedema et a1 
(ref. 14), developed a semi-empirical approach to treat the energy effects in metallic 
systems as interfacial energies generated at the contact interfaces between neighbouring 
atomic cells. For binary alloys, the enthalpy of formation is proportional to the sum of two 
terms, a negative term proportional to the square of the chemical potential for electronic 
charge differences of the pure metals, X, and a positive repulsive contribution which is 
related to the difference of the electron densities of these elements at the Wigner-Seitz 
cell boundary n according to the following equation : ws' 

P and Q are constants which are derived from fits to the experimental enthalpies of 
formation. This expression can be converted to a function of composition and can be applied 
not only to ordered compounds but also for liquid alloys. 

Watson and Bennett (ref. 15) used a simple band theory model to predict the enthalpy of 
formation of 276 transition metal alloys at the equiatomic composition. Some of the input 
parameters, namely the bandwidth, the Fermi level position, and the number of electrons in 
the band are allowed to vary within certain constraints in order to approximate known values 
of the enthalpy of formation. More recently, Colinet et a1 (ref. 16) also developed a simple 
electron band theory model to predict enthalpies of formation of transition metal alloys as a 
function of composition. They used a tight-binding model considering the moments of the 
density of states and calculated the enthalpies of formation for 210 binary alloys. They also 
applied this approach to transition-rare earth metal alloys (ref. 17). 

These approaches are very useful to predict the enthalpy of formation of metastable solid 
alloys of given composition. In the study of multicomponent systems, the knowledge of the 
enthalpy of formation of metastable as well as stable compounds is needed. For example, the 
thermodynamic description of (Cr,Fe) C or  (Cr,Fe) C carbides using a sub-lattice model 
requires the enthalpy of f ~ r m a t i o n ~ ~ o ~  Fe ana %e7C3 which are unstable in normal 
conditions, and they may be obtained by such %&ods. 
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SOLUTIONS MODELS FOR METALLIC SYSTEMS 

Solution theories have also been the subject of great progress and lead now to reasonable 
representations of the thermodynamic behaviour of multicomponent phases. For many years, 
simple power series expansions have been used to describe the thermodynamic behaviour of 
solution phases as well as the quasi-chemical approximation which to a certain extent 
introduced the concept of ordering in the solution phase. A great variety of empirical 
equations based on geometrical weighting have been used and have been reviewed by the present 
author (ref. 18). For most of the substitutional solutions, a simple power series expansion 
is now preferred because with it allows a very satisfactory representation of the 
thermodynamic properties of mixing with respect to composition. 

Magnetic contributions 
For solutions which are not ferromagnetic at a temperature below the Curie temperature of one 
of the constituents, the thermodynamic properties are referred to a hypothetical paramagnetic 
state of the phase where the magnetic moments are completery disordered. Hence, the Gibbs 
energy of mixing can be expressed by a sum of two terms, one describing the Gibbs energy of 
mixing and the second describing the ferromagnetic effect for the alloy. 

The heat capacity for a solution phase describing the magnetic ordering contribution can be 
expressed, according to Herman et a1 (ref. 19) by an equation identical to (3) but the 
composition dependence of Tc and will expressed by a power series with respect to the molar 
fraction, for example : 

The parameters To, TI, are evaluated from experimental informatiorl. TC A ,  TC and Bo, 
$; are respecti$ely %he &Fie temperature and the mean atomic moments exfiressea in Bokr 
magnetons of the pure elements. Figure 3 illustrates an isothermal section of the Fe-Co-Zn 
where the effect of magnetic ordering is taken into account for the calculation of the phase 
boundaries (ref. 20). 

c o  

Figure 3 : 
Isothermal section at 1036 K 
of the Fe-Co-Zn system (ref. 20). 

Sub-lattice model 
Many binary systems exhibit intermediate phases with a fixed number of sites having a narrow 
range of non-stoichiometry. In phase diagram calculations, these compounds were generally 
assumed to be "line compounds". However, it may be necessary to describe the temperature 
dependence of the composition, when alloying elements are added to these compounds. The sub- 
lattice model developed by Hillert et a1 (ref. 21) based on Temkin's model for ionic solution 
(ref. 22) and extended by Sundman et a1 (ref. 23) to take into account more than two types of 
sites which can be represented by the general formula 

(A1, B1,C1, ... l a  (A2,B2,C2, ... I b  ..... (Am,Bm,Cm, ... In 
where a site fraction for each constituent in every sub-lattice is defined, their sum being 
equal to 1 for each lattice. a, b, ... n represent the number of sites. For example 111-V 
com ounds, reciprocal ionic or interstitial solutions respectively of the type (Ga,In)(As,P), 
(Na$,KC) (Cl-,F-) or (Cr,Fe) (C,v) can easily be represented by two sub-lattices. 

