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Lattice models of amphiphilic assembly
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ABSTRACT

We discuss recent attempts to model amphiphilic self-assembly phenomena by using lattice models. These are
an attempt to represent mesoscopic length-scale structure and long time-scale dynamics of such complex fluids.
We extract an effective Landau theory from the lattice model and under renormalization it is found to represent the
microemulsion region of the lattice model quite well. The coefficient of the gradient-squared term in the Landau
theory is negative and the implications of this for structure, interfacial properties and dynamics are discussed.

1. INTRODUCTION

In these lecture notes we shall be discussing a particular type of very complex fluid that originates from selflas.s'embly.1 Such
fluids are formed by mixing amphiphile2 with hydrophilic (e.g., water) and perhaps some hydrophobic (alkanes or "oil") material. The
amphiphilic molecules assemble into aggregates to avoid exposing their hydrohobic regions to water and their hydrophilic region to
oil. In addition the amphiphile aggregates may acquire additional stability by correct orientation of the amphiphiles with respect to
each other. In any case, the energy scales keeping the assembly in a given form are small, being merely of order kT per molecule. This
means that the time a given molecule spends in a given aggregate may be very small and for many purposes it is not appropriate to
think of such a cluster as a geometrical object that is closed with respect to mass transfer3 but rather as a rapidly fluctuating object with
respect to density. Furthermore, the phase-transitions between phases with different geometries may involve energies that are much
smaller than the assembly energy, and originate in quite subtle changes of the geometry or connectivity of the supramolecular
aggregates,

In attempting to construct models of these materials it is worth pointing out that they exhibit few truly universal features. Rather
they present interesting and important generic properties and trends that we will seek to understand in a unified manner. There is also
the further practical aspect that many of the phenomena, though they originate in self-assembly at the microscopic level, are actually
mediated by long, but not diverging, length-scales. For this reason it is convenient to construct a model that is computationally
tractable, thereby facilitating the study of these various trends, but that is reducible to a more compact coarse-grained Hamiltonian
whenever one secks to study universal features via renormalization calculations.

There are some further considerations 10 be taken into account when formulating the model. Thus, if one is to understand a range of
amphiphilic behavior, there should be sufficient flexibility to represent the effect of geometric fluctuations of self-assembled
structures, as well as fluctuations causing the break-up of the phase. This indicates that the simplest possible formulation may be that
of a lattice model.

Many of the comments just made refer quite generally to self-assembled fluids whether they be lytotropic liquid crystals, micelles
or microemulsion. We shall now turn to a discussion of the experimental observations for three-component mixtures of oil, water and

amphiphile.4

2, SOME EXPERIMENTAL OBSERVATIONS AND PHENEMENOLOGY

Upon mixing oil, water, and a little surfactant one often finds a macroscopic thermodynamically stable phase named
microemulsion that possesses some quite remarkable properties. Microemulsion has found application in a number of developing
technologies such as enhanced oil-recovery and clean-up, catalytic systems and synthetic blood substitutes. Some of the prominent
experimental observations associated with these fluids are described below. They may also be encapsulated in the three-phase triangle,
Figure 1.5

As a function of the concentration of amphiphile, temperature and brine one finds a phase-equilibrium between microemulsion,
oil-in-water and water-in-oil micellar phases. In some cases the middle microemulsion phase in this equilibrium is replaced by a
lamellar liquid-crystalline phase. As one proceeds to the oil-rich or watér-rich regions of the phase-diagram the three-phase equilibrium
collapses to an oil-microemulsion or water-microemulsion two-phase equilibrium via critical-end-points of, respectively, the water and

*This represents part of the text of a lecture given at the Seventh International Conference on Surface and Colloid Science, Compiegne,
France. In that same year some of this material was presented at the NATO Summer School held in Aquafredda di Maratea, Ttaly.
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microemulsion or oil and microemulsion. This three-phase coexistence, often named the Winsor III state, is of particular interest both
from the viewpoint of basic statistical mechanics and for its technological importance.

