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Abstract - This paper addresses quantification of uniformly sampled time domain signals 
by means of State Space modelling (based on Singular Value Decomposition (SVD) and 
Vandermonde Decomposition). An advantage of State Space modelling is that a specific mo- 
del function and starting values of model parameters need not be provided by the user. A 
disadvantage is that if a detailed model function and prior knowledge about model parame- 
ters is available, such information cannot be accommodated. Aspects considered are, among 
other things, 1) Reduction of the computation time of SVD by invoking the Lanczos algo- 
rithm and exploiting the Hankel symmetry of the data matrix, 2) Handling of =expo- 
nentially damped signals, 3) Rank-related problems with 2-D signals and their solution. 

INTRODUCTION 

The subject of this paper is quantification of time domain signals. By quantification we mean introduc- 
tion of a model function that describes the signal at hand,and subsequent estimation of the model 
parameters by some numerical procedure. The strategy is to carry out the quantification directly in 
the domain where the measurement took place, so as to avoid having to cope with possible transfor- 
mation artefacts. See e.g. (refs. 1-6) .  

If a detailed model function is known, then the quantification method of choice is to fit this model 
function to the data by means of some nonlinear optimization procedure (refs. 7-11) ,  exploiting what- 
ever prior knowledge is available. As a rule such procedures yield the best possible result. However, 
much expertise of the user is often required, which may constitute an unsurmountable hurdle. Fur- 
thermore, if no model function is available, use of the above mentioned optimization methods is not 
feasible anyway. These considerations indicate that there is also a need for simpler, suboptimal me- 
thods that do not require much user involvement and can yet bring about quantification of nondescript 
spectral features. Examples of such methods are Linear Prediction (ref. 12) and State Space modelling 
(refs. 13,14). These methods intrinsically wield exponentially damped sinusoids as basis functions. 
However, they are capable of quantifying =exponentially damped sinusoids by expanding such 
functions in terms of exponentially damped sinusoids. In this work we consider only State Space model- 
ling which is simpler than Linear Prediction in that polynomial rooting and root selection are avoided. 
This paper is organized as follows. First, we briefly review the basics of State Space modelling in terms 
of simple matrix algebra, using Vandermonde decomposition and Singular Value Decomposition 
(SVD). The way in which nonexponentially decaying signals are handled with little user involvement 
is indicated. Next, we show that the computation of SVD can be accelerated considerably by invoking 
the Lanczos algorithm combined with imposing the Hankel symmetry of the data matrix (in the 1-D 
case). Finally, we show that the data matrix attendant to 2-D signals poses rank problems. A solution 
of these problems is presented. Several applications are interspersed in the text. 

81 5 



81 6 R. DE BEER, D. VAN ORMONDT AND W. W. F. PIJNAPPEL 

STATE SPACE THEORY A N D  APPLICATIONS 

First note that other names exist in the literature to denote State Space modelling. Of these we men- 
tion HSVD, H standing for Hankel (refs. 15-17), Toeplitz Approximation Method (TAM, ref. IS), and 
State-Variable Balancing (ref. 19). Our treatment uses only concepts from the realm of matrix algebra 
(ref, 20), avoiding the general State Space formalism (ref. 14) .  When quantifying 1-D measurements, 
the data must first be rearranged ('inflated') from'a single row into a full-blown matrix. Because of 
the redundancy present in such a matrix, the storage requirements and computational complexity can 
be limited. When quantifying 2-D measurements, the data already form a matrix in natural fashion, 
each data point entering only once. However, traditionally one treats the rows and columns of the lat- 
ter matrix separately, as though dealing with a series of independent 1-D measurements. Our ap- 
proach involves all 2-D data concurrently, in an attempt to increase the statistical performance. In or- 
der to do this for general cases, we first have to solve a problem related to the rank of a 2-D magnetic 
resonance data matrix. The rank of a matrix is the number of linearly independent rows (or columns). 

