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Abstract  - Nonaromatic benzenoid hydrocarbons a r e  benzenoid hydrocarbons 
with l a r g e  number of f ixed  double bonds. The l i-electron s t r u c t u r e  of t hese  
molecules is  examined and t h e  e f f e c t s  of p a r t i c u l a r  r i n g s  on t h e  t o t a l  
n-electron energy ca l cu la t ed .  The main conclusion of t h i s  work is  t h a t  i n  
nonaromatic benzenoids s e v e r a l  non-standard modes of c y c l i c  conjugat ion 
occur,  i n  a d d i t i o n  t o  t h e  conjugat ion descr ibed by Kekul6 o r  C la r  s t ruc -  
t u r e s .  

INTRODUCTION 

I f  a c e r t a i n  carbon-carbon bond i n  a conjugated hydrocarbon is  double i n  a l l  i t s  Kekul6 
s t r u c t u r a l  formulas,  then w e  say t h a t  i t  i s  a f k e d  double bond. Simi la r ly  a carbon-carbon 
bond which i s  s i n g l e  i n  a l l  Kekul6 s t r u c t u r e s  is  c a l l e d  a f k e d  single bond. A systematic  
examination of benzenoid hydrocarbons with f ixed  double bonds was performed by C la r  and co- 
workers ( see  r e f .  1 and t h e  pub l i ca t ions  quoted t h e r e i n ) .  C l a r ' s  b a s i c  conclusion w a s  t h a t  
"fixed double bonds do not  deprive po lycyc l i c  hydrocarbons of t h e i r  aromatic  c h a r a c t e r ,  pro- 
vided t h a t  they have a t  l e a s t  one Kekul6 s t r u c t u r e "  ( r e f .  1, p .  30) .  Note, however, t h a t  no 
benzenoid hydrocarbon s tud ied  by C la r  had more than fou r  f i x e d  double bonds. 

The present  paper d e a l s  w i th  benzenoid hydrocarbons possessing l a r g e  number of f i xed  double 
bonds. I n  s p i t e  of C l a r ' s  claim w e  f i n d  i t  reasonable  t o  des igna te  them a s  nonaromatic. Our 
p a r t i c u l a r  concern i s  t h e  n-electron conjugat ion i n  l a r g e  nonaromatic benzenoid systems. 

We f i r s t  have t o  choose a s u i t a b l e  t h e o r e t i c a l  approach. Accurate quantum chemical ca l cu la -  
t i o n  techniques a r e  nowadays not  a p p l i c a b l e  t o  l a r g e  benzenoids.  On t h e  o t h e r  hand, q u i t e  a 
few simple but  e f f i c i e n t  " topological"  methods have been developed, enabl ing t h e  d e s c r i p t i o n  
and t h e  p r e d i c t i o n  of t h e  b a s i c  physico-chemical p r o p e r t i e s  of benzenoid hydrocarbons ( r e f .  
2).  We can d i v i d e  these  methods i n t o  fou r  groups.  

(a) Resonance t h e o r e t i c a l  approaches based on t h e  counting of Kekul6 s t r u c t u r e s  ( r e f s .  2-5; 
f o r  review s e e  r e f .  6) a r e  of no use f o r  t h e  p re sen t  work s i n c e  i f  only Kekul6 s t r u c t u r e s  
a r e  considered,  then by definition f ixed  double bonds cannot p a r t i c i p a t e  i n  conjugat ion.  

