INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

APPLIED CHEMISTRY DIVISION COMMISSION ON ATMOSPHERIC CHEMISTRY*

INVENTORY OF CURRENT TROPOSPHERIC SAMPLING PROGRAMS

Prepared for publication by

J. SLANINA

Netherlands Energy Research Foundation, ECN, P.O. Box 1, 1755 ZG Petten, Netherlands

*Membership of the Commission during the period (1986–1989) in which the report was prepared was as follows:

Chairman: 1986–87 K. Leichnitz (FRG); 1987–89 J. G. Calvert (USA); Secretary: 1986–87 C. J. Purnell (UK); 1987–89 J. Slanina (Netherlands); Titular Members: H. Akimoto (Japan; 1987–89); S. A. Penkett (UK; 1987–89); H. R. Pruppacher (FRG; 1986–87); H. I. Schiff (Canada; 1986–89); X. Tang (China; 1987–89); P. Warneck (FRG; 1988–89); Associate Members: N. M. Bazhin (USSR; 1987–89); R. H. Brown (UK; 1987–89); J. A. Kerr (UK; 1986–89); D. Klockow (FRG; 1987–89); I. O'Neill (France; 1986–89); M. Sauté (France; 1986–89); P. Tevault (USA; 1987–89); P. Warneck (FRG; 1986–89); M. Sauté (France; 1986–89); P. Tevault (USA; 1987–89); P. Warneck (FRG; 1986–89); National Representatives: K. H. Eichel (FRG; 1986–1989); H.-J. Grosse (GDR; 1986–89); L. F. Phillips (New Zealand; 1986–89); Ø. Hov (Norway; 1986–89); O. Lindqvist (Sweden; 1986–89); U. Öezer (Turkey; 1986–89); R. A. Cox (UK; 1986–89).

Republication of this report is permitted without the need for formal IUPAC permission on condition that an acknowledgement, with full reference together with IUPAC copyright symbol (© 1990 IUPAC), is printed. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization.

Inventory of current tropospheric sampling programs

SYNOPSIS

The problems regarding network design and operation are such that harmonization and standardization of networks is called for. The value of the results obtained by networks is dependent on the quality control measures. At present comparison of results obtained by different networks is hampered by a lack of consistent quality control measures.

The design of many networks is not optimized in line with their objectives.

Sampling procedures are the most important source of errors. The available analytical methods for measurement of SO_2 , NO_{π} , O_3 , CO_2 in air and of so-called bulk elements in precipitation are generally adequate for monitoring purposes. For other components the situation is less satisfactory.

INTRODUCTION

The increasing concern regarding the possible obnoxious effects of air pollutants on human health, on vegetation, surface waters, groundwater and on buildings, especially monuments has led to the development of networks of sampling and measuring devices to characterize air quality or to measure the deposition of these pollutants.

The early networks for environmental control were installed to get a first inventory of the concentrations of air pollutants. They were generally situated in areas close to large emission sources and only a limited number of components were measured, primarily SO_2 and total dust or particulate matter.

As the need for more detailed knowledge on the behavior of pollutants became clear, networks expanded in both scope and size. Thus more pollutants were measured and networks were implemented outside the areas with high emissions. As gradually legislation was introduced to curb emissions and to control ambient concentrations, networks were needed to enforce these environmental rules.

The data from these networks are nowadays of vital importance with respect to the following objectives: -Monitoring the concentrations of pollutants in air in order to provide data on air quality; -Probing whether levels are reached which necessitate corrective measures such as emission control: -Providing inventories of the deposition of air pollutants by way of either wet deposition (precipitation) or dry deposition (deposition of gases and aerosol particles); -Elucidating the effects of pollution on vegetation, soils, water bodies and materials. Correlation of observed effects with measured concentrations of pollutants is very often investigated in order to get a first approximation of the impact of pollutants as a function of their concentration [1]; -To monitor trends in the concentrations of pollutants as a function of time [2,3,4];-To investigate transport, chemical conversion and residence times in the atmosphere of pollutants [5].

For the first two points a guarantee of the trustworthiness of the results of networks is obviously a requirement. Often the results of networks are used to test whether air quality standards are met in a given area. The alarm function of a number of networks, i.e. to provide a warning at too high concentrations of pollutants, generally followed by emission control measures, necessitates a high degree of reliability. The use of network data for atmospheric research requires a certain degree of accuracy. More and more the effectiveness of control measures for air pollution is deduced from the application of models, describing the emission, transport and deposition of pollutants over a large area [6]. The results obtained from networks are an indispensable tool for parameterizing and validating these models. The detection and quantification of trends in the concentration or deposition of pollutants as a function of changing emissions provides necessary information on the effectiveness of emission control measures.

The application of network data to investigations which encompass large areas, such as investigations on long range transport and correlative effect studies, requires a minimum degree of harmonization in siting and operation. The aim of this study is to evaluate the existing networks for the monitoring of pollution on a worldwide scale and to initiate harmonization and/or standardization of these network operations. To this purpose a questionnaire, added as appendix 1, has been sent (on a very large scale) to authorities responsible for the operation of networks. A response from 73 networks was received. The Commission realizes that a large effort was involved in responding to this questionnaire and is very grateful to the persons and organizations who collaborated in this investigation.

DESCRIPTION OF THE NETWORKS

GENERAL

The list of the networks which have responded to our questionnaire before the date of 1-5-87 is given in table 1. A response was received from 12 countries and from NILU (Norwegian Institute for Air Research), the principal institute involved in the ECE/EMEP network (United Nations Economic Commission for Europe/Cooperative program for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe). Based on the answers to the questionnaire a tabulated description of the networks has been made; see table 2,3 and 4 with corresponding legends.

As the modes of operation in measuring wet deposition, monitoring gas or aerosol concentrations are quite different, all activities are described separately, even when a networks encompasses them simultaneously.

TABLE I

1	USA	VIRGINIA ACID POLL.NETW.
2	USA	NATION. ATM. DEPOSITION PROGR. / NAT. TR ENDS NETW
3		ALASKA AMBIENT AIR MONITORING
4	USA	WYOMING AMBIENT AIR QUAL.
5	USA	SOUTH DAKOTA AMB. AIR MON.NETW.
6	USA	GREAT LAKES ATM.DEP.PROGRAM
7	USA	IOWA AMB. AIR QUALITY
8	USA	TENNESSEE AMB.AIR MON.NETW.
	USA	NEVADA AIR QUAL. SAMPLING NETW.
10	USA	ILLINOIS AIR MON. NETW.
11	USA	WISCONSIN AMB.AIR MON.NETW.
12	USA	MASSACHUSETTS STAREWIDE MON.NETW.
13	USA	MARYLAND AIR MON.NETW.
14	USA	US GEOL.SURV.WATER RES.DIV.MISSISSIPPI
15	USA	WASHINGTON STATE AIR MON.NETW.
16	USA	OREGON SLAMS NETWORK
17		ALABAMA AMB.MON.NETW.
18	USA	NOAA/ARC/ATDD DRY DEP. RESEARCH CORE PROGR.
19	USA	CALIFORNIA AMB.AIR QUAL.MON.NETW.
20	USA	NORTH CAROLINA SLAMS NETWORK
21	USA	ARIZONA AMB.AIR NETW.
22	USA	COOK COUNTY ENV.CONTR.
23	USA	FLORIDA AIR MON. NETW./ ACID RAIN NETW.
24	USA	CALIFORNIA AIR RESOURCES BOARD NETW.
		DELAWARE AMB.AIR NETW.
26	USA	PUERTO RICO AIR QUAL.MON.NETW.
		NEW JERSEY MON.NETWORK
		UTAH BUREAU OF AIR QUAL.NETW.
29	USA	MONTANA AIR QUAL.BUREAU AMB.AIR MON. NETW.

166		COMMISSION ON ATMOSPHERIC CHEMISTRY
30	USA	HAWAII AIR MON. NETW.
31	IT	IT.MET.SERV. BAPMON NETW.
32	IT	C.N.R. IST.IT.IDROB. LAGO MAGGIORE N ETW.
33	IT IT	AMM. PR. VENETIA RETE CONTRONOINQUIN. A TM. MAGHERA
34	IT IT	ENEL-CRTN WET DEP.NETW.
35		
36	IT	TOSCANARAIN DEP.NETW.
37	IT	TORINO SRIA NETW.
38	IT	RETE ANTNQUINAMENTO MAGHERA
39	VEN	VENEZUELA REDPANAIRE/GEMS NETWORK
40	NETH	NETH.NAT.MEAS.NETW.AIR POLL.
41	BELG	BELGIUM AUTOMATIC NETW. AIR POLL.CONTROL
42	NORW	NORWAY ARTIC HAZE PROGRAM
43	NORW	NORWAY NATL.BACKGROUND NETW.
44	NORW	NORWAY OZONE NETWORK
45	AUST	AUSTRALIA OZONE NETW.
46		AUSTRALIA REGION. BAPMON NETW.
47	AUST	AUSTRALIA CSIRO TRACE GAS MON. NETW.
48	N.ZEA	LN.ZEALAND CHLORIDE NETW.
		LN. ZEALAND NECAL NETW.
50	N.ZEA	LN.ZEALAND MET.SERV. NETW.
		LN.ZEALAND ELECTR.DIV.MIN.ENERG.NETW.
52		LN. ZEALAND NZAS NETW.
53	N.ZEA	LN.ZEALAND CO2 NETW.
54	SWITS	.SWISS NABEL NETW.
55	FRG	
56	FRG	FRG BADEN/WUERTEMBERG NETW. FRG BAYERN NETW.
57	FRG	FRG BAYERN NETW.
58	FRG	FRG SCHLESWIG-HOLSTEIN/HAMBURG NETW. FRG HESSEN NETW.
59	FRG	FRG HESSEN NETW.
60	FRG	FRG NIEDERSACHSEN NETW. FRG NORDRHEINLAND/WESTFALEN NETW.
61	FRG	FRG NORDRHEINLAND/WESTFALEN NETW.
62	FRG	FRG RHEINLAND-PFALZ/SAAR NETW. FRG BERLIN NETW.
63	FRG	FRG BERLIN NETW.
64		SPAIN BAPMON/EMEP INST.NAC.MET.NETW.
65	SPAIN	SPAIN MED POL NETW.
66	CAN	CANADA CAPMON
67	CAN	CANADA EPS NETW.
68	CAN	CANADA NARMON NETW.
69 70	CAN	CANADA REPO NETW.
70	CAN	CANADA APIOS NETW.
71 72	CAN	CANADA N.SASKATCHEWAN PREP. NETW. CANADA ALBERTA ENVR NETW.
72	CAN	CANADA ADDERTA ENVRINETW.
73	ECE	EMEP NETW.