The number of sub-lattices for solid phases and the elements, including vacancies or ions, 
which can occupy them, is generally obtained from structural information. 
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The Gibbs energy of formation of such phases requires the knowledge of the Gibbs energy of 
formation of the compounds formed by combining a constituent in one sub-lattice with a 
constituent in the other sub-lattices. It should be noted that to describe the thermodynamic 
behaviour of the phase (Cr,Fe)(C,v), the Gibbs energy of the hypothetical compound FeC and 
CrC are required. These Gibbs energies are generally obtained by means of optimization 
procedures which will be discussed further on. 

Solid phases may have more complex structures such as u or p-phases, and generally some 
simplifications are made by reducing the number of sub-lattices to avoid increasing the 
number of parameters. 

The sub-lattice model has also been applied to describe order-disorder transformations in the 
A1-Ni (ref. 24) and A1-Ti (ref. 25) systems. The ordered phase such as the fcc-L12 in the 
A1-Ni can be described by a model with two sub-lattices both of which contain A1 and Ni. 
Mathematical constraints are introduced in order to represent both disordered fcc-A1 and 
ordered fcc-L12 phases with the same equation. The same model was applied to the A13Ni2 phase 
which has a D513 structure. The calculated diagram is shown in figure 4 .  
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Figure 4 : 
Comparison between experimental (----I 
(ref. 26) and calculated (-1 A1-Ni phase 
diagram. 

Cluster Variation method 
The cluster variation method (CVM) developed by Kikuchi (ref. 2 7 )  is now extensively being 
used to calculate phase diagrams of systems exhibiting ordered phase regions. In this method, 
the distribution variable is a basic cluster of lattice points. For face-centered-cubic or 
body-centered-cubic phases, the basic cluster can be a four point tetrahedron. The Gibbs 
energy of the system is expressed in terms of these basic distribution variables. If the 
formulation is done using the pair approximation, the entropy of the CVM is equivalent to 
that of the quasi-chemical model. 

De Rooy et a1 (ref. 28) used that model to calculate the fcc-part of the Cu-Ni-Zn system, the 
pair-wise interaction potentials being obtained from a pseudo-potential model. This method 
has also been applied to determine isothermal sections for coherent equilibria in Cu-Ag-Au by 
De Fontaine (ref. 29) where both clustering equilibria and ordering and their mutual 
interactions have been calculated from an analysis of the corresponding binary phase diagrams 
(Fig. 5). 

Figure 5 : 
Isothermal section of Cu-Ag-Au 
coherent phase diagram at 513 K. 



76 I. ANSARA 

Monte Carlo simulations 
More sophisticated statistical methods are the Monte-Carlo simulations which are also being 
developed to describe order-disorder phenomena, usually based on the Ising model using pair- 
interaction energies as phenomenological parameters. In a recent paper, Binder (ref. 30) 
reviewed the various methods of statistical mechanics which have been applied to describe 
atomic interactions for binary metallic alloys and compared them to each other, emphasizing 
the merits as well as the limitations of, for example, the cluster variation method and 
Monte-Carlo simulation. 

Associate model 
An analysis of the experimental results shows that for certain metallic solutions, or even 
salt systems, the enthalpy of formation as a function of composition presents strongly 
asymmetrical or even triangular shaped curves. This was attributed to a tendency to form 
compounds in the melt such as in the group XI-VI or IV-VI systems. The associate model was 
basically developed by Dolezakek (ref. 31) followed by Prigogine et a1 (ref. 32) : more 
recently Jordan (ref. 33) and Sommer (ref. 34) have both applied it to metallic melts. The 
model assumes that, in the melt, free atoms of the pure elements coexist with associates and 
has been very successful in representing the enthalpy of formation of such systems. 

The derived expressions introduce a term which corresponds to the enthalpy of formation of 
the associate, whose value has to be adjusted to experimental results and another which 
describes the mixing of the different particle types into an associated solution. Similarly, 
the entropy of mixing contains terms expressing ideal behaviour between the free atoms and 
the associates, the entropy of formation of the associate and the excess entropy of mixing. 
The stoichiometry of the associates is generally taken to be the same as a stable solid 
compound. 