(b) C la r ' s  aromatic  s e x t e t  theory ( r e f .  7 )  and i t s  advanced modif icat ions ( r e f s .  8,9) i n d i -  
c a t e  t h e  c y c l i c  conjugat ion i n  a benzenoid molecule by drawing a c i r c l e  ("aromatic s ex te t " )  
i n  c e r t a i n  hexagons. A cond i t ion  f o r  l o c a t i n g  an aromatic  s e x t e t  i n  a hexagon H of a ben- 
zenoid system B i s  t h a t  t h e  fragment B-H possesses  a Kekul6 s t r u c t u r e  ( r e f s .  2,7-9). This ,  
however, implies  t h e  ex i s t ence  of a Kekul6 s t r u c t u r e  of B containing t h r e e  double bonds i n  H.  
Then, obviously,  none of t h e  bonds of H can be f ixed .  A s  a consequence, aromatic s e x t e t s  ( i n  
C l a r ' s  sense)  cannot be drawn i n  hexagons which con ta in  a t  l e a s t  one f ixed  double o r  f i x e d  
s i n g l e  bond, i .e .  wi th in  t h e  aromatic s e x t e t  theory such hexagons a r e  considered t o  be empty 
and t o  have no c o n t r i b u t i o n  t o  conjugat ion.  

(c) The conjugated c i r c u i t  model ( r e f s .  2,lO) has  a s i m i l a r  l i m i t a t i o n .  Here only t h e  "con- 
jugated c i r c u i t s "  a r e  assumed t o  have non-vanishing e f f e c t s  on conjugat ion.  Since i n  conju- 
gated c i r c u i t s  double and s i n g l e  bonds a l t e r n a t e ,  they cannot be f i x e d .  I n  o t h e r  words, 
f i xed  s i n g l e  and double bonds cannot belong t o  any conjugated c i r c u i t  and thus they a r e  i r-  
r e l evan t  f o r  t h e  conjugated c i r c u i t  model. 

(d) Hiickel molecular o r b i t a l  theory i s  t r a d i t i o n a l l y  used i n  t h e  topo log ica l  s t u d i e s  of 
benzenoid hydrocarbons ( r e f s .  11-14). By means of s u i t a b l e  g raph- theo re t i ca l  manipulat ions 
i t  i s  p o s s i b l e  t o  express  t h e  effect of a single cycle on the total n-electron energy ( i . e .  
thermodynamic s t a b i l i t y )  of a conjugated system ( r e f s .  12,15-24). We denote  t h i s  quan t i ty  
by ef(G,Zl where G s t ands  f o r  t h e  r e spec t ive  molecular graph and Z f o r  i t s  p a r t i c u l a r  cyc le ;  
ef(G,Zl can be computed f o r  any cyc le  of any conjugated molecule.  Hence ef(G,Z) does not  
d i sc r imina te  between Kekul6an and non-Kekul6an molecules a s  we l l  a s  between conjugated 
c i r c u i t s  and cyc le s  containing f ixed  s i n g l e  o r  f ixed  double bonds. Among t h e  s e v e r a l  e x i s t -  
i ng  v a r i a n t s  of t h i s  approach ( r e f s .  12,15-24) we have chosen t h e  one proposed by Bosanac 
and Gutman ( r e f .  15) .  This method enables  t h e  eva lua t ion  of t h e  e f f e c t  of t h e  cyc le  Z from 
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t h e  s p e c t r a  of t h e  graphs  G and G - 2 ,  and i s  t h e r e f o r e  s u i t a b l e  f o r  computer implementation. 
Thus i n  the p r e s e n t  paper w e  r e p o r t  ef v a l u e s  computed by means of the formula 

m 

ef(G,Z) = -(27) I l o g [ l  + 2 +(G-Z, i x ) /+ (G,  i x ) ]  dx 
0 

where +(G, x)  and $(G-Z, x )  denote  t h e  c h a r a c t e r i s t i c  polynomials of G and G-Z, r e s p e c t i v e l y  
( r e f s .  15-17,21). 

Details of t h e  theo ry  of ef(G,Z) can be  found e l sewhere  ( r e f s .  17 ,19 ,21 ,22) .  A number of i t s  
chemical a p p l i c a t i o n s  are repor t ed  ( r e f s .  16 ,17) ,  of which t h e  r e l a t i o n  wi th  t h e  d iamagnet ic  
s u s c e p t i b i l i t y  is  p a r t i c u l a r l y  worth a t t e n t i o n  ( r e f s .  21,27,28).  