NETWORKS FOR GAS (Table 2)

The first column of table 2 (networks for gas measurement) identifies the network according to the number allotted to each network in table 1.

The second column gives information on the siting criteria. In some cases these are given by central organizations, e.g. WMO (World Meteorological Organization), ECE/EMEP, or US EPA (United States Environmental Protection Agency). In others information regarding siting criteria is given in the answers on the questionnaire, but in about 20% of the answers no mention of siting criteria was made.

In the next column (3) the objectives of the networks are tabulated. Networks in the US and Canada are generally responsible for the air quality data, necessary to enforce air quality legislation. For the other networks general monitoring and detection of trends in air concentrations are given as objectives. In some countries emission abatement measures are taken during episodes of high pollution concentrations, based on the results of monitoring networks. A number of networks in "background areas" measure parameters important to assess climatological impacts of trace components in the atmosphere.

The fourth column gives an overview of the analytical methods employed for the measurement of SO_2 . Pulsed fluorescence detection, ultraviolet spectrophotometry and wet chemical methods such as coulometry and colorimetry by way of the tetrachloromercury complex, are in general use.

In the fifth column the methods for NO_{\star} (NO_2 and NO) are tabulated. Chemoluminescence detection using the NO/O_3 reaction and colorimetric methods employing sodium arsenite are most widely applied.

In the sixth column the methods for ozone are described. Chemoluminescence detection based on the $O_3/ethylene$ reaction and UV spectrophotometry are the most important.

For CO (column 7) non-dispersive infrared absorbance measurement is the most important method.

The same applies to CO₂ (column 8).

Column 9 describes the methods used to determine the concentrations of hydrocarbons. Generally the sum of volatile hydrocarbons is measured by means of flame-ionization detectors. If compounds are measured specifically (e.g. CH₄ or Poly-Aromatic Hydrocarbons), this is mentioned together with the analytical method (generally GC, gas chromatography or HPLC, high performance liquid chromatography).

Column 10 gives an overview of other gaseous compounds measured and the employed analytical method. Fluoride and HNO $_3$ are mentioned most frequently.

In column 11 the measurement frequency is given. Many monitors are operated on a more or less continuous basis, measurements of specific organic compounds, nitric acid, fluorides etc. are performed discontinuously and the frequency is indicated.

The next column (12) provides information on the quality assurance procedures of the networks. The situation is as described for siting criteria. In some cases regulations for quality assurance are provided by central organizations, e.g. WMO, ECE/EMEP, or US EPA. In others information regarding quality control procedures is given in the answers on the questionnaire, but again, in about 20% of the answers no information is forwarded.

TABLE 2 COL. 1	2	3	4	5	6	7	8	9	10	11	12
	SITING	OBJECT.	S02	NOx	03	CO	C02	ORG.COUMP.	OTHER	FREQ.G.	QUAL.CONTR.
1 4 5	FEDR EPA FEDR	AIRST AIRST AIRST	PF PF,PR PR	CLO CLO, SA SA	CTR CTR	NDIR				CON CON, D6 D6	EPA EPA EPA
7 8	EPA FEDR	AIRST AIRST	PF,FPD,UV UV	SA	CLE,UV CLE	NDIR				CON, D6 CON	EPA FEDR
9 10	DC BPA	AIRST AIRST	PF	CT0 CT0	CLB UV	NDIR NDIR				CON CON	FEDR FEDR
11 12 13 15 16	BPA BPA DC BPA DC	AIRST AIRST AIRST AIRST AIRST	FL PF PF PF NG	CLO CLO CLO CLO NG	CLE,UV CLE,UV CLE,UV UV NG	NDIR NDIR NDIR NDIR NG		POL, CHO		CON, H2 CON CON CON CON	EPA EPA QA PEDR EPA
17 18 19 20 21 22 23	DC DC BPA BPA FEDR FEDR FEDR EPA	AIRST DRYD AIRST AIRST AIRST AIRST AIRST AIRST	PP PP,FILTP PF PF,FPD PP,PP PF,UV	CF0 CF0 CF0	NG UV UV CLE,UV CLE	NDIR NDIR NDIR NDIR NDIR		GC,0{Cl}	FILTP, HNO3	CON CON, D7 CON, D12 CON CON CON CON	EPA QA EPA EPA FEDR FEDR FEDR