Solution models for oxide systems 
In the last few years, an increased effort has been made in modelling the high temperature 
thermodynamic properties for silica-containing oxide melts. These melts are characterized by 
a complex ionic structure and little experimental information concerning them is available. 

As for associated metallic solutions, the enthalpy of mixing tends to exhibit a negative 
triangular shaped peak near the composition of maximum ordering while the entropy of mixing 
has an "m"-shape with a minimum near this composition. Among the numerous models which have 
been developed, one of the most recent is due to Gaye et a1 (ref. 35) who uses a cellular 
model based on Kapoor's (ref. 36) description of the melt. 

To account for the high ionization tendency in ionic solutions Hillert et a1 (ref. 37) 
extended the sub-lattice model to off-stoichiometric compositions by introducing neutral 
atoms and charged vacancies into the anion sub-lattice. This model has recently been used in 
assessments of the thermodynamic properties of the MgO-Si02 (ref. 38) and CaO-Si02 (ref. 39) 
systems. 

It should be noted that for binary systems, their equation is identical to that of the 
associate solution model if the stoichiometric number of the anion is taken equal to 1. 
However, for higher order systems, the two models cannot be made identical. 

Pelton et a1 (ref. 40) used a modified quasi-chemical model, in order to describe molten 
silicate systems. Their formalism applies to both ordered and disordered systems. They 
calculated the MnO-SiO (ref. 41) phase diagram over the entire composition range as shown in 
figure 6. Michels et a1 (ref. 42) have developed a network model and described the variation 
of the interaction parameter with composition by assuming a functional dependence of the 
degree of polymerization of the silicate network. This model was used very recently to 
describe the thermodynamic behaviour of the CaO-Si02, MgO-Si02 and A1203-Mg0-Si02 systems 
(ref. 43). 

2 

Figure 6 : 
Calculated MnO-Si02 phase diagram. 
( e  ref.42) 
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The conformal ionic solution theory, developed by Blander et a1 (ref. 44-46) has proved to be 
very successful in calculating the thermodynamic properties for additive and for charge 
symmetric and asymmetric reciprocal salt ternary systems. Bale et a1 (r2f. 46)2_extended this 
theohy to reciprocgi quaternary systems of the type Li+, Na', K+ I ICO,, SO, or Na', K+ 
I lCOg , OH-, SO4 . The excess Gibbs energy is expressed in terms of equivalent ionic 
fractions. 

OPTIMIZATION 

The need to achieve consistency between phase diagram data and thermodynamic properties of 
various phases forming a system has led to developments of optimization procedures such as 
for example those developed by Lukas et a1 (ref. 471, Pelton et a1 (ref. 48) and Jansson 
(ref. 49). These procedures, calculate optimized values of the interaction parameters of the 
solution models by taking into account all available experimental information such as phase 
diagram data, enthalpy of mixing, partial Gibbs energies, heat contents, etc..., various 
models for the solution phases being built-in the program. In certain cases, with a limited 
knowledge of the thermodynamic behaviour of certain phases, missing data may be evaluated 
when combined with phase boundary information. Fig. (7) shows an example of an 
thermodynamically assessed binary phase diagram of the Au-In system (ref. 50). Fig. (8) shows 
an optimized projection of the monovariant lines in the Cu-Li-Mg system (ref. 51), taking 
into consideration the liquidus temperature obtained by differential thermal analysis, the 
enthalpies of formation of the different ternary compounds being derived from calorimetric 
measurement. 
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Figure 7 : 
Calculated Au-In phase 
diagram. ( 0 exp. points). 
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Figure 8 : 
Calculated monovariant lines in 
the Al-Cu-Li system. ( +  selected 
alloy compositions). 

CONCLUSION 

Pertinent data are now generated in many countries and the taks of assembling, compiling and 
collating data on thermochemical properties and phase diagram data is enormous. Much of this 
task is now being organized among different groups, on an international scale, for instance 
by the CODATA Task Group of Thermochemical Tables (CTT), the Scientific Group Thermodata 
Europe (SGTE), the Alloy Phase Diagram International Commission (APDIC), and many other 
national endeavours. A better coordination of the work of critical evaluation and assessment 
still has to be organized in order to share on an international scale this important task. 
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