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Abstract - A scheme based on energy partitioning via moments 
is proposed to deal with aromaticities and reactivities of con- 
jugated systems. The REPE is computed through the enumeration 
of cyclic fragments, thus either the finite or infinite sys- 
tems can be treated with facility. Point-energy, edge-energy, 
and ring resonance energy have been introduced for rationali- 
zing the site reactivity, bond lengths and local aromaticity. 
This approach is graphical in essence without consulting to 
the solution of secular equation, i.e., the energy sequence, 
MO(molecu1ar orbita1)'s and related quantities defined. 

INTRODUCTION 

In recent years, moments have attracted a considerable attention of theoreti- 
cians with particular interests in Hiickel MO theory (ref. 1-5). The importance 
and advantage of utilizing moments rest upon their topological meaning in re- 
lationship to the connectivity of a molecule. Let us review their definition 

N 1 N 
u1 = E x 1  = Tr(A ) = 

j=1 J j=1 

where u1 denotes the 1-th moment, A is the adjacency matrix with its elements 
being 1 when the row vertices and column vertices are connected by edges and 
zero otherwise, x.(j=l,2,.. . , N )  represents the jth-member of energy sequence. 
Due to each term in the right-hand summation of Eq.(l) represents a self-ad- 
joint walk of length 1 starting from vertex j, one can derive moment formulae 
in terms of molecular fragments one by one (ref.l,5). In the following, lower 
menbers are given with symbols and diagrams of fragments in Fig.1 for benzen- 
oid hydrocarbons. 

I 

0 0 - - 0 o - - o - - o ~  & Fig.1. Elementary fragments in 
111 [21 [31 141 [31] benzenoid hydrocarbons. [GI 

represents the fragment as 
well as its count. --9-00" 
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uo = [I1 u2 = 2[2] u4 = 2[21+4[31 
u6 = 2[2]+12[31+6[4]+12[311+12[61 
u8 = 2[2]+28[3]+32[4]+72[31]+8[5]+16[41]+96[6~+16[61] 

(2) 
Morever, one can classify molecular fragments into acyclic and cyclic species 
according to whether they involve at least one ring or not. Accordingly, u1 can 
be partitioned into ui and ui, the acyclic and cyclic components, fulfilling 

u1 = ui + u" (3) 1 
In table 1, the fragment counts together with acyclic, cyclic and total values 
of moments ( 1 ~ 8 )  for naphthalene are tabulated for illustration. 

Within the Hlickel MO approximation, the total n-electron energy of the ground 
state of alternants and parts of non-alternants can be written as 

N 
E = 2 x  Xi = clXil (4) 

i(occ) I.= 1 
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Table 1. Moments (ui, u; and ul) and fragment counts 
of naphthalene with 1L8 

1=0 1=2 1=4 1=6 1=8 

10 22 78 322 1438 
U" 0 0 0 24 256 

10 22 78 346 1694 

"i 

u1 
1 

[11=10 [21=11 [3]=14 [4]=18 [31]=2 
[5]=22 [41]=8 [6]=2 [61]=4 

The absolute value 1x1 can be expanded in terms of even powers of x (ref.1) 
1x1 = c( + a x  2 4  +a4X +...+a21x21+... 

0 2  (5) 

provided the point x=O is excluded. In practice, Eq.(5) is truncated and coe- 
fficients do, a2, 
in the interval, -3.00=x=3.00, or by expansion in terms of Chebyshev polyno- 
mials (ref.6). In Table 2, three numerical sets of c(21 for L = 2, 4 and 6 ob- 
tained by least square fits (ref.5) are tabulated. 

..., a2L can be determined numerically by least-squares fits 

Table 2. Numerical values of a,, f o r  L= 2, 4 and 6 

a6 a8 a1 0 d12 

2 0.3904 0,5262 -0.0283 
4 0.2393 0.9253 -0.2105 0.02733 -0.00130 
6 0.1783 1.2955 -0.6277 0.2042 -0.03565 0.00310 -0.000105 

Accordingly, Eq.(4) can be transformed into 
E = aOuO + a2u2 + ... + u2L~2L 

which is fundamental for dealing with aromaticities and reactivities. 

AROMATICITY 

The aromaticity of finite molecules has been investigated systematically on 
the idea expressed by Brelow and Dewar (ref.7-11). Among them, benzeneis the 
most aromatic with largest REPE and has equal C-C bond lengths. On the other 
hand, graphite is an infinite hexagon lattice with equal C-C bond lengths ap- 
proaching to benzene. Recently, Klein, Seitz and Schmalz (ref.12-14) studied 
a series of icosahedral carbon cages with graphite as a limit. They calculated 
REPE's by Hess-Schaad method (ref.9) which increase monotonously from C60 to 
C240 and approach to 0.053 for graphite.We intend to investigate the variation 
of aromaticity along with three imagined paths in detail when benzene is grow- 
ing up to graphite. The general formula of REPE obtained for each homologous 
series exhibits a trend dependent on the dimensionality that the species is 
growing up. Let us discuss them below. 