COL. 1 2 3 4 5 6 7 8 9 10 11 12 14 FEBS Aliser PF COO V NOTA SCIP COO FEBS 15 FEBS Aliser PF COO CO V NOTA SCIP CO COS FEBS 16 FEBS Aliser PF CO CA CA NOTA SCIP COS FEBS 13 SC Aliser PF CO CA CA NOTA PF CO CO PF NOTA PF CO CO PF NOTA PF PF CO CA NOTA PF PF CO PF NOTA PF PF CO CA CA NOTA PF NOTA PF NOTA NOTA PF NOTA NOTA NOTA NOTA NOTA NOTA NOTA NOTA NOTA	TABLE 2	CONTINUE	D									
15 250 ALDEST 270 ALDEST				4	5	6	7	8	9	10	11	12
15 FEDA ATAST PP UV MDTA CLE MDTA CDM PEDA CDM PEDA 28 NC ATAST PP CDO CLE MDTA CDM CDM PEDA 29 VEDA ATAST PP CDO CLE MDTA CDM CDM PEDA 31 SC ATAST PP CD CLE MDTA PTDA CDM PA 31 SC ATAST C C, CLO CLE MDTA PTD CDM CDM PA 33 DC ALAST C C, CLO CLE MDTA PTD		FEDR	AIRST									
17 27 27 27 27 CL0 CL2 MDIR CL0 CL2 MDIR 29 X1EST PP CL0 CL2 MDIR CON RG 30 PEGR X1EST PP CL0 CL2 MDIR PIDE CON RG 31 DC A1EST C C, CLD CL MDIR PIDE CON, RG RM 33 DC A1EST, PE C, UV CL0 CL2 V MDIR PIDE CON, RG RM 34 DC A1EST, PE C, UV CL0 CL2 C V CON, DC QA 35 DC A1EST, PE C, UV CL0 CL2 C V CON, DC QA 40 DC A1EST, PE C, UV CL0 CL2 C V CON, DC QA 41 DC A1EST, PE C, UV CL0 CL2 CL2, UV FD1 CC CON, DC QA 42 MG STEAT V V V RD13, CC RD14 CC, PID, RC CON QA 51 DC MON V/VC V FD1 <td< td=""><td>25</td><td>FEDR</td><td>AIRST</td><td>NG</td><td>NG</td><td>NG</td><td>NG</td><td></td><td>FID, PID</td><td></td><td>CON</td><td>FEDR</td></td<>	25	FEDR	AIRST	NG	NG	NG	NG		FID, PID		CON	FEDR
18 96 115.87 P7 CL0 CL8 NDTR NDTR COB NG 10 PEDR ALEST PR SA CL8 NDTR PT COB BA 31 BC ALEST PR SA CL8 NDTR PTD COB, D6 BA 31 BC ALEST C C, CL0 CL8 NDTR PTD CD COB, D6 BA 33 DC ALEST, TZ C C, CL0 CL8 NDTR PTD CD CD ALEST CC C, CL0 CL8 NDTR PTD CD CD ALEST CC CL0 CL8 NDTR PTD CD CD ALEST CC CD CL0 CL8 NDTR PTD CD CD CL0 CL0 CL0 CL0 CL0 CL0 CL0 CL0 CL1 NDTR CC, PTD, RC CD ND CL4, UV CD CL4 ND CL4, UV CD CL4 ND CL4, UV CD CL4 ND CD CL4 ND CL4 ND CL4 ND CL4 ND CL4 ND CL4 ND CL4	26	FEDR	AIRST	PF		UV	NDIR				CON	FEDR
18 96 115.87 P7 CL0 CL8 NDTR NDTR COB NG 10 PEDR ALEST PR SA CL8 NDTR PT COB BA 31 BC ALEST PR SA CL8 NDTR PTD COB, D6 BA 31 BC ALEST C C, CL0 CL8 NDTR PTD CD COB, D6 BA 33 DC ALEST, TZ C C, CL0 CL8 NDTR PTD CD CD ALEST CC C, CL0 CL8 NDTR PTD CD CD ALEST CC CL0 CL8 NDTR PTD CD CD ALEST CC CD CL0 CL8 NDTR PTD CD CD CL0 CL0 CL0 CL0 CL0 CL0 CL0 CL0 CL1 NDTR CC, PTD, RC CD ND CL4, UV CD CL4 ND CL4, UV CD CL4 ND CL4, UV CD CL4 ND CD CL4 ND CL4 ND CL4 ND CL4 ND CL4 ND CL4 ND CL4	27	EPA	AIRST	PP	CLO	CLB	NDIR				CON	EPA
19 FIDE ALRST PF SA CLE NDTR FEDR CON GA 30 FEDR ALRST FR SA CLE NDTR FDTR CON, DG BPA 31 NG CLTH C CLGU CLE NDTR FDTR FDTR CON, DG BPA 33 DC ALRST, TR C CLGU CLE NDTR FDT FDT CON, DG GA 34 DC ALRST, TR C, UV CLG CLE V V CON GA 35 DC ALRST, TR C, UV CLG CLE NDTR CC, FDD CON GA 44 NG SALRST, TR C, UV CLG CLE NDTR CC, FDD SG SG GA 45 MG SALRST, HDTP TCS CLE, UV NDTR CC, FDD CON DD QA 46 NG SALRST VV CLG CLE, UV NDTR CC, FDD CON DD QA 51 NG SALRST VV, C NDTR CLE, UV NDTR CC, FDD CD ND QA 52 NG	28	NG			CLO	CLE	NDIR				CON	NG
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											CON	QA
13 DC AIRST, RZ C C, CLO UV NDIR FID COM COM QA 38 DC ALREN C	30	PEDR	AIRST	PR	SA	CLE	NDIR				CON, D6	BPA
37 DC ALBST, TZ C CL0 UV NDIR C CON QA 38 DC ALBKR C - - - CON QA 39 DC ALBST, TZ C, UV CL0 CL8 C - CON QA 40 DC ALBST, TZ C, UV CL0 CL8 RDI - CON QA 41 DC ALBST PPD CL0 CL8 NDIR - CC, PID DI NG NG 42 NG SKG STLTP TGS CLF, UV CLP, UV CLP, UV NG N	31	NG	CLIM			UV		NDIR			CON, H4	WMO
38 DC ALARN C CON QA 39 DC AI285 ACT J1 WKO 40 DC AI285 ACT CUV CLO CLB CUV CON QA 41 DC AI285 FPD CLO CLB NDT CON QA 41 DC AI385 FPD CLO CLB NDT CU CDN QA 42 NG SRCS FILTP TGS CLP,UV CLP,DEC CDN QA 43 NG STRAT UV,C NDTR,GC NDTR,GC NDTR,GC RC DI QA 44 NG DRTD NC UV,C NDTR,GC NDTR,GC RC CH,FED DD QA 51 DC MOK NV,NC CLO,SA UV CR,C CH,FED CD NG QA 51 DC MOK WV,NC CLO,SA UV	33	DC	AIRST	С	C, CLO	CLE			FID		CON, H2	QA
39 DC AIRST ACT JI MO 40 DC AIRST, TZ C, UV CLO CLZ C C CD OD QA 41 DC AIRST, TZ C, UV CLO CLZ DC FOR CDN QA 41 DC AIRST, TZ C, UV CLO CLZ DC FOR CDN QA 42 MG SRCB FLIPP TCS CLZ, UV FOR CCZ, PLO, EC CON NG NG 43 MG CLIP TCS CLZ, UV MDIR, CC MDIR GC, PLO, EC DD DD QA 45 MG CLIP WC FUR, PZ GC GC GC, PLO, EC DD QA 50 DC CLIP WC FUR, PZ GC GC GC GC GC GC GC GD DA QA 51 DC MON WV, WC CLO, SA UV FLIP FL, PZ CON DA DA DA DA </td <td>37</td> <td>DC</td> <td>AIRST, TR</td> <td>C</td> <td>CLO</td> <td>UV</td> <td>NDIR</td> <td></td> <td></td> <td></td> <td>CON</td> <td>QA .</td>	37	DC	AIRST, TR	C	CLO	UV	NDIR				CON	QA .
	38	DC	ALARN	С							CON	QA
41DCATRSTFPDCLOCLBNDIRCC, FLDCONQA42NGNGCSF1LTPTGSCLF, UVCLF, UV CC, FLD NGNGNG43NGSTRATFULTPTGSCLF, UV CLF, UV CC, FLD, EC D1QA44NGSTRATCLINVV, CNDIR, 6CNDIR CC, FLD, EC D1QA45NGSTRATVV, CVV, CNDIR, 6CNDIR CC, FLD, EC D1QA46NGDSTDVVVV, C VV, C VV, C $CH, FREONNGD1QA50DCCLINVVVVGCGCGCGCPL, H2SCONQA51DCMONVV, VCCLO, SAUV, CLENDIRPIDCON/D1QA52DCMONVV, VCCLO, SAUVVIVPIDCON/D1QA53DCMONVV, CLENDIRPIDCONNG54DCMON, ATRSTTCM, PPD, CCLO, SAUVPIDCONNG55NGMON, ATRSTUV, CORCLO, SAUV, CLEPIDCONNG55NGMON, ATRSTCONDCLO, SAUV, CLEPIDCONNG56NGMON, ATRSTCONDCLO, SAUV, CLEPIDCONNG57NGMON, ATRSTCONDCLO, SAUV, CLEPID$	39	DC	AIRST	ACT							D1	WNO
41DCATRSTFPDCLOCLBNDIRCC, FLDCONQA42NGNGCSF1LTPTGSCLF, UVCLF, UV CC, FLD NGNGNG43NGSTRATFULTPTGSCLF, UV CLF, UV CC, FLD, EC D1QA44NGSTRATCLINVV, CNDIR, 6CNDIR CC, FLD, EC D1QA45NGSTRATVV, CVV, CNDIR, 6CNDIR CC, FLD, EC D1QA46NGDSTDVVVV, C VV, C VV, C $CH, FREONNGD1QA50DCCLINVVVVGCGCGCGCPL, H2SCONQA51DCMONVV, VCCLO, SAUV, CLENDIRPIDCON/D1QA52DCMONVV, VCCLO, SAUVVIVPIDCON/D1QA53DCMONVV, CLENDIRPIDCONNG54DCMON, ATRSTTCM, PPD, CCLO, SAUVPIDCONNG55NGMON, ATRSTUV, CORCLO, SAUV, CLEPIDCONNG55NGMON, ATRSTCONDCLO, SAUV, CLEPIDCONNG56NGMON, ATRSTCONDCLO, SAUV, CLEPIDCONNG57NGMON, ATRSTCONDCLO, SAUV, CLEPID$	40	DC	AIRST, TR	C. UV	CLO	CLE	С				CON	QA
42 44 NG 86 SECE MON FILTP FILTP TGS TGS CLE,UV GC,PID NG D1 NG D1 NG QA 45 47 NG NG STRAP CLIN UV,C NDIR,GC <ndir< td=""> GC,PID,EC CH4,PREON D1 QA 46 47 NG NG STRAP CLIN WC UV,C NDIR,GC<ndir< td=""> GC,PID,EC CH4,PREON D1 QA 46 47 NG NG NG CLIN WC UV GC GC GC GC NG D1 QA 46 47 NG DC MON WC UV GC GC GC GC D1 QA 50 DC MON WC UV GC GC GC GC GC MG NG <</ndir<></ndir<>		DC			CL0	CLE					CON	