I-D signals 

The basic function used in the State Space formalism to model the measurement is the exponentially 
damped sinusoid, f ( t )  =exp[(a+io) t + i ' p l .  In this function (Y is the damping factor (a < 0), w the angular 
frequency (o=2rrv), 'p the phase, and i=J(-l). A real-world signal, x , , n = O ,  . . . ,N-1, comprising a 
number of spectral components is modelled accordingly as a sum of K different sinusoids, i.e. 

where the ck are the amplitudes of the sinusoids f k ( t , ) ,  k = l ,  . . . ,K, and t,= tO+nAt, n=0,1 , .  . . ,N-1 are 
the sampling times. The caret on 4, enables one to distinguish between measurement and model func- 
tion. As for K, the number of exponentially damped sinusoids to be fitted, we point at the following. If 
the spectral components contained in the signal are all exponentially damped, in conformity with 
Eq.(l), then K equals of course the number of distinguishable components. However, should other 
forms of damping such as e.g. exp(St2) with 0 < O  occur, the State Space method automatically expands 
each such spectral component into a sum of exponentially damped sinusoids, thus still achieving ade- 
quate parametrization (ref. 21). See Fig. 1. Most often the user does not become involved in this aspect 
during execution time of the fit. It is only at the stage of interpreting the fitted model parameters that 
expert insight may be required. See (refs. 22,23). 

We shall now review the various steps leading to quantification. The starting point of the procedure is 
to form L x M  matrices X and 2 from respectively the data x, , n = 0, . . . ,N-1, and the model function 
4,, n = 0, . . . ,N-1, according to 

xo x1 x 2  . . * X M -  1 
x1 x p  . . 
x p  . . 
. .  
. .  
. .  
XL-1. * * X N - 1  

2, 2, 2, . . . xM-l - 
2, 4, . . 
12, . . 
. .  
. .  
. .  

A 

XL-1. * * xN-l 

where all elements on an antidiagonal are equal. A matrix possessing such symmetry is called a Han- 
kel matrix. The shape of Xand i i s  chosen such that both L and M are greater than the number of si- 
nusoids Kin the model function, subject to the constraint L+M=N+l.  Often one takes L N  Mc*N/2, espe- 
cially when the K is known to be large. By virtue of the following property of the exponentially 
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damped sinusoid, namely 
fk (t,) = fk ( t o )  , n=O,. . . ,N-I , 
with zkdZf e x p [ ( u k + i a k ) ~ t l ,  X can be decomposed as 

A 

1 . .  . 1  

TLK 

I I .  . 

C 

817 

(3) 

(4) ? 

(4') 

in which rLK and T M K  are respectively LxK and MxK so-called Vandermonde matrices, and C is a 
(full rank) diagonal amplitude matrix whose elements are given by (C)kk = c$ ckexp(icp,). (A double 
prime is used rather than a single one, the latter being reserved to denote a second dimension in 2-D 
modelling.) The symbol * denotes transposition. Eq.(4) can easily be checked by writing out the ma- 
trix multiplications. We call the decomposition of Eq.(4) the Vandermonde decomposition of the mo- 
del function matrix. It is important to note that each row of a Vandermonde matrix is equal to the 
product of the previous row and the diagonal matrix 2 'gf diag(Z1,z2, . . . ,zK). This special structure 
arises through the property of exponentially damped sinusoids given in Eq.(3). The essence of the 
State Space method is that it brings about a Vandermonde decomposition of the data matrix X as 
closely as possible, i.e. in the least squares sense. After this has been achieved the wanted parameters 
are immediately available. For later use we call the quantities zk = exp [(ak + iak) ~ t ] ,  k = 1,2, . . ., K ,  the 
signal poles. 