BENZENOID SYSTEMS WITH LARGE NUMBERS OF FIXED DOUBLE 
BONDS 

There i s  a p l e t h o r a  of ways i n  which benzenoid systems wi th  l a r g e  numbers of f i x e d  double  
bonds can b e  des igned .  We p resen t  h e r e  two such r e c i p e s  which g e n e r a l i z e  some p rev ious ly  
publ i shed  c o n s t r u c t i o n  schemes ( r e f s .  29,30).  

l o  Arrange t h e  hexagons i n  m rows, m > 2 ,  so  t h a t  t h e  f i r s t  and t h e  l a s t  row c o n t a i n  n+l 
hexagons and t h e  remaining rows c o n t a i n  n hexagons.  L e t  f o r  a l l  i, 1 'i ~ m - 1 ,  t h e  f i r s t  
and t h e  l a s t  hexagons of t h e  i - t h  row b e  a d j a c e n t  t o  t h e  f i r s t  and t h e  l as t  hexagons, res- 
p e c t i v e l y ,  of t h e  ( i + l ) - t h  row. Then t h e  cor responding  benzenoid hydrocarbon h a s  (n+2) 
Kekul6 s t r u c t u r e s ,  each wi th  mn+nttn+3 double  bonds. Among t h e s e  double  bonds,  mn+m-3n-3 are 
f i x e d .  

An example i s  provided by B1 f o r  which n = 4 ,  m = 7 ;  on ly  i t s  f i x e d  double  bonds are i n d i -  
ca t ed .  

2' Arrange t h e  hexagons i n  m rows, m > 4 ,  so  that  t h e  rows 1,2111-2 and m each  c o n t a i n  one 
hexagon, t h e  rows 2 and m-1 each c o n t a i n  two hexagons and t h e  numbers of hexagons i n  t h e  
i - t h  and ( i + l ) - t h  rows d i f f e r  by a t  most one, i = 1, ..., m-1. L e t  f o r  a l l  i, 1 ( i  ( m - 1 ,  
except  f o r  i = 2 and i = m-2, t h e  f i r s t  and t h e  l as t  hexagons of t h e  i - t h  row be  a d j a c e n t  t o  
t h e  f i r s t  and t h e  l a s t  hexagons, r e s p e c t i v e l y ,  of t h e  ( i + l ) - t h  row. Then t h e  cor responding  
benzenoid hydrocarbon has  9 Kekuld s t r u c t u r e s .  A l l  i t s  double  bonds except  10 are f i x e d .  

An example i s  provided by B 2  f o r  which m = 13; on ly  i t s  f i x e d  double  bonds are i n d i c a t e d .  
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EFFECT OF 6-MEMBERED CYCLES O N  THE STABILITY OF AROMATIC 
BENZENOID HYDROCARBONS 

In this and the subsequent section we give efiG,Z) values for six-mqbered rings of benzeno- 
id hydrocarbons. The numerical results are expressed in units of 10 8 ,  where 8 is the re- 
sonance integral in standard Hiickel molecular orbital theory. In Fig. 1 are collected some 
typical results for benzenoid hydrocarbons without fixed double or single bonds; these are 
generally considered as prototypes of aromatic molecules. The aim of Fig. 1 is to document 
that for these compounds the conclusions based on efIG,Zl are precisely the same as the con- 
clusions obtained from resonance/aromatic-sextet/conjugated-circuit theory. 
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Fig. 1. efvalues of the 
six-membered cycles of 
some benzenoid hydro- 
carbons without fixed 
single or double bonds. 

1 1472 
2 247 
3 1928 

For instance, the ef values of tetrabenzoanthracene are in full harmony with the Clar-formu- 
la representation of this molecule, viz.: 
The circuits drawn in this formula stand for the most important 
conjugated circuits. Note that the above depicted Clar formula 
represents 32 out of a total of 40 Kekuld structures of tetra- 
benzoanthracene. In complete agreement with this, the rings 1 
and 3 have substantially higher energy effects than the rings 
2. 