43EMEPMONPILTPTGSD1NG44NGMONPILTPTGSCLE,UVCONCON45NGSTPARUV,CNDIR,GCNDIRCC,PID,ECCONQA48NGDTDWCUV,CNDIR,GCRDIRCC,PID,ECCONQA50DCCLIMWCUVGCGCGCD1QA51DCMONWCUVGCGCGCCONQA52DCMONWNVV,CCLUV,CLENDIRPIDCON/D1QA53DCCLIMVV,NCCLO,SAUV,CLENDIRPIDCON/D1QA54DCMON,AIRSTUVSACLO,SAUVPIDCONNG55NGMON,AIRSTUVCLO,SAUVPIDCONNG56NGMON,AIRSTUVCLO,SAUVPIDCONNG58NGMON,AIRSTUVCLO,SAUVPIDCONNG59NGMON,AIRSTCOND,UVCLO,SAUVPIDCONNG59NGMON,AIRSTCOND,UVCLO,SAUVPIDCONNG54NGMON,AIRSTCOND,UVCLO,SAUVPIDCONNG59NGMON,AIRSTCOND,UVCLO,SAUVPIDCONNG59NGMON,AIRSTCOND <td></td> <td>-</td>												-
44 NG NGN CLE,UV CON 45 NG STRAT UV,C NDIR,GC NDIR GC,PID,BC CON QA 47 NG DETD NC UV,C NDIR,GC NDIR GC,PID,BC CON QA 48 NG DETD NC UV GC GC GC DI QA 50 DC CLIN NC UV GC GC GC DI QA 51 DC NON NC NG NG NG QA 52 DC NON UV,NC CLO,SA UV,UC CH,CII CON/DI QA 54 DC NON UV,NC CLO,SA UV PID CON/DI QA 55 NG NON,AIRST UV,OCR CLO,SA UV PID CON NG 56 NG NON,AIRST UV,OCR CLO,SA UV PID CON NG 57 NG NON,AIRST UV,OCR CLO,SA UV P									GC, FID			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				FILTP	TGS							NG
47NGCLIMNDIR, GCNDIR, GCNDIRGC, FID, EC CH4, F2EONCONQA48NGDRYDWCUVGCGCCH4, F2EOND1QA50DCCLIMUVGCGCGCD1QA51DCHONWCUVGCGCGCCH, F2, H2SCONQA51DCHONWV, WCCLO, SAUV, CLENDIRCH4, C(I)CON/D1/D7QA53DCCLIMNDIRCH4, C(I)CON/D1/D7QAQA54DCMON, AIRSTTCM, FPD, CCLO, SAUVPIDCONNG55NGMON, AIRSTUV, CCRCLO, SAUVPIDCONNG56NGMON, AIRSTUV, CCRCLO, SAUVPIDCONNG57NGMON, AIRSTCON, CLO, SAUV, CLEPIDCONNG58NGMON, AIRSTCOND, PIDCLO, SAUV, CLEPIDCONNG59NGMON, AIRSTCOND, CLO, SAUVPIDCONNG61NGMON, AIRSTTCM, FIDCLO, SAUVPIDCONNG63NGMON, AIRSTCONDCLO, SAUVPIDCONNG64EMEPMONWCSAUVPIDCONNG65MONMONWCSAUVPIDCONNG<	44	NG	NON			CLE,UV					CON	
47NGCLIMNDIR, GCNDIR, GCNDIRGC, FID, EC CH4, F2EONCONQA48NGDRYDWCUVGCGCCH4, F2EOND1QA50DCCLIMUVGCGCGCD1QA51DCHONWCUVGCGCGCCH, F2, H2SCONQA51DCHONWV, WCCLO, SAUV, CLENDIRCH4, C(I)CON/D1/D7QA53DCCLIMNDIRCH4, C(I)CON/D1/D7QAQA54DCMON, AIRSTTCM, FPD, CCLO, SAUVPIDCONNG55NGMON, AIRSTUV, CCRCLO, SAUVPIDCONNG56NGMON, AIRSTUV, CCRCLO, SAUVPIDCONNG57NGMON, AIRSTCON, CLO, SAUV, CLEPIDCONNG58NGMON, AIRSTCOND, PIDCLO, SAUV, CLEPIDCONNG59NGMON, AIRSTCOND, CLO, SAUVPIDCONNG61NGMON, AIRSTTCM, FIDCLO, SAUVPIDCONNG63NGMON, AIRSTCONDCLO, SAUVPIDCONNG64EMEPMONWCSAUVPIDCONNG65MONMONWCSAUVPIDCONNG<	45	NG	STRAT			UV.C					Di	0A
48 NG DRTD 49 DC MON NC 50 DC CLIM UV GC GC GC D1 QA 51 DC MON NC NDR PL,H2S CON QA 52 DC MON NV,NC CLO,SA UV,CLE NDIR CH4,C(1) CON/D1/D7 QA 54 DC MON,AIRST TCM,FPD,C CLO, UV SA VV PID CON NG 55 NG MON,AIRST TCM,FPD,C CLO, SA UV VV PID CON NG 56 NG MON,AIRST UV,CCR CLO,SA UV,CLE PID CON NG 58 NG MON,AIRST UV,CORR CLO,SA UV,CLE PID CON NG 59 NG MON,AIRST COND CLO,SA UV PID CON NG 60 NG MON,AIRST UV,CORR CLO,SA UV PID CON NG 61 NG MON,AIRST COND CLO,SA UV PID CON NG 62 NG MON,AIRST COND CLO,SA<							NDIR.GC	NDIR	GC.FID.BC			
49 DC NON NC UV GC GC GC D1 QA 50 DC CLIM UV GC GC GC GC D1 QA 51 DC MON V NDIR FL,H2S CON QA 52 DC NON V NDIR CH4,C(I) CON/D1 QA 54 DC MON UV,NC CL0,SA UV,CLE NDIR PID CON/D1 QA 55 NG MON,AIRST TCM,PPD,C CL0,U UV PID CON NG 56 NG MON,AIRST UV CL0,SA UV PID CON NG 57 NG MON,AIRST UV CL0,SA UV PID CON NG 58 NG MON,AIRST UV,COR CL0,SA UV,CLE PID CON NG 59 NG MON,AIRST COND,PID CL0,SA UV,CLE PID CON NG 61 NG MON,AIRST							•					-
49 DC NON NC UV GC GC GC D1 QA 50 DC CLIM UV GC GC GC GC D1 QA 51 DC MON V NDIR FL,H2S CON QA 52 DC NON V NDIR CH4,C(I) CON/D1 QA 54 DC MON UV,NC CL0,SA UV,CLE NDIR PID CON/D1 QA 55 NG MON,AIRST TCM,PPD,C CL0,U UV PID CON NG 56 NG MON,AIRST UV CL0,SA UV PID CON NG 57 NG MON,AIRST UV CL0,SA UV PID CON NG 58 NG MON,AIRST UV,COR CL0,SA UV,CLE PID CON NG 59 NG MON,AIRST COND,PID CL0,SA UV,CLE PID CON NG 61 NG MON,AIRST	40	10	55 V 5								XIC	WC.
50 DC CLIM STRAT UV GC GC GC GC D1 QA 51 DC MON STRAT PL, PS CON QA 52 DC MON NDIR CH4, C(I) CON/D1/D7 QA 53 DC CLIM NDIR CH4, C(I) CON/D1 QA 54 DC MON, AIRST TCM, PPD, C CLO, SA UV, CLE NDIR PID CON NG 55 NG MON, AIRST TCM, PPD, C CLO, SA UV PID CON NG 56 NG MON, AIRST UV CLO, SA UV PID CON NG 57 NG MON, AIRST UV, CORR CLO, SA UV, CLE PID CON NG 58 NG MON, AIRST COND, UV CLO, SA UV, CLE PID CON NG 61 NG MON, AIRST COND CLO, SA UV PID <td></td> <td></td> <td></td> <td>110</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				110								
STRAT STRAT FL,H2S CON QA 51 DC MON WON NDIR CH4,C(I) CON/D1/D7 QA 53 DC CLIM NDIR CH4,C(I) CON/D1/D7 QA 54 DC MON UV,NC CLO,SA UV,CLE NDIR PID CON/D1 QA 55 NG MON,AIRST TCM,PPD,C CLO,SA UV PID CON NG 56 NG MON,AIRST UV CLO,SA UV PID CON NG 57 NG MON,AIRST UV,CORR CLO,SA UV,CLE PID CON NG 58 NG MON,AIRST CON,UV CLO,SA UV,CLE PID CON NG 59 NG MON,AIRST COND,FID CLO,SA UV CLE PID CON NG 61 NG MON,AIRST COND,CIO,SA UV PID CON NG </td <td></td> <td></td> <td></td> <td>WL</td> <td></td> <td>1117</td> <td>00</td> <td>00</td> <td>00</td> <td></td> <td></td> <td></td>				WL		1117	00	00	00			
51 DC MON FL, H2S CON QA 52 DC MON NDIR CH4, C(1) CON/D1 QA 53 DC CLIM NDIR CH4, C(1) CON/D1 QA 54 DC MON UV, WC CLO, SA UV, CLE NDIR FID CON/D1 QA 55 NG MON, AIRST TCM, FPD, C CLO, UV PID CON NG 56 NG MON, AIRST UV, COR CLO, SA UV PID CON NG 57 NG MON, AIRST UV, COR CLO, SA UV, CLE PID CON NG 58 NG MON, AIRST COND, FID CLO, SA UV, CLE PID CON NG 60 NG MON, AIRST COND CLO, SA UV, CLE PID CON NG 61 NG MON, AIRST COND CLO, SA UV PID CON NG	50	DC				UV	60	60	60		DI	ŲΛ
52 DC NON UV, NC CLO, SA UV, CLE NDIR CH4, C(1) CON/D1 QA 54 DC MON UV, WC CLO, SA UV, CLE NDIR FID CON/D1 QA 55 NG MON, AIRST TCM, FPD, C CLO, UV PID CON NG 56 NG MON, AIRST UV, CORR CLO, SA UV PID CON NG 57 NG MON, AIRST UV, CORR CLO, SA UV PID CON NG 58 NG MON, AIRST CON, PID CLO, SA UV, CLE PID CON NG 59 NG MON, AIRST COND, PID CLO, SA UV, CLE PID CON NG 61 NG MON, AIRST COND, CLO, SA UV, CLE PID CON NG 62 NG MON, AIRST COND CLO, SA UV PID CON NG 63 NG MON, AIRST COND CLO, SA UV PID CON NG 64 EMEP MON WC SA V PILTP, HNO3 D1 QA 65 WAO MON <td>••</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>001</td> <td></td>	••										001	
53DCCLIMNDIRCH4,C(I)CON/MQA54DCMONUV,WCCLO,SAUV,CLENDIRPIDCON/D1QA55NGMON,AIRSTTCM,PPD,CCLO,UVPIDCONNG56NGMON,AIRSTUVCLO,SAUVPIDCONNG57NGMON,AIRSTUV,CORRCLO,SAUVPIDCONNG58NGMON,AIRSTCOND,UVCLO,SAUV,CLEPIDCONNG59NGMON,AIRSTCOND,FIDCLO,SAUV,CLEPIDCONNG60NGMON,AIRSTCONDCLO,SAUV,CLEPIDCONNG61NGMON,AIRSTCONDCLO,SAUVPIDCONNG62NGMON,AIRSTCONDCLO,SAUVPIDCONNG63NGMON,AIRSTCONDCLO,SAUVPIDCONNG64EMEPMONNCSAVPIDCONNG65WNONONUV,CCLOCLE,UVPILTP,HNO3D1QA66DCMON,SRCEFILTPCLBNDIRCOL,H2S,FCON/H12QA70DCMON,SRCEFILTPFILTP,HNO3D1QA												