The Vandermonde decomposition of X is arrived at by first subjecting this matrix to Singular Value 
Decomposition (SVD, see e.g. ref. 20 for a tutorial), according to 

Lx M Lx L Lx M 

where U and V are unitary matrices of sizes LxL and M x M ,  and whose columns are called left and 
right singular vectors respectively (in this example, LW M/2) .  The symbol t denotes hermitian conju- 
gation. A is an Lx M diagonal matrix whose diagonal entries are called singular values. The phases of 
the singular vectors are chosen such that the singular values are nonnegative. If the data are noiseless 
and comprise K exponentially damped sinusoids, then only K singular values are nonzero, i.e. one per 
sinusoid. The singular values are arranged according to descending magnitude. No loss of information 
is incurred if those parts of U, A, and V that are associated with the zero singular values are truncated. 
Thus if we retain only the shaded parts in the following equation, the result remains unchanged. 

UK 
Kx M 

Lx M Lx K 
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We point out that each nonexponentially decaying sinusoid gives rise to a series of nonzero singular 
values, rather than to a single one. In our experience such a series quickly tends to zero (ref. 22). Apart 
from this, instrumental noise superimposed on the signal causes all singular values to be nonzero. The 
relative size of the noise-related singular values depends of course on the SNR. Usually, the distribu- 
tion of singular values reveals which are related to the signal and which to the noise. Once the distinc- 
tion between the two groups has been established (i.e., optimal value of K determined), the noise-re- 
lated singular values are put to zero and truncation takes place as indicated before in Eq.(6). 

I .  , v.v I . ‘ , I 
0 Frequency (kHz) 501 

Fig.1 FFT of SVD-based quant- 
ification of a nonexponentially 
damped sinusoid, exp(P t ’+ io t) .  
See (ref.21). 
a) Noiseless case. The dotted 
line is the FFT of the signal. 
The drawn lines are the FFT’s 
of the constituents of the de- 
composition into exponentially 
damped sinusoids. 
b) Noise added. The dotted line 
is the FFT of the noisy signal. 
The drawn line is the FFT of 
the fitted model function. At 
the given SNR only one expo- 
nentially sinusoid was required. 

D 

Next, we state without proof (see ref. 13) that it is always possible to transform the Vandermonde de- 
composition of Eq.(3) into a product of matrices that have the same structure and size as UK, A,, and 
vK of the truncated singular value decomposition of the data matrix X, i.e. 

A n  

where the caret on UK, AK, and eL denotes that these matrices are related to the model function ma- 
trix rather than to the data matrix. It can be shown (ref. 13) that the particular structure of the Van- 
dermonde matrices CLK and tMK noted above is still present in UK and VK, albeit in a somewhat more 
complicated form: each row of cK (or QK) is equal to the product of previous row times a nonsingular 
K x K  matrix denoted by 2. The eigenvalues of 2 are equal to the signal poles defined above. This 
important property points the way to modelling a measured signal with exponentially damped sinu- 
soids. All one has to do (ref. 13) is find a matrix Z’ that relates successive rows of UK, according to 

A A 

and then compute its eigenvalues. If the signal is noiseless and exponentially damped, then the solu- 
tion of Eq.(8) is exact. However, if noise is present and/or the damping is nonexponential, Eq.(8) is to 
be solved in the least squares sense, which is easily accomplished (ref. 13). The special structure of 
Eq.(8) guarantees adherence to the exponentially damped model function of Eq.(l). Once 2’ has been 
computed, the damping factors and frequencies follow from the eigenvalues of 2’. Subsequently, the 
amplitudes and phases can be found by fitting Eq.(l) to the data with the cc, and fixed to the values 
just obtained. For the sake of completeness, we mention that if the data matrix X is made square and 
all its rows (and columns) are linearly independent, then an exact Vandermonde decomposition exists 
(ref. 24). In practice, the required linear independence is brought about by noise. Additional details on 
this modelling aspect are treated in (refs. 23,25,26). 

