Indole alkaloids in human medicine

Csaba Szántay Central Research Institute for Chemistry, H-1525 Budapest, POB 17. HUNGARY

<u>Abstract</u> - Total synthesis of several pharmacologically active indole alkaloids isolated from <u>Vinca minor</u> and <u>Catharanthus</u> <u>roseus</u> present a real challenge. Several aspects of synthesis of these alkaloids are discussed and a new skeletal rearrangement of the 1,2-dehydro- Ψ -aspidospermane into a Ψ -eburnane--type skeleton is presented.

It is common knowledge that plants are useful sources of many valuable medicines. Among them several indole alkaloids can be found, e.g. reserpine and deserpidine from *Rauwolfia serpentina*, ajmalicine and yohimbine from *Corinanthe yohimbe*.

(+)-Vincamine, an alkaloid first isolated from *Vinca minor* has gained in recent years wide application as a specific cerebral vasodilator. Another alkaloid from the same species, (-)-eburnamonine is marketed with a similar indication. A semisynthetic derivative of vincamine, the (+)-apovincaminic acid ethyl ester is produced in Hungary under the trade name CAVINTON^R. Under the trade name CALAN^R in Japan the same compound has a substantial share of the market.

 $\frac{1}{2} R = CH_3 \text{ vinblastine}$ $\frac{2}{2} R = CHO \text{ vincristine}$

The dimeric Catharanthus alkaloids vinblastine and vincristine are clinically widely used anticancer agents and are applied routinely for the treatment of a number of human cancers².

The industrial total synthesis of all these compounds is a real challange.

A retrosynthetic analysis shows that coupling of the two main parts of the alkaloids, namely the catharanthine and vindoline units may provide the end product.

A less toxic derivative synthesized by Potier and others starting from anhydrovinblastine 3 was put on the market by Pierre Fabre in 1989 under the trade name NAVELBIN^R.

Very recently the synthesis of a new photoreactive derivative of vinblastine (Napavin) was reported 4 .

The crucial point of the synthesis is to find a coupling method which would give the desired compound with the correct C (l6'S) configuration. The l6'R compourd is ineffective. Such method was published by Potier⁵ et al. and Kutney⁶ et al.

Although (-)-vindoline is a major alkaloid in Catharanthus roseus and is readily isolated, the (+)-catharanthine is only a minor component. An advantageous solution to this problem would involve the coupling of synthetic catharanthine with readily available natural (-)-vindoline.

An industrially feasible total synthesis of (+)-catharanthine has been performed in our laboratories^{7,8}.

Vindoline was also subjected to different chemical transformations in the hope of obtaining biologically active derivatives.

It has been reported that oxidation of vindoline $(\underline{3})$ with manganese dioxide in dichloromethane at room temperature gave N-demethyl-N-formyl--vindoline $(\underline{4})^9$. Under slightly modified conditions (longer reaction time, MnO₂ prepared by Attenburrow's method¹⁰), the main product proved to be another N-formyl derivative, the lactam $\underline{5}$ containing oxygen atom at position C(8) and possessing an ether linkage. The latter compound was synthesized earlier by Kutney et al¹¹, through oxidation of the corresponding N-methyl lactam ether. The acidic treatment of $\underline{5}$ gave the N-deformyl derivative $\underline{6}$. In addition the rearranged product $\underline{7}$ was isolated in 7 % yield. The structure of crystalline $\underline{7}$ was corroborated by X-ray analysis. Treatment of $\underline{7}$ with acid or hydrazine in water/acetic acid, gave the deacetyl derivative $\underline{8}$ in 81 % yield.

1300

The aspidospermane \neq shurnane skeletal rearrangement is well known when starting from vincadifformine or tabersonine¹², but not in the case of vindoline.

A small amount (3 %) of vindoline dimer $\underline{10}$ was also separated from the above reaction of $\underline{3}$ with MnO₂. Rosazza et al.¹³ have isolated the same compound from the microbial transformation of $\underline{3}$.