54 DC NON UV, WC CLO, SA UV, CLE NDIR FID CON/D1 QA 55 NG MON, AIRST TCM, FPD, C CLO, UV PID CON NG 56 NG MON, AIRST UV CLO, SA UV PID CON NG 56 NG MON, AIRST UV CLO, SA UV PID CON NG 57 NG MON, AIRST COND, CORR CLO, SA UV GC, NMETH CON NG 58 NG MON, AIRST COND, FID CLO, SA UV, CLE PID CON NG 59 NG MON, AIRST COND, FID CLO, SA UV, CLE PID CON NG 60 NG MON, AIRST UV CLO UV PID CON NG 61 NG MON, AIRST COND CLO, SA UV, CLE PID CON NG 62 NG MON, AIRST COND CLO, SA UV PID CON NG 63 NG MON, AIRST COND CLO, SA UV PID CON NG 64 EMEP MON WC<										KP'k		
55 NG MON, AIRST TCM, FPD, C CLO, UV PID CON NG 56 NG MON, AIRST UV CLO, SA UV PID CON NG 57 NG MON, AIRST UV, CORR CLO, SA UV GC, NHETH CON NG 58 NG MON, AIRST COND, UV CLO, SA UV GC, NHETH CON NG 59 NG MON, AIRST COND, FID CLO, SA UV, CLE FID CON NG 60 NG MON, AIRST COND, FID CLO, SA UV, CLE FID CON NG 61 NG MON, AIRST COND CLO, SA UV PID CON NG 62 NG MON, AIRST COND CLO, SA UV PID CON NG 63 NG MON, AIRST COND CLO, SA UV PID CON NG 64 EMEP MON NC SA V PILTP, HNO3 D1 QA 66 DC MON NC SA CLE, UV CON QA 67 DC MON VV, C CLO CLE	53	DC	CLIM				NDIR		CH4,C(1)		CON/M	ŲA
UV SA 56 NG MON, AIRST UV CLO, SA UV PID CON NG 57 NG MON, AIRST UV, CORR CLO, SA UV GC, NMETH CON NG 58 NG MON, AIRST COND, UV CLO, SA UV, CLE FID CON NG 59 NG MON, AIRST COND, FD CLO, SA UV, CLE PID CON NG 60 NG MON, AIRST COND, FD CLO, SA UV, CLE PID CON NG 61 NG MON, AIRST COND CLO, SA UV PID CON NG 62 NG MON, AIRST COND CLO, SA UV PID CON NG 63 NG MON, AIRST COND CLO, SA UV PID CON NG 64 EMEP MON WC SA V HPLC, PAH CON NG 65 WNO NON WC SA V CLE, UV CON QA 66 DC MON, TR PILTP CLE, UV COL, PILTP, HNO3 D1 QA 69 DC MO			non					NDIR	FID		•	
57 NG MON, AIRST UV, CORR CLO, SA UV GC, NMETH CON NG 58 NG MON, AIRST COND, UV CLO, SA UV, CLE PID CON NG 59 NG MON, AIRST COND, FDD CLO, SA UV, CLE PID CON NG 60 NG MON, AIRST UV CLO, SA UV, CLE PID CON NG 61 NG MON, AIRST TON, PID CLO, SA UV PID CON NG 61 NG MON, AIRST TON, PID CLO, SA UV PID CON NG 62 NG MON, AIRST COND CLO, SA UV PID CON NG 63 NG MON, AIRST COND CLO, SA UV PID CON NG 64 EMEP MON WC SA V HPLC, PAH CON NG 66 DC MON, TR PILTP CLE, UV PILTP, HNO3 D1 QA 67 DC MON UV, C CLO CLE NDIR COL, H2S, F CON/H12 QA 70 DC MON, SRCE						UV			PID			
57 NG MON, AIRST UV, CORR CLO, SA UV GC, NMETH CON NG 58 NG MON, AIRST COND, UV CLO, SA UV, CLE PID CON NG 59 NG MON, AIRST COND, FDD CLO, SA UV, CLE PID CON NG 60 NG MON, AIRST UV CLO, SA UV, CLE PID CON NG 61 NG MON, AIRST TON, PID CLO, SA UV PID CON NG 61 NG MON, AIRST TON, PID CLO, SA UV PID CON NG 62 NG MON, AIRST COND CLO, SA UV PID CON NG 63 NG MON, AIRST COND CLO, SA UV PID CON NG 64 EMEP MON WC SA V HPLC, PAH CON NG 66 DC MON, TR PILTP CLE, UV PILTP, HNO3 D1 QA 67 DC MON UV, C CLO CLE NDIR COL, H2S, F CON/H12 QA 70 DC MON, SRCE				UV		UV						
58 NG MON, AIRST COND, UV PID CLO, SA UV, CLE PID CON NG 59 NG MON, AIRST COND, FID CLO, SA UV, CLE PID CON NG 60 NG MON, AIRST COND, FID CLO, SA UV, CLE PID CON NG 61 NG MON, AIRST COND CLO, SA UV PID CON NG 62 NG MON, AIRST COND CLO, SA UV PID CON NG 63 NG MON, AIRST COND CLO, SA UV PID CON NG 64 EMEP MON NC SA V HPLC, PAH CON NG 64 EMEP MON NC SA V PILTP, HNO3 D1 QA 65 WNO MON CLO, CLO CLE, UV COL, H2S, F CON/H12 QA 66 DC MON, SRCE FILTP VLQ CLE, UV COL, H2S, F CON/H12 QA 70 DC MON, SRCE FILTP PILTP, HNO3 D1 QA	57	NG	MON, AIRST	UV, CORR	CLO, SA	UV			GC, NMETH		CON	NG
59 NG MON, AIRST COND, FID CLO, SA UV, CLE FID CON NG 60 NG MON, AIRST UV CLO UV FID CON NG 61 NG MON, AIRST COND CLO, SA UV FID CON NG 62 NG MON, AIRST COND CLO, SA UV FID CON NG 63 NG MON, AIRST COND CLO, SA KI, UV FID CON NG 64 EMEP MON WC SA VV HPLC, PAH CON NG 64 EMEP MON WC SA VV HPLC, PAH CON NG 65 WMO MON CLO, SA UV HPLC, PAH CON NG 66 DC MON, TR FILTP CLE, UV FILTP, HNO3 D1 QA 67 DC MON UV, C CLO CLE, UV COL, H2S, F CON/H12 QA 69 DC MON, SRCE FILTP FILTP, HNO3 D1 QA 70 DC MON, SRCE FILTP FILTP, HNO3 D1 QA	58	NG	MON, AIRST	COND, UV	CLO, SA	UV,CLE			FID		CON	
60 NG MON, AIRST UV CLO UV PID CON NG 61 NG MON, AIRST COND CLO, SA UV PID CON NG 62 NG MON, AIRST TCM, FID CLO, SA UV PID CON NG 63 NG MON, AIRST TCM, FID CLO, SA KI, UV PID CON NG 64 EMEP MON WC SA UV HPLC, PAH CON NG 64 EMEP MON WC SA D1 EMEP 65 WNO MON CLE, UV FILTP, HNO3 D1 QA 66 DC MON UV, C CLO CLE, UV COL, H2S, F CON/H12 QA 69 DC MON, SRCE FILTP FILTP, HNO3 D1 QA 70 DC MON, SRCE FILTP FILTP, HNO3 D1 QA	59	NG	MON, AIRST		CLO, SA	UV, CLE			FID		CON	NG
61 NG MON, AIRST COND CLO, SA UV FID CON NG 62 NG MON, AIRST TCH, FID CLO, SA KI, UV FID CON NG 63 NG MON, AIRST COND CLO, SA KI, UV FID CON NG 64 EMEP MON WC SA UV HPLC, PAH CON NG 64 EMEP MON WC SA D1 EMEP 65 WNO MON CLE, UV FILTP, HNO3 D1 QA 66 DC MON, TR FILTP CLE, UV CON QA 67 DC MON UV, C CLO CLE, UV COL, H2S, F CON/H12 QA 69 DC MON, SRCE FILTP FILTP, HNO3 D1 QA 70 DC MON, SRCE FILTP FILTP, HNO3 D1 QA	60		MON, AIRST	ŪV							CON	
62 NG MON,ÅIRST TCH,FID CLO,SA KI,UV FID CON NG 63 NG MON,ÅIRST COND CLO,SA UV HPLC,PAH CON NG 64 EHEP MON WC SA D1 EMEP 65 WNO NON WC SA PILTP,HNO3 D1 QA 66 DC MON,TR PILTP CLE,UV CON QA 67 DC MON UV,C CLE NDIR COL,H2S,F CON/H12 QA 70 DC MON,SRCE FILTP PILTP,HNO3 D1 QA												
63 NG MON,AIRST COND CLO,SA UV HPLC,PAH CON NG 64 BHEP MON WC SA D1 BMEP 65 WHO NON WC SA D1 D1 BMEP 66 DC MON,TR FILTP FILTP,HNO3 D1 QA 67 DC MON UV,C CLE,UV COL,H2S,F CON/H12 QA 69 DC MON,SRCE FILTP FILTP,HNO3 D1 QA 70 DC MON,SRCE FILTP FILTP,HNO3 D1 QA												
65 WHO MON 66 DC MON, TR FILTP 67 DC MON CLE, UV CON QA 69 DC MON UV, C CLO CLE NDIR COL, H2S, F CON/H12 QA 70 DC MON, SRCB FILTP FILTP, HNO3 D1 QA												
66 DC MON,TR FILTP. FILTP.HNO3 D1 QA 67 DC MON CLE,UV CON QA 69 DC MON UV,C CLO CLE NDIR COL,H2S,F CON/H12 QA 70 DC MON,SRCE FILTP FILTP.HNO3 D1 QA				WC	SA						D1	BMBP
67 DC MON CLE,UV CON QA 69 DC MON UV,C CLO CLE NDIR COL,H2S,F CON/H12 QA 70 DC MON,SRCE FILTP PILTP,HNO3 D1 QA		WAQ	AUN									
69 DC HON UV,C CLO CLE NDIR COL,H2S,F CON/H12 QA 70 DC HON,SRCE FILTP PILTP,HNO3 D1 QA				PILTP		AT D 117				FILTP, HNO3		
70 DC MON, SRCB FILTP PILTP, HNO3 D1 QA				UV.C	CLO		NDTP			COL H2S P		
						~~~	01 <b>5</b> 2 A			. ,		
72 DC HON,TH PP,C,FPD CLO CLE,UV NDIR,CORR FID UV,NH3 CON QA												
	72	DC	MUN, TR	PF,C,FPD	CTO	CTR'OA	NDIR, CO	KK	FID	UV, NH3	CON	ÔY