In summary, we have now discussed quantification of real-world 1-D time domain signals in terms of 
Eq.(l) with the aid of State Space modelling. The damping of the signals need not be exponential. 
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Rapid SVD of Hankel matrix 

The computational load of SVD of a general matrix is proportional to the third power of the size of 
that matrix. Thus when the matrix at hand is large the State Space processing time may become pro- 
hibitively long. This problem has been addressed in e.g. (refs. 17,27-30). One approach is to compute 
only the signal-related singular values and singular vectors (i.e., the shaded regions in Eq.(6)). Such a 
strategy can be successfully carried through by invoking the so-called Lanczos algorithm (17). Treat- 
ment of this algorithm is beyond the scope of this paper. For details the reader is referred to (refs. 
17,31,32). Here we restrict ourselves to the aspect of exploiting the symmetry of a Hankel matrix in 
the quest for further reduction of the computational load. Following a suggestion by P.C. Hansen (33),  
it was recently established (23,25) that the Lanczos algorithm is well suited for this purpose too. To 
explain this feat we mention that the Lanczos algorithm is iterative, the most time-consuming part of 
each iteration consisting of two matrix-vector multiplications, namely Xv, and x v b ,  where X is the 
data matrix and v, and V b  are vectors, and the symbol - indicates transposition. I t  follows then that 
reduction of the computing time of Xv, and jivb would yield the desired acceleration. We shall see be- 
low for Xv,  that the Hankel symmetry of X enables one to accomplish this. A similar procedure ap- 
plies to kvb.  

- 

First, should N+2', where I is an integer, we zero-fill both the data and the vector v,  to the nearest 
power of two. Then we note that X can be embedded in a so-called circulant matrix (ref. 3 4 )  defined 
in Figure 2. As can be seen each row of a (left) circulant matrix is related to the next one by cyclic 
permutation (to the left). The data matrix X resides in the upper left rectangle of the circulant matrix. 

. . .  IxN-l ............................................................. 
10 . . .  
: .  : .  
: .  

............................................ 
I . . .  0 

X O  

X1 

. . .  

... 

X L -  2 

xN- 2 

'N- 1 
0 

10 x o  x 1  x2 . . .  x N - 2 x N - l o  . . .  0 
............................................................................................................................................................................ 

Figure 2. Formation of a circulant matrix Y 

to the nearest power of two if N+ 2'). Each 
row is related to the next one by a cyclic 
permutation. The data matrix X is a subunit 
of Y, residing in the upper left rectangle. Any 
multiplication Xv,  can be replaced by Y v i ,  
where vl is the zero-filled version of v,. If N 
is large Y v i  can be executed swiftly by invo- 
king FFT, using Eq.(9). 

from the data x , ,  n . 0, . . .  ,N-1, (zero-filled 

A very useful property of circulant matrices is that they can be decomposed as (ref. 34)  

Y = r F - l D F  , (9) 

in which r is in turn a left circulant matrix whose first row equals (1,0,0, . . .  ,O), F is the well-known 
FM' matrix of size 2', and D is a diagonal matrix whose diagonal entries are equal to the eigenvalues 
of r Y. The latter eigenvalues can be obtained at little cost using the special properties of circulant 
matrices (34);  moreover, they need only be calculated in the first iteration. Using Eq.(9), it can be seen 
that the product of Yand a vector can be executed swiftly by applying FFT and its inverse, plus some 
additional operations involving r and D. Finally, it can be seen that the product Xv,  can be replaced 
by Y V ; ,  where vi is the zero-filled version of v,, and retaining only the first L entries of the result. In 
this way the most time-consuming part of each Lanczos iteration can be accelerated for the case of 
large N. Note that only one row of the large circulant matrix Y need be stored in memory. 
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It follows from the above that spectacular reductions of the SVD computation time can be achieved 
when N is large and the required number of singular values and vectors is relatively small. In other 
situations, the gain is smaller. One aspect to be reckoned with is that the number of required iterations 
becomes large when adjacent singular values get close to each other. In actual practice, the latter 
occurs when the smallest signal- related singular values are barely distinguishable from noise- related 
singular values. In this situation a suitable compromise between good modelling (more singular va- 
lues) and computation time (fewer singular values) is to be found. Using real-world magnetic reso- 
nance measurements with N=1024 we found reductions of the computation ranging from several 
hundred to two (refs. 23,35) The latter reductions are relative to the so-called normal equations 
approach to SVD, as applied in (ref. 36). 