They supposed an enamine intermediate $(\underline{9})$ in the multistep reaction sequence. A similar enamine $\underline{11}$, but in oxidized form, possessing lactam and N-formyl group was also isolated (10 %) a result of oxidation of $\underline{3}$ with MnO₂. The structure of the new compound was elucidated by spectroscopic methods.

Interestingly enough we could observe aspidospermane —eburnane skeletal rearrangements even with the dimeric bis-indoles. If $\underline{1}$ is oxidised as a free base with chromium (VI), a hitherto unknown compound is obtained as the main product, in which the velbanamine molety of the dimer has undergone a transannular cyclization to a ψ -aspidospermane-type skeleton¹⁴.

The cyclovinblastine $(\underline{12a})$ could be transformed upon oxidation with chromyl acetate into cyclovincrystine $(\underline{12b})$.

These cyclo derivatives contain a ψ -aspidosperma-aspidosperma type skeleton, a new kind of dimeric connection. There is only one known representative of this skeleton, the vincovalicine $(\underline{13})^{15}$ not identical with our compounds.

Upon deformylating $\underline{12b}$ with diluted acid, again a dimer was obtained, which, upon reformylation gave $\underline{14b}$ instead of the starting $\underline{12b}$.

The above results show that acid not only catalyses deformylation, but also a skeletal rearrangement of the 1,2-dehydro- ϕ -aspidospermane into a ϕ -eburnane-type skeleton.

There were earlier speculations about the role played by aspidosperma-eburnane skeletal rearrangements in the biosynthesis of alkaloids and its mechanism¹⁶. In our case the mechanism has to be different from that discussed earlier.

The compounds containing the ψ -eburnane-aspidospermane skeleton ($\underline{14}$) are the first known representatives of this new type of bis-indole system.

REFERENCES

- T. Suzuki, K. Ki Kuchi, K. Okuno, Symposium on Pharmacology of Vinca Alkaloids. Ed. by Gy. Fekete. Akadémiai Kiadó, Budapest, 1976, pp. 17-22.
- W. I. Taylor, N. R. Farnsworth, The Catharanthus Alkaloids, Marcell Dekker, New York 1975.
- 3. P. Mangeney et al. Tetrahedron <u>35</u>, (1979) 2175.
- 4. G. Nasioulas et al. Tetr. Letters 30 (1989) 5881.
- 5. Review: A. M. Lounasmaa, A. Nemes, Tetrahedron <u>38</u> (1982) 223.
- J. Vukovic, A. F. Goodbody, J. P. Kutney, M. Misowa, Tetrahedron <u>44</u>, (1988) 325.
- 7. Cs. Szántay, H. Bölcskei, E. Gács-Baitz, T. Keve, Tetrahedron in press.
- 8. Cs. Szántay, H. Bölcskei, E. Gács-Baitz, Tetrahedron in press.
- 9. Belg. 867.255 (CA 90, 138081).
- 10. J. Attenburrow et al., J. Chem. Soc. 1952, 1094.
- 11. J. P. Kutney et al., Helv. Chim. Acta <u>61</u> (1978) 1554.
- L. Calabi et al., J. Chem. Soc. Perkin Trans, I <u>1982</u>, 1371 and citations therein.
- 13. T. Nabih, L. Youel, J. P. Rosazza, J. Chem. Soc. Perkin I. <u>1978</u>, 757.
- 14. a/ K. Honty, P. Kolonits, M. Kajtár, Cs. Szántay unpublished results.
 b/ Cs. Szántay et al. HU Appl. 84/RT 49 (G.Richter Ltd.).
 c/ M. Mák, J. Tamás, K. Honty, L. Szabó, Cs. Szántay,
 Biomedical and Environmental Mass Spectrometry <u>18</u> (1989) 576.
- 15. N. Langlois, R. Z. Andriamialisoa, N. Neuss, Helv. Chim. Acta <u>63</u> (1980) 793.
- 16. See in G. A. Cordell, The Aspidosperma Alkaloids. The Alkaloids Vol. XVII. (Ed. G. G. A. Rodrigo). Chap. 3 p. 199. Academic Press, New York 1979.
- * The above paper is regarded as the 50-eth communication in the series: "Synthesis of Vinca Alkaloids and Related Compounds".