### LEGENDS OVERVIEW GAS NETWORKS (Table 2)

<pre>FEDR = according US federal     regulations.</pre>
WMO = according to WMO regulations, NG = not given in the questionnaire.
Column 3: Objectives of the network,
AIRST= related to air quality standards,

```
ALARM= warning for episodes of high
     pollutant concentration,
CLIM = measurements related to
     climatology,
DRYD = dry deposition measurement,
MON
    = general monitoring purposes,
STRAT= Stratospheric research,
     = detection of trends.
TR
Column 4: Analytical methods for SO2,
    = acidimetric titration,
ACT
     = coulometry,
С
COND = by means of conductivity
     measurement,
CORR = correlation spectrometry,
FILTP= filterpack method,
FL
     = continuous fluorescence,
FPD
     = flame photometric detection,
PF
     = pulsed fluorescence,
     = pararosaniline colorimetric
PR
     method,
TCM
     = colorimetric method of
     tetrachloromercury complex,
UV
     = UV spectrophotometry,
WC
     = assorted wet chemical methods,
NG
     = not given.
Column 5: Analytical methods for NO_{\infty},
     = coulometry,
CLO
    = chemoluminescence with ozone
     addition,
SA
     = sodium arsenite colorimetric
     method,
TGS
    = TGS-AINSI method,
UV
     = UV spectrophotometry,
NG
     = not given.
Column 6: Analytical methods for ozone,
CLE
    = chemoluminescence with ethylene
     addition,
KΙ
     = potassium iodide
     spectrophotometric method,
UV
     = UV spectrometry,
     = not given.
NG
Column 7: Analytical methods for carbon WMO
monoxide,
     = coulometry,
С
CORR = correlation spectrometry,
    = gas chromatography
GC
NDIR = non-dispersive infra-red
     spectrophotometry,
NG
     = not given.
Column 8: Analytical method for carbon
dioxide.
GC
    = gas chromatography
NDIR = non-dispersive infra-red
     spectrophotometry.
```

```
Column 9: Analytical methods for
organic compounds.
If no compounds are mentioned, volatile
hydrocarbons are measured. In other
cases the method is mentioned first,
followed by the measured compounds.
    = electron capture detector
EC
    = gas chromatography,
GC
FID = flame ionization detector,
    = fluorescence measurement
FL
HPLC = high performance liquid
     chromatography,
PID
    = photo-ionization detector,
     = polarography
POL
    = methane,
CH4
CHO = aldehydes
C(I) = carbon isotopes,
FREON= freons,
NMETH= hydrocarbons, not methane.
O(Cl) = chlorocompounds,
PAH = Poly Aromatic Hydrocarbons,
Column 10: Other compounds, specified.
COL = colorimetric methods,
EL
     = ion selective electrode,
FITP = filterpack,
POL = polarography,
     = not given.
NG
Column 11: Frequency of gas
measurements,
CON = continuously,
D(followed by number)
1 measurement per x days,
H(followed by number)
1 measurement per x hours.
Column 12: Quality control of gas
measurements,
     = questionnaire describes more or
QA
     less elaborate QA
EMEP = according to EMEP,
    = quality control according to US
EPA
     EPA regulations,
FEDR = quality control according to US
     Federal Regulations, procedures,
    = quality control according to WMO
     regulations,
```

```
NG = not given.
```

#### **NETWORK FOR AEROSOL MEASUREMENT (Table 3)**

The first three columns give the same information as in the case of the gas measurement networks, identification of the network, siting criteria and objective respectively.

Column 4 describes the sampling methods for aerosols. High-volume sampling techniques are still by far dominant, the use of sample inlet systems which limit the sampling to aerosol particles with a diameter of 10 micron or less is limited to the US. Total suspended material is determined in many cases. Individual compounds measured are given.

The measurement of the visibility (column 5) is given in this part of the table in view of the close relation to particle concentration.

Column 6 describes the measurement frequency for aerosols.

Quality assurance procedures for the sampling and measurement of aerosols are given in the last column (7). The situation here resembles closely the conditions described for the measurements of gaseous compounds (column 12, table 2).

TABLE 3						
COLUMN 1	2	3	4	5	6	1
	SITING	OBJECT.	ABROSOL	VISIB.	FREQ.AER.	QUAL.CONTR
1	FEDR	AIRST	HVOL, Pb		D6	EPA
4	BPA	AIRST	HVOL, PM10		D6	EPA
5	FEDR	AIRST				
7	EPA	AIRST	HVOL, PM10		D6	EPA
8	FEDR	AIRST	HAOT		D6	FEDR
9 10	DC BPA	AIRST AIRST	HVOL, As,Sb,Be,Cd		D6	
10	DIR	AIROI	Fe, Mn, Ni, Se, Pb, S, N		00	
11	BPA	AIRST	HVOL, PM10, Pb		D6,D2	EPA
12	EPA	AIRST	,,		,	
13	DC	AIRST				
15	EPA	AIRST	HVOL, NEFEL, PM 10	IN	D6,D3,D	FEDR
16	DC	AIRST	HVOL, HVOL	IN	D6,CON	BPA
17	DC	AIRST	TR(-), TR(+) HVOL		D6	EPA
18	DC	DRYD	11101		00	DIA
19	EPA	AIRST	HVOL, PM10		D6	EPA
20	EPA	AIRST	HVOL		D6	EPA
21	FEDR	AIRST	HVOL, Pb		D6	FEDR
22	FEDR	AIRST				
23	BPA	AIRST	HVOL		D6	FEDR
24	FEDR	AIRST	HVOL, PM10	REFL.	D6, H2, CON	QA
25 26	FEDR FEDR	AIRST	HVOL, PM10		D6	FEDR
27	BPA	AIRST AIRST	HVOL, PM10, TR(+)		D6	EPA
28	NG	AIRST	HVOL, PM10		D6,D1	NG
29	PEDR	AIRST	HVOL, PM10, DS		D6,D3	QA
			Pb, As, Cd, Cr, Zn, Cu			•
30	FEDR	AIRST				
31	10	CT TH	UV01		D.C	WO
33	NG DC	CLIM AIRST	HVOL HVOL, F		D6 CON, D7	NG QA
37	DC	AIRST, TR	EVOL, TSP		D1,H2	QA
57	20					ų.
38	DC	ALARM				
39	DC	AIRST	HVOL, RFBSM		D1	WMO
10	70		UNOT THOT CO.	7.11	D1 CON	01
40	DC	AIRST, TR	HVOL, LVOL, SO4 NO3, BSM	IN	D1,CON	QA
41	DC	AIRST	LVOL, Pb, Cd, As, Sb, Tl		D1	QA
-			Cr, Cu, Mn, Ni, Se, Ti, V, Zn			4
42	NG	SRCE	HVOL, PD,NI		NG	NG
43	EMEP	MON	HVOL, SO4		Di	NG
44	NG	MON				NG
45	NG	STRAT				
47	NG	CLIN	HVOL, TR(+)		X	QA
48	NG	DRYD	HVOL, Cl.Na,Ca,Ng,Br		X	žu.
49	DC	MON	HVOL, DS, TSP, Pb		 D7	QA
50	DC	CLIM	HVOL, TR(+)	IN	X	•···
		STRAT	,			
51	DC	MON				
52	DC	NON	FILTP, P		D1/D7	QA
53	DC	CLIN				
54	DC	NON	HVOL, TSN, BSN, SO4			
			Be		D1/M	QA
					/	