2-D signals 

Usually, 2-D signals x n n t ,  n=0 ,1 , .  . . ,N-1, nr=O, l , .  . . ,N’-1, are processed in 1-D fashion. Forming an 
NX N‘ matrix from the data, this amounts to processing the data first row by row and subsequently co- 
lumn by column, similar to the procedure followed with 2-D FFT. A consequence of this approach is 
that the number of data points involved per fit is relatively small, namely Nor N’. In addition, one has 
to fit frequencies and damping factors again and again for each consecutive row or column while such 
parameters are known to be constant. Fitting a 2-D model function to all NxN’ data points concur- 
rently lacks the two unfavourable properties just mentioned, and is therefore to be preferred. In the 
following we propose a 2-D State Space method that is capable of using all data points concurrently. In 
addition we point at some pitfalls attendant to the 2-D case and indicate how the proposed method 
circumvents such complications. 

SY signal comprising 256 x 128 data points. 
The unprimed dimension comprises many 
more spectral components than the primed 
dimension. See Fig. 4 for singular values in 
each dimension. 

The model function used is a sum of products of 2-D exponentially damped sinusoids, i.e. 

where we distinguish a primed and an unprimed dimension, the meaning of the symbols being the 
same as in Eq.(l). Note that K need not be equal to K’ and the K X  K ‘  amplitudes may all be nonzero. It 
can easily be checked by writing out that the matrix 2 formed from the NX N’ data points can be de- 
composed into a product of two Vandermonde matrices and an amplitude, similar to Eq.(4) 

1 . .  . 1  

CNK 
- 1  

C ’’ CNk’  

where the double prime on czkl and C” indicates that the phase has been incorporated in these quanti- 
ties as before. 
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Fig.4 Singular value plots (log. scale) of the 2-D real-world NMR time domainsignal whose spectrum 
is shown in Fig. 3. a) Singular values for the (primed) dimension comprising fewest spectral compo- 
nents. A clear transition from signal-related singular values to noise-related singular values can be 
discerned at index 8 10. b) Singular values for the ‘crowded‘ (unprimed) dimension. Here it is difficult 
to establish the number of signal-related singular values. This result indicates that proper quantifica- 
tion is problematic with whatever method. 

In general, C” is not square anddiagonal, contrary to the 1-D case. See e.g. Fig. 3. However, if C” hap- 
pens to be square and all its rows and columns are linearly independent, then the Vandermonde de- 
composition and the (noise-truncated) SVD yield matrices of the same size so that the fit can proceed 
in almost the same way as above. The only difference is that now both the left and the right singular 
vectors are involved, yielding respectively the unprimed and primed damping factors and frequencies. 
The amplitudes and phases are obtained by linear least squares fitting of Eq.(lO) to the data with the 
damping factors and frequencies fixed to the previously obtained values. 
Next, we consider the case that the rank of C” equals one, i.e. all rows (columns) of C” are multiples of 
each other. It can be shown (ref. 25) that in absence of noise, SVD of the data matrix then yields only 
one nonzero singular value, irrespective of the number of spectral components in either dimension. 
Under this condition the constituents of the Vandermonde decomposition and the SVD have different 
sizes so that the usual procedure ceases to work. Although this example constitutes a highly improb- 
able worst case, it indicates that the method must be adapted in such a manner that the number of 
nonzero singular values always reflects the number of spectral components. At the same time the aim 
that all data be involved concurrently should be satisfied. 