EFFECT OF 6-MEMBERED CYCLES O N  THE STABILITY OF NONAROMATIC 
BENZENOID HYDROCARBONS 

In the case of benzenoid hydrocarbons with fixed double and single bonds the results of the 
eflG,Z)-considerations are often in variance with the conjugation anticipated by resonance/ 
/aromatic-sextet/conjugated circuit theory. Let us  start with two examples, B3 and B 
According to the traditional view B3 and B4 are composed of two delocalized naphthalene and 
anthracene units, respectively, joined together by a few localized single and double bonds. 
The ef values of B 
observed, h~wever,~that the "empty" rings 3 and 4 have fairly different energy effects. One 
may also ask why the ring 1 has a pronouncedly larger effect than the ring 2 .  

4' 

are essentially in agreement with the Kekul&/Clar picture. It must be 
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Resonance/aromatic-sextet/conjugated-circuit theory predicts that the rings 4 , 5 , 6  and 7 of 
B 
other hand, significant contributions are expected from the rings 1 and 3 and, to a smaller 
extent, from the rings 2. The remarkable. finding is that the rings 5 and especially the ring 
6 have unusually large ef values. The energy effect of the ring 6 is comparable to that of 
the rings 1 and 3 .  Thus the ef values imply that the degree of conjugation in the rings 1, 3 
and 6 is large and roughly equal whereas the rings 2, 4 and 5 have comparable but much smal- 
ler importance in the overall conjugation. 
A systematic examination of this and many other observed anomalies revealed that in nonaro- 
matic benzenoid systems one encounters 
a new pattern of cyclic conjugation. 
Some insight into this phenomenon is 
gained by comparing the ef values of 
the central ("empty") rings of isomer- 
ic tetrabenzoperylenes, Fig. 2 .  An in- 
spection of the data given in Fig. 2 
clearly shows that the rings having an 
angular position to the "empty" ring 
increase its extent of cyclic conjuga- 
tion. Thus we see that in addition to 
the traditional conjugation modes one 
has to take into consideration also 
the cyclic conjugation represented by means of non-standard aromatic-sextet formulas of the 
above type. 

have no (or, in the best case, very small) contribution to overall conjugation. On the 4 

+ g  
0 
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1 216 1 274 1 281 1 173 

1 376 
2 388 
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2 437 

Fig. 2. ef values of the central ring in tetrabenzoperylenes; cyclic conjugation in the 
"empty" ring (1) may exceed the cyclic conjugation in a "non-empty" ring (2). 
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The situation is somewhat more perplexed in the 
homologous series presented in Fig. 3 .  In line 
with the previous examples one may be inclined 
to propose the following aromatic-sextet repre- 
sentations: 

These, however, are incorrect since they disagree 
with the calculated ef values. etc.  

Fig. 3 .  efvalues of the 
six-membered cycles of 
some benzenoid hydro- 
carbons with fixed 
single and double bonds. 

1 1093 
2 218 

1 1066 
2 914 
3 416 
4 588 

CONCLUSIONS 

We gave evidence that two kinds of conjugation effects are to be distinguished in benzenoid 
hydrocarbons: the standard conjugation modes described by means of Kekul6 or Clar structures 
and the conjugation which we will denote as non-standard. Because of the limited space avail- 
able we could show only a few representative examples, supporting the conclusion that the 
non-standard conjugation not only exists, but sometimes plays a quite significant role in 
benzenoid hydrocarbons. In aromatic benzenoid molecules the standard conjugation is dominant 
and it usually screens the effects of non-standard modes. This explains why the non-standard 
conjugation seems to be long time overlooked by the majority of the researchers in this 
field. 
In nonaromatic benzenoid molecules the non-standard conjugation has a much greater (relative) 
importance. By using suitably chosen theoretical methods it can be made easily recognizable. 
In the study of the a-electron properties of nonaromatic benzenoid hydrocarbons it is not 
legitimate to neglect the non-standard conjugation modes. In some cases (which are perhaps 
extremes) the non-standard conjugation modes may even be more important than the standard 
modes. 
Anyway, the a-electron structure of nonaromatic benzenoid hydrocarbons seems to be much less 
simple than could be inferred from the KekulB/Clar picture. 
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