TABLE 3 CONTINUED COLUMN 1	2	3	4		5	6	7
55	NG	MON, AIRST	HVOL,	TSN		D1	NG
56 57	NG NG	MON, AIRST MON, AIRST	HVOL, HVOL,			D1	NG
58	NG	HON, AIRST				D1 D1	NG NG
59	NG	MON, AIRST	HVOL,			D1	NG
60	NG	MON, AIRST	HVOL,			D1	NG
61	NG	MON, AIRST	HVOL,			D1	NG
62	NG	MON, AIRST	HVOL,	TSM		D1	NG
63	NG	MON, AIRST	HVOL,	TSN		Di	NG
64	ENEP	MON	HVOL,	TSM, H,NH4,SO4	IN	D1/H8	EMEP
65	WNO	NON	HVOL, H	NO2, NO3, NH4, SO4, Si	.02	D1	WNO
66	DC	MON, TR	LVOL,	SO4, NO3, NH\$, C1, Na		Di	QA
67	DC	NON	HVOL,			D1	<u>Q</u> A
69	DC	NON	HVOL,	TSH, SO4,NO3,Pb		D6	QA
70	DC	MON, SRCE	HVOL,	SO4, NO3, NH4		D1	Qλ
72	DC	MON, TR	BVOL, Pb	DS, TSM, PYR, SO4, N		D6	QA

#### **LEGENDS AEROSOL MEASUREMENT NETWORKS (Table 3)**

Column 1-3, see description of column 1-3 of gas measurement networks.

Column 4: Sampling method for aerosol, followed by measured compounds, HVOL = high volume sampling, MVOL = medium volume sampling method, LVOL = low volume sampling technique, PM10 = sampling with a 10 micron limited inlet, DS = dichotomous sampler, BSM = Black smoke measurement, NEFEL= nefelometry, RFBSM= black smoke measurement by reflectance, TR(+) = analysis trace cations, TR(-) = analysis trace anions, TSM = Total suspended material. TSP = total suspended material by beta activity measurement.

Column 6: Frequency aerosol measurements, CON = continuously, D(followed by number) 1 measurement per x days, H(followed by number) 1 measurement per x hours. Column 7: Quality assurance procedures for aerosol measurements, OA = questionnaire describes more or less elaborate QA EMEP = according to EMEP, EPA = quality control according to US EPA regulations, FEDR = quality control according to US Federal Regulations, procedures, WMO = quality control according to WMO regulations, NG = not given.

Column 5: Measurements related to visibility,

IN = integrating nefelometer,

RF = reflectance measurement.

#### **NETWORKS FOR WET DEPOSITION (Table 4)**

The information on networks for the measurement of wet deposition is given in table 4.

The first column identifies the network in the same way as done in tables 2 and 3.

The siting criteria are tabulated in column 2. The remarks made for siting criteria in the case of gas/aerosol networks also apply in this case (see remarks regarding column 2, gas/aerosol networks).

The objectives of the networks (column 3) are generally to determine the wet deposition of compounds or to detect trends in the composition of precipitation or wet deposition.

The fourth column provides information on the samplers employed in the network. Whereas in the US and Canada wet-only samplers (samplers opened during precipitation events only in order to prevent dry deposition) are generally in use, bulk samplers are still widely applied in the rest of the world. The sampler type is indicated, if this information was supplied.

In column 5 the sampling frequency is given. Sampling periods of one week and one month are most frequent. Column 6 provides information on the analytical techniques applied to the measurements of so-called bulk compounds (sulfate, nitrate, chloride, hydronium ions, sodium, potassium, calcium, magnesium and ammonium). Ion-chromatography, atomic absorption spectrometry, ion-selective electrodes and colorimetric methods (especially for ammonium) are widely used.

In column 7 the methods used for the determination of trace compounds are described. Individual elements or compounds are mentioned if this information was available. Ion-chromatography, atomic absorption spectrometry and induction-coupled plasma emission spectrometry are important methods.

The description of the quality control procedures is given in column 8. Again the same observations can be made as mentioned for the gas/aerosol networks (see remarks on column 12, table 2).

TABLE 4

COLUMN 1	2	3	4	5	6	7	8
	SITING	OBJ	SAMPLER	PERIOD	BULK METHOD	TRACE METHOD	QUAL.CONT.
1	DC	DEP	ABR	W	IC, AA, COL, BL	AA, Zn, Al, Fe, Mn, Ni, Pb, V, As, IC, NO2, Br	ÕY
2	DC	TR, DEP	ABR	W	IC, AA, COL, pH	F	NADP
5	DC	DEP	ABR	W	NG		BPA
6	DC	TR, DEP	AER	¥	COL, AA, EL, TITR	ICP, AA.TR(+)	EPA
8	EPA	DEP	W/D,NG	CON	pH	, , ,	EPA
9	DC	DEP	W/D,NG	W	NG	PO4,NG	USGS
11	NADP	DEP	ABR	W/COMM		GC, PCB, AA, Hg	NADP
13	NADP	TR, DEP	ABR	Ŵ	NG	NG, Br, PO4, NO2, NG	QA
14	NADP	DEP	ABR	W	USGS,	USGS, F, Br	NADP/USGS
15	NADP	DEP, SRCE	AER/BU	W	NG	NG, PO4, NO2, Pb	QA
16		NUIS	BU	NG		PART.	QA
17	BPA	DEP	MIC	Ŵ	NG	NG, F, NO2, Br, PO4	BPA
19	DC	AIRST	FOG/GLOB	D	NG, pH, SO4, NO3		QA
24	DC	DEP	AER	ii i	IC, AA, EL, COL		NADP
25	NADP/EPA	DEP, AIRS!	FABR/BU	W/B	IC, BL	IC, Br, NO2, PO4	QA
27	NADP	DEP	ABR	W/B	IC,BL		USGS/BPA
31	WHO	DEP, TR	ËLI	N/W	NG		WHO
32	DC	DEP	WO/BU	Ŵ	IC, AA, EL, HCO3	IC,Br	QA.
34	DC	DBP	BU	Ĭ	ICP, IC, EL, COL, TITR HCO3		QA
35	DC	DEP(W/D)	W/D, NG	¥	IC, AA, TR		QA
36	DC	DEP	BÜ	D/2W	BL, AX,	POL, NOT SP.	ÑG
38	DC	DEP, AIRS	TBU	W	TUR, COL, EL, AA		QA
40			BU/ECN	W	IC, COL, EL, AA	AA, POL, ICP, Cu, Cd, Ni, I	
	DC	DEP, TR				Pb, V, Fe, Mn, As, Cr, Co, Se	QA
41		DEP, AIRS	TNIL	۵	IC, AA, BL	AA, Pb, Cu	QA
43	BM	DBP	NIL	D/W	IC, AA, COL, BL	NG, Pb, In, Cd, Fe	NG
46	DC	DEP	ERNI	W	IC,COL,AA,BL,TITR		WMO
48	NG	DEP OF C	LBU	X	CL, BL		NG
50	DC	DEP	W, SAN	M	COL, TUR, AA		WMO
52	DC	DEP OF F	, BU	N	EL,COL,F,C1		NG
54			BU?				
55	NG	DEP	BRNI	W/N	NG		NG
56	NG	DBP	BU	W/D	NG		NG
57	NG	DEP	BU	NG	NG		NG

172

#### TABLE 4 CONTINUED

COLUMN 1	2	3	4	5	6	1	8
59	NG	DEP	₩/D	NG	NG		NG
60	NG	DEP	BÜ	NG	NG		NG
61	NG	DEP	BU	NG	NG		NG
62	NG	DEP	NG	NG	NG		NG
64	WMO	DEP	BRNI	H	NG		WMO/BMBP
66	DC	DEP, TR	MIC	D	IC, AA, BL, COL	Fe	DC
67	DC	DEP	SAN	B/2W	ASTM		DC
68	DC	DEP	SAN	W	IC, AA, BL		DC
69	DC	DEP	AER	₩2	IC, AA, COL, EL		DC
70	DC	DEP	NIC	X	IC, AA, COL, BL, ICP	ICP, AA, Zn, Fe, Ni, Cu, Pb, Al Cd, V, Mn	DC
71	DC	DEP	W	E	IC, AA, TITR, EL	ICP	DC
72	DC	DEP	ii	M	IC, AA, BL		DC
73	DC	DEP	W/BU	D/M	MISC		DC