A solution to the rank-related problem just noted has recently been given in (refs. 25,37). First one 
constructs a Hankel data matrix H, from each row x,,~, n’= 0,1, . . ,N’-1, and n fixed, of the 2-D data 
matrix. Then one concatenates these Hankel matrices H,, n=O, l ,  . . . ,N-1, into a large block Hankel 
matrix H=(H, H, . . . HN-,). Note that all data points are contained in H. It can be shown that the 
number of singular values of H always corresponds to the number of spectral components K’ present 
in the primed dimension, so long as the number of rows and columns of H, equals at least K’. This in 
turn implies that the primed damping factors and frequencies can always be obtained from the left 
singular vectors of H. The computation time of the SVD of the large matrix H can be limited by in- 
voking the normal equations approach which amounts to diagonalizing the relatively small matrix 
HH’= Zf:: H,H,’. The computing time required to carry out the product HH’ can in turn also be 
limited because of the block Hankel structure of H. Subsequently, transposition of the 2-D data matrix 
and repetition of the procedure yields the unprimed damping factors and frequencies. Finally, the 
amplitudes and phases follow from the same linear least squares procedure encountered above. 
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An application of the 2-D method to a simulated signal with K = 3  and K'=4 has been treated in (ref. 
37). In this example several of the 3 x 4 amplitudes were made smaller than the standard deviation of 
the added noise. Fifty quantification trials were run using different realizations of the noise. Each time 
the quantification was successful, the standard deviation of the resulting parameters being less than 
twice the Cram&-Rao lower bound. 
An application to a real-world 2-D NMR COSY measurement has been treated in (ref. 38). The mag- 
nitude FFT of the data is shown in Fig. 3. It can be seen that the number of spectral components in the 
unprimed dimension is much higher than that in the primed dimension. This fact is reflected in the 
plots of the singular values for both dimensions, given in Fig. 4. From the abrupt end of the 'noise pla- 
teau' (looking from right to left) in Fig. 4a one can infer that only about ten exponentially damped si- 
nusoids are required to model the signal in the primed dimension. On the other hand, perusal of Fig. 
4b suggests that many tens of sinusoids are required to model the signal in the unprimed dimension. 
The latter result indicates that either the number of spectral components is very high and/or that the 
damping deviates substantially from exponential. Consequently, at the very least the singular value 
plot serves here as a warning that estimation of the unprimed parameters is difficult to achieve with 
whatever method. With the method presented here quantification was feasible using K = 70 and K'= 10, 
which among other things involved estimation of 700 complex-valued amplitudes. Further details are 
given in (refs. 38,39).  See e.g. (ref. 4 0 )  for an introduction to the COSY technique, and (ref. 41) for an 
alternative approach to 2- D time domain signal processing. 
An aspect requiring further research is that distinction between sinusoids that have the same frequen- 
cy but different damping factors is difficult. As a result, all sinusoids whose frequencies coincide (see 
Fig. 3) usually end up with one and the same damping factor, unless the SNR is very high. Should this 
lead to unacceptable errors, then one has to resort to an additional round of nonlinear least squares 
fitting of the damping factors, using fixed values of the frequencies yielded already by the 2-D State 
Space method (ref. 39). The damping factors yielded by the 2-D State Space method can serve as 
starting values. 

CONCLUSIONS 

We have shown that quantification of Magnetic Resonance time domain signals can be effected without 
much user involvement by invoking State Space modelling. A simple mathematical description of 
State Space modelling in terms of Vandermonde decomposition and Singular Value decomposition 
(SVD) was presented. Although State Space modelling uses exponentially damped sinusoids as basis 
functions, it appeared also capable of quantifying signals that are damped nonexponentially. The com- 
putation time of SVD was also addressed. It was shown how the Hankel symmetry of the data matrix 
attendant to a 1-D signal can be exploited to achieve a significant reduction of the computation time. 
Finally, a form of 2-D State Space modelling using all 2-D data concurrently was treated. 
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