Spherical carbon cage CN with lh symmetry 
Becuase moments can be divided into acyclic and cyclic components fulfilling 
Eq.(3), the total JC-electron energy splits up too, i.e., 

E = E' + E" (7) 
where El, the acyclic energy is used to be the reference and the cyclic compo- 
nent E" equals the resonance energy. Therefore, 

where pG,, represents the energy contribution per fragment GI' which involvesone 
ring at least. The numerical values of pG,, have also been tabulated elsewhere 
(ref. 5 ) . 
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CN E q . ( l l )  KSS 

C240 0.046 0.047 

C320 0.047 

C420 0.047 

0.048 '540 

6- 

I t  can  b e  proved  t h a t  t h e  o n l y  i c o s a h e d r a l  c a g e  s t r u c t u r e s  t h a t  c a n  be cons -  
t r u c t e d  form an  i n f i n i t e  s equence  w i t h  t h e  number o f  ver t ices  g i v e n  by ( r e f .  
12,141 

( OLkLh) (9) 2 2 N = 2 0 ( h  +hk+K ) 

w i t h  h and k i n t e g e r s . T h e s e  c a g e  s t r u c t u r e s  are  c o n v e n i e n t l y  v iewed by showing 
a s i n g l e  f a c e  o f  t h e  master i c o s a h e d r o n  on which  e a c h  s t r u c t u r e  i s  b a s e d  ( r e f .  
15). Fig .2  i l l u s t r a t e s  s u c h  d i ag rams  up  t o  N=540. 

~ ~~ ~ 

CN E q . ( l l )  KSS 

C720 0.048 

Cg60 0.048 

0.049 '1980 
Graphite 0.049 0.053 

6- 

60 80 140 180 240 

260 360 540 
Fig .2 .  Repea t  u n i t s  f o r  t h e  i c o s a h e d r a l  c a r b o n  c a g e s  

For  t h e s e  i c o s a h e d r a l  c a g e  s t r u c t u r e s ,  C Is, i t  i s  n o t  d i f f i c u l t  t o  c a r r y  o u t  
t h e  c y c l i c  components u i l  one  by one  i n  terms o f  N. The f o r m u l a e  f o r  I= 3, 4, 
5 and 6 are  g i v e n  a s  f o l l o w s  

U: = 6N - 120 
~i = 96N -1920 

= lllON -22080 u;0 

u i 2  = 11382N -227160 +36006N,60 + 7 2 0 6 ~ , 8 ~  
On s u b s t i t u t i n g  them i n t o  E q . ( 8 )  and u t i l i z i n g  t h e  c o e f f i c i e n t s  f o r  L=6 i n  
t a b l e  1, w e  o b t a i n  t h e  g e n e r a l  fo rmula  f o r  REPE f o r  CN 

REPE(CN)~O.O489-O.657/N-(O.3786N,6o+O.O7566N,~o)/N (11) 

which g i v e s  a l i m i t  v a l u e  o f  0.0489 f o r  g r a p h i t e  as  N j m .  On t h e  o t h e r  hand ,  
t h e  a s c e n d i n g  t r e n d  o f  REPE(CN) w i t h  r e s p e c t  t o  N i s  e a s i l y  i n s p e c t e d  f rom t h e  
d i f f e r e n t i a l  below 

dREPE( CN) /dN = 0 ,  657/NL > 0 (Nf60,80) (12) 

I n  T a b l e  3, REPE's f o r  c l o s e d  s h e l l  c a r b o n  c a g e s  c a l c u l a t e d  a c c o r d i n g  t o  
E q . ( l l )  a r e  t a b u l a t e d  up  t o  N=1980, where  v a l u e s  g i v e n  by  K l e i n ,  S e i t z  and  
Schmalz (KKS) are a l s o  l i s t e d  f o r  compar ison .  

Table 3. REPE's f o r  C, 

CN E q . ( l l )  KSS 

'60 0.032 0.031 

0.040 

C L O  0.044 

'180 0.045 0.045 
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Polyacene and parallelogram-like hexagon lattice 
Polyacene is a linearly fused benzenoid system with an arbitrary number of 
hexagons, n, and total vertices(the number of carbon atoms), N=4n+2. With the 
same procedure, one can derive the formulae for cyclic components u;,(l=3-6) 
at first,and substituting them into Eq.(8) with c(211s of L=6, the formula of 
REPE is 

REPE(n) = (0.0837n+0.256+0.07666 )/(4n+2) (13) n, 1 
Its differential with respect to n is as follows 

(14) 2 dREPE(n)/dn = -0.857/N 
This means that aromaticity of polyacene decreases monotonously with its chain 
lengths. 