Thus, in this region of the phase-diagram the middle microemulsion phase is often opalescent and its interfacial tensions with the

coexisting phases are ultra-low leading many to suppose that the liquid is near-critical. However, the volume-fractions of the various
components in the three phases may differ significantly and, characteristically, the microemulsion does not wet the oil-water interface.
Both of these observations seem to indicate the properties of the middle-phase may not be ascribed solely to a proximate critical point.
Furthermore, the interfacial tension data in the three-phase region exhibit a rather characteristic and interesting pattem between the two
critical end-points. The tension between a pair of incipient critical phases naturally decreases monotonically, whilst that between the
other pair rises monotonically. On the other hand, the oil-water tension actually exhibits a minimum between the two critical end-

points, a phenomenon that has long been used as the criterion of an optimal microemulsion. In that region of three-phase equilibrium
where the oil-water tension is a minimum, the microemulsion contains almost equal volume-fractions of oil and water and a fairly small
amount (between 10-20% with respect to volume) of amphiphile. It is bicontinuous in the sense that it conducts electricity and the
apolar molecular diffusivity is high.
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Figure 1. Schematic phase-diagram of three-component Q [1/4]
oil-water-amphiphile mixture (see reference 5). Figure 2. Small angle neutron scattering of bicontinuous

microemulsion (see reference 6).

Recently a number of scattering studies of this bicontinuous phase have been undertaken., These include small-angle neutron-
scattering (S.A.N.S), light scattering, and also freeze-fracture electron microscopy. In particular, the S.A.N.S studies produce a peak in
the scattering intensity at small wave-numbers, an observation that is consistent with the presence of two relatively long length-scales
in the microemulsion. The ratio between these lengths appears to be fairly constant in the bicontinuous region, and is approximately
equal to four. This observation has been made in the literature by Widom and further elucidated by Chen. It is also observed that, with
increasing amphiphile concentration and changing temperature, the peak in the S.A.N.S intensity shifts to shorter wave-lengths (see
Figure 2).

Finally we note that the phase-diagram also possesses a onc-phase-region spanning the oil-in-water, bicontinuous and water-in-
oil phases. It is believed that, typically, this single-phase corridor permits one to accomplish phase-inversion without undergoing a
phase-transition. These, then, are some of the prominent aspects of the phase-diagrams of mixtures of amphiphile, oil and water
where one has relatively small amounts of amphiphile. We note in passing that, at higher amphiphile concentrations, one finds
various liquid-crystalline phases.

The purpose of the present discussion is to show that all of these features are present in a relatively simple lattice model. Within
this model it is also possible to explain the origins of these phenomena, and to see that the puzzling experimental observations are,
indeed, entirely consistent with one another.

We now turn to the discussion of dynamical and non-equilibrium studies of self-assembled materials. The measurements of
dynamical or non-equilibrium properties of these systems have received less attention, though they are also important scientifically
and industrially. There has however been a recent renewal of interest in the rheological properties of amphiphilic systems and complex
supramolecular fluids generally. One reason for the limited progress that has been made in modelling these fluids is that, unlike simple
fluids that are composed of intact atoms or molecules that interact through weak molecular forces, the basic interacting unit in a self-
assembled fluid may change under small perturbations. Such units cannot therefore be assumed to maintain their integrity for the
purposes of theoretical description. For example, in attempting to describe even the bulk viscosity of the bicontinuous phase one
realizes that an elementary model of molecular viscosity would not be appropriate since the flexibility and cohesiveness of the
amphiphilic film must also be important factors. Indeed, the description of the bulk viscosity of microemulsion throughout the phase-

diagram is quite an interesting problem. On passing across the 232 1:‘arogressior15'6 there are two peaks in the viscosity of the
microemulsion that are somewhat loosely correlated with the rise in conductivity and apolar molecular diffusivity. Between these two
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peaks the viscosity is surprisingly low (on the order of one centipoise), especially given the conventional picture of the bicontinuous
structure. We note that throughout most of the microemulsion region the viscosity is essentially Newtonian, though it is shear
birefringent. There is a rather strong corrclation between the minimum in viscosity and optimal salinity. This overall pattern of
viscosities is not well understood, and at present there exists no theory to describe the situation. Heuristically one might argue that the
minimum in the viscosity curve arises because the bicontinuous state readily heals any tears in the amphiphilic film caused by
momentum transfer from a disturbance. This might cause the transverse momentum currents to decorrelate quite rapidly and result in low
viscosity., Certainly the optimal microemulsion is a rapidly fluctuating state and this may mean that time-scales for healing are
relatively short. The origin of the peaks in the viscosity are also poorly understood, but may heuristically be associated with phase
inversion. Thus on passing from oil-in-water microemulsion to bicontinuous phase there is a rather important change in the
microstructure that must be reflected in the viscosity. Finally we note that near these viscosity peaks the microemulsion becomes non-
Newtonian and undergoes shear thinning by factors of two to five at shear rates of 1000 sl