#### LEGENDS OVERVIEW NETWORKS PRECIPITATION

Column 1: Networks identified by number (table 1 and 1A)	followed by measured compounds. AA = atomic absorption spectrometry, ASTM = methods according ASTM, COL = colorimetric method,
Column 2: Siting criteria, DC = description of the criteria is given in more or less elaborate	EL = potentiometry using electrodes, IC = ion chromatography, ICP = induction coupled emission
form, EMEP = according to EMEP,	plasma spectrometry, MISC = miscellaneous,
EPA = criteria according USEPA,	TITR = titration,
NAPD = criteria according USNAPD,	TUR = turbidimetric sulfate
WMO = criteria according WMO, NG = not given.	measurement, USGS = methods according US Geological
NG – not given.	Service,
Column 3: Objectives of the network,	$HCO_3$ = bicarbonate is measured by
AIRST= compliance to air quality standards.	titrimetry, NG = not given.
DEP = measurement of wet or total	NG - NOC GIVEN.
deposition,	Column 7: Analytical methods for trace
NUIS = detection of nuisance,	elements, see column 6 plus:
<pre>SRCE = detection of sources of compounds in precipitation,</pre>	GC = gas chromatography, PART = particulate matter is measured
TR = detection of trends,	by filtration,
	PCB = polychlorobiphenyls,
Column 4: Samplers,	POL = polarography,
BU = bulk( open) sampler, W = Wet-only sampler,	TR(+)= trace cations, NG = not given.
W/D = wet/dry sampler,	
AER = Aerochem wet/dry sampler,	
ECN = ECN wet-only sampler. ELI = Elinap sampler,	Column 8: quality assurance procedures,
ELI = Elinap sampler, ERNI = ERNI wet-only sampler,	QA = procedure is given in any form,
FOG = fog sampler Global	EMEP = according to EMEP,
Cheochemistry,	EPA = according USEPA, NAPD = according USNAPD,
MIC = Mic collector, Climatronics, NIL = NILU sampler,	USGS = according US Geological Service,
SAN = Sangamo sampler.	WMO = according WMO,
	NG = not given.
Column 5: Sampling period,	
CON = continuously, E = event,	
D = day sampling,	
W = weekly,	
<pre>2W = sampling period of 2 weeks, M = monthly sampling period,</pre>	
CUMM = cumulative sampling.	
Column 6: Analytical methods for bulk elements, if no elements are specified	
all bulk elements are measured. In all	
other cases methods are given first,	

#### **TENTATIVE CONCLUSIONS**

#### GENERAL

Even though the response on the questionnaire was relatively good, the available information on 73 networks is not necessarily representative in all aspects. A considerable number of networks has not responded yet and not all pertinent information was given in the answers we have received. Even so, a number of tentative conclusions can be drawn, based on the present material. There is only limited evidence that the mode of operation of networks is in a clear and direct way derived from the objectives of the networks. In the siting criteria of networks, rules are given to avoid an undue influence of local sources (this of course does not apply to networks dedicated to the detection of sources) and the problems regarding representative sampling are discussed. Sampling frequency, network density and overall accuracy and precision are generally not a function of network objectives.

Exceptions are found in The Netherlands and Canada.

The layout of the present Netherlands network has been defined in order to attain a preset level in accuracy regarding measurement of concentrations in air, depositions and trend detection. The results of former networks in The Netherlands have been used to derive an optimized configuration of stations, sampling frequency and the requirements on the sampling and analytical methods [7].

In the Canadian CAPMON network, network density is dependent on the average emission strengths in a given region, leading to more stations in more polluted regions. In this way the density of data is higher in regions where one expects strong gradients [8].

The rather inadequate situation in most other countries is reflected in the literature on this particular subject. Only a limited number of papers have been published examining this problem [7,9,10,11].

Quality control is also a problem. In both the US and Canada, central agencies have issued regulations for quality control and all responding networks in these countries apply these rules.

networks in these countries apply these rules. International organizations (WMO for the BAPMON, Background Pollution Monitoring international network and ECE for the EMEP international network) have also quality control measures in operation but these seem to be less stringent compared to e.g. the regulations issued by US EPA. Still, as already stated in the introduction, it is of utmost importance that the results of networks can be compared on a worldwide scale, both to investigate emission-effects relations for pollutants and to expand our knowledge on atmospheric processes.

In view of the large diversity of sampling and analytical methods, employed in the different networks, the introduction of generally accepted quality control measures has a very high priority.

#### **NETWORKS FOR GAS AND AEROSOLS**

For  $SO_2$  modern instrumental methods are generally in use. In view of the  $SO_2$  concentrations generally encountered and the performance of these methods, no important problems are to be expected except in background area where very low  $SO_2$  concentrations are encountered.

The situation is less favorable in case of  $NO_{\infty}$ . Commercial monitors have not only problems in measuring  $NO_{\infty}$  concentrations in background areas, but also regarding selectivity in view of the interference by  $HNO_3$  and other components. Also a number of wet-analytical methods are in use for these compounds which are somewhat inferior regarding accuracy and precision. The instrumental methods for the determination of ozone are thought to be sufficient for the present needs.

The nondispersive methods, generally used for CO and  $\text{CO}_2$ , do not present appreciable problems.

Methods for the measurement of individual hydrocarbons, nitric acid, hydrofluoric acid etc. are more in the stage of laboratory development with the exception of the application of FID for total volatile organics. In the latter method calibration presents a serious problem.

Less satisfactory is the situation regarding the measurement of aerosols. Many networks determine total suspended material, a not very useful parameter as it lacks selectivity. Many high-volume methods can introduce artifacts in the measurement of trace metals, due to contamination. This problem is well known for elements like Fe, Zn, Cd, Cu. The usefulness of simple filter sampling techniques for the determination of ammonium is questionable in view of the lack of stability of ammonium nitrate. The same goes for nitrate in aerosols. In general, the operators of networks seem to be more or less satisfied with the available methodology, with the exception of techniques for the measurement of organic compounds, strong acids and volatile inorganic compounds such as ammonium nitrate.

#### WET DEPOSITION NETWORKS

The use of bulk collectors, samplers which remain open if no precipitation occurs, hinders the interpretation of the results of networks, as a mixture of wet and dry deposition is sampled by these devices. This problem is less serious in some background areas where very low gas and aerosol concentrations are encountered, resulting in very low dry deposition rates. Funnel-type samplers, generally in use, are not suitable for sampling snow as the sampling efficiency is very dependent on wind speed. The stability of precipitation samples is questionable if they are kept for more than a week under field conditions. Sampling periods of a month, if the samples are not cooled, can result in changes in ammonium, hydrogen ion and nitrate concentrations depending on local meteorological parameters. The analytical methodology for bulk elements is sufficiently developed to guarantee acceptable results. The situation is less favorable in the case of trace elements as contamination occurring both in the field and in the analytical laboratory, can cause severe problems. Siting can be a source of errors for wet deposition networks. The influence of high objects in the vicinity of sampling sites is often underestimated. Their presence can lead to errors in the amount of precipitation sampled and to artifacts due to contamination.

#### Acknowledgement

This inventory was only possible by the support of all those who have responded to our questionnaire. We are very grateful for the time and effort which was devoted to answering all questions. The members of the IUPAC subcommission on evaluation and harmonization of current tropospheric sampling networks (Dr. L.Horvath, Institute for Atmospheric Physics, Hungary, Dr.H.Martin, Environment Canada, Dr. D.Onderdelinden, RIVM, The Netherlands and Dr.R.T.McMillen, Atmospheric Turbulence and Diffusion Division of ARL, USA) have made very useful comments. The contributions of Dr. H.J. Grosse, Dr. S. Penkett and Dr. R.A. Brown, all members of commission VI.4 have been very helpful.

#### LITERATURE

[1] H.StratmannWirkungen von Luftveruntreinigungen auf die VegetationLIS-Berichte 49, 1984, LIS, Essen, BRD.

[2] L.Granat On the Variability of Rain Water Composition and Errors in Estimates of Areal Wet Deposition. Report AC-30, 1975, Department of Meteorology, University of Stockholm.

[3] L.A.Barrie
 Interpretation of Network Data: Spatial and Temporal Variations
 Proceedings Symp. on Monitoring and Assessment of Airborne Pollutants,
 Ottowa, 1982, Nat. Research Council Canada

[4] T.A.Buishand, G.T.Kempen, A.J.Frantzen, H.F.R.Reijnders and A.J.Eshof Trend and Seasonal Variation of Precipitation Chemistry Data in The Netherlands Atmospheric Environment, Vol. 22, 1988, pp 339-348

[5] W.H.Asman and A.J.Janssen A Long-Range Transport Model for Ammonia and Ammonium for Europe Atmospheric Environment, Vol 21, 1987, pp 2099-2119

[6] J.W.S.Young and W.R.Shaw A Proposed Strategy for Reducing Sulphate Deposition in North America 1. Methodology for Minimizing Sulphur Removal Atmospheric Environment, Vol. 20, 1986, 189-199 [7] N.D. van Egmond, H.Kesseboom en D.Onderdelinden Statistische Optimalisatie van het Landelijk Meetnet voor de Regenwaterkwaliteit RIVM-Report 218203001, 1985. [8] R.J.Vet and M.E.Still The Canadian Air and Precipitation Monitoring Network (CAPMoN): A Description Report, 1986, Air Quality Monitoring and Assessment Division, Atmospheric Environment Canada [9] L.Horvath Effect of the Sampling Period and Method on the Measured Rate of Wet Deposition if Inorganic Compounds. Idojaras, Vol. 84, 1980, pp 130-134. [10] L.Haszpra On the Planning of Precipitation Chemistry Network 1. Sulfate Data; Case of Uniformly Distributed Stations Idojares, Vol. 84, 1980, pp 121-129

[11] J.Slanina The Influence of Outliers on Results of Wet Deposition Measurements as a Function of Measurement Strategy Atmospheric Environment, In Press.

•

.