Let us consider the parallelogram-like species with n and m hexagons along the 
intersections of the parallelogram shown in Fig.3. 

n 

Fig. 3. 

m 

Two-dimensional benzenoid 
lattice 

It represents a large number of benzenoid systems because n and m are arbitra- 
ry positive integers. For example, it reduces to polyacene when m=l. In the 
same way, the general formula of REPE for the parallelogram-like species dis- 
played in Fig.3 can be also derived as follows 

REPE(m,n) = [0.0489mn+0.00222(m+n)+O.O966]/(mn+m+n) (m,n>l) (15) 
It repeatedly gives the limit value, 0.0489, for graphite when m and n ap- 
proach to infinite simultaneously. The partial differential of REPE(m,n) with 
respect to n is equal to 

(16) 2 2 aREPE(m,n)/bn = 10.0467111 -0.0966(m+l)]/(mn+m+n) 

which induces the foliowing conditions 

<O when mc3 

> O  when m>3 
DREPE(m,n)/im = O  when m=2.8a3 

Eq.(17) means m=3 is a transition pointbelowwhich (m=l or 2) REPE decreases 
in proportion to the chain lengths of the polymer, on the contrary, the aro- 
maticity of parallelogram-like benzenoid species increases with its length, n, 
if m>3. These are better indicated in Fig.4. 

REPE( m, n) 7 
m= 3 

Fig.4. Qualitative tendency of 
REPE(m,n) for parallelogram- 
like benzenoid species with 
definite m. 

n 

Kertesz and Hoffmann have examined the X-electron bands of the three members 
(n=co; m=1,2,3) of the lattice displayed in Fig.3 by extended Hilckel calcula- 
tions. They concluded that the energy gaps due to distortion sharply decreses 
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with the value of m in accordance with a power law for the energy gap open- 
nings (ref.l6), i.e., 

with 16/Bl<<l (18) 

This seems to agree with the behavior of REPE(m,n) that the partial differen- 
tial dREPE(m,n)/bn increases with the number of coupled polyacenic chains, m. 

m E = cm(6/B) 9 

Benzenoid lattice with Dgh symmetry 
For this species, let us enumerate the number of hexagons, n, from the center 
horizontally shown in Fig.S 

Fig.5. Benzenoid lattice with 
D6h symmetry 

Accordingly, we can derive the following formula 
2 REPE(n) = 0.0489(1-1.5007/n+2.0409/n ) (n,l) 

and find a transition point occurring at n=3, namely 
dREPE(n)/dn = 0, if n=2.7p3 (20) 

The existence of transition points for aromaticity in the cases of lattices 
shown in Figs.3 6, 5 comes from the competition between the di- and tri-valent 
vertices. As a result, one can think reasonably that in large benzenoid sys- 
tems, the di-valent vertices play the role of anti-aromaticity,diminishing the 
value of REPE; on the other hahd, tri-valent vertices behave aromatically, in- 
creasing the value of REPE. When the transition pointsare cxceeded in the both 
cases, the tri-valent vertices increase sharply with chain lengths, leading to 
an ascending trend of REPE's. 

SITE REACTIVITY AND BOND LENGTHS 

As moment u1 is defined in terms of self-adjoint walks, Wi (j=1,2,...N), for 
each vertex (atom) which individualizes the vertex numerically, therefore, 
point-energy (ref.5) can be introduced for each carbon atom in accordance with 

N 

where E is the point-energy of atom j, an well-behaved index in relation to 
site reactivity. As consequences, the following statements can be deduced. 

(1). Site reactivity decreases as the vertex degree increases, namely, the 
mono-valent vertices are most active and tri-valent vertices are most inert. 

j 

(2). The site reactivities of atoms with equal valency are proportional to 
the valency of their adjacent atoms. This can be illustrated diagrammatically 
in Fig.6. 

Fig.6. Sequences of site /4 < pc( < fi < fi < y"( reactivities 

e Similarly, moments can be classified into edge 
(ref.5) can be defined accordingly, 

components,Wl,and edge-energy 

L 
E = NC(t Ee = >:c(21w;1 O T E e  1= 1 

where e is a current index for deges (C-C). We have the following statements 
in addition. 

(3). The bond length of an edge varies in proportion to its degree (Fig.7). 
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(4). For edges with equal degree, bond lengths vary in inverse proportion 
to degrees of their adjacent vertices (fig.7). 

Fig.7. Ascending sequences of 
bond lengths in conjugated 
s y s t ems 

c-o-<o++c-<+<)H( 

LOCAL AROMATICITY 
There have been considerable works (ref.17-19) on this topic. Here, we discuss 
local aromaticity by defining the resonance energy for a particular hexagon, h 

where r runs through all rings enveloping the hexagon considered, nr is the 
number of hexagons that the rth ring accommodates, and [G"] enumerates cyclic 
fragment, G", covering the rth ring. An insight into the rofe of fragments can 
be inspected from Eq.(23). For example, there are four different types of 
hexagons in catafusenes (ref.18) shown in Fig.8. We can tabulate the counts of 
[G"Ir of them in Table 4. 

Table 4. [ G" ] - for various L 

hexagons in' catafusenes 
P L K T  [G" 1 BG" 

[till -::i;i;4 1 Fig.8. Four different types [GI11 [ t i l o l l  o.03176 of hexagons in catafusenes 

On comparing [611, we have (RE),>(RE),=(RE),->(RE),. Furthermore, due to 
c K 

~611-~61001<0 ,  we have 
maticity for hexagons of catafusenes (ref.18): P > L > K > T .  

(RE)L>(RE)K. Tierefore, welhave a trend of local aro- 
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