It is worth remarking that, although there have been a number of other experiments in different parts of the phase-diagram that
suggest that shear induces the reversible formation of new supermolecular structures, few systematic studies have yet appeared in the
literature.

We also mention briefly some recent studies of the relaxation of microemulsion to equilibrium. Such relaxation processes appear
to be well described by the Kohlrausch-Williams-Watts (KWW) exponential law, ¢(t) = Aexp{—(t / r)b}.where ¢, the characteristic

relaxation time, and the parameter b are dependent on both temperature and the composition of the system. Recently however, Lépez-
Quintela and Losada reported a relaxation experiment on an oil-AOT-brine (3% NaCl solutioﬁ) microemulsion that may be fitted by a
KWW relaxation law with b > 1.

We intend to present two models’ that rationalize most of the important basic features of microemulsion. They are both based on
Hamiltonians or simple form of the interactions and may be viewed as near-microscopic. The predictions obtained from such theories
result from true statistical mechanical calculations. The assemblies form and evolve spontaneously simply as a result of competition
between the various energy and entropy effects. This permits one to calculate simultaneously the phase-diagram and the structural
properties of these materials, thereby elucidating the relationship between the two. This aspect is particularly important when onc
does not possess a truly quantitative theory that can make direct contact with the experimental phase diagram.

3. THEWIDOM-TYPE MODEL OF MICROEMULSION

The Hamiltonian that we shall present is closely related to that of Widom, a model that had itself grown from earlier researches by
Wheeler and Widom.8 It differs only in the generalization of some of the interactions. As in Widom's original treatmem,8 we divide
configuration space into cubes of side a and this, the microscopic distance in the formulation, is chosen to be the length of an
amphiphile molecule. Arbitrary configurations of the oil (AA), water (BB) and amphiphile molecules (AB) are then assigned to this
lattice, subject to the constraint that only like ends of different molecules be permitted to lie within any cube. Thus, each cube of
configuration space is composed of only hydrophilic or hydrophobic material and any molecular configuration may therefore be
represented by values of Ising variables at their centers. Evidently there exist no isolated amphiphiles in this model, so to each local
configuration of a pair of amphiphile molecules we may assign an additional energy that is chosen with respect to a pair of parallel
amphiphile molecules that lie side-by- side. This ultimately leads to an unfavorable energy both for bending of an isolated amphiphilic
film, and for the touching of two such layers. However these terms, being based only on pairs of amphiphiles, necessarily treat edges
and corners of the amphiphilic film on equal terms in that a corner energy is calculated as the sum of edge-energies. Since we conceive
the microscopic origins of this energy scale to lie in the partial-free-energies of proximate amphiphile molecules that are surrounded by
oil, water and possibly cosurfactant, one expects the interaction Hamiltonian to possess many-body terms. In particular, the bending
of an amphiphilic film certainly has a potential energy contribution but there is also penetration of water (or oil) into the film that
must be accounted for by the microscopic interaction parameters. It is, therefore, evident that such contributions would be different for
edges and corners of the amphiphilic film, and thus, in principle, require independent energy parameters. We therefore choose as our
basic interactions the parameters VI'VS' these corresponding to the energies of the local configurations that are given in Figure 3.

+ 1 - ] 1 ]
V= .—i—-—O O—-E—. Vy= : Q—:r—O Figure 3. The molecular configurations of amphiphile that
' ! ' ! correspond to the interaction energies V1-Vs. These energies
. , are measured relative to that of a pair of parallel amphiphiles.
Vy= *——10 2 o_%__. The amphiphiles (AB) are represented by a hydrophobic (O)
! and hydrophilic (O) region and are considered to lic along the
I P I . bonds of a simple-cubic lattice. The mid-points of every bond

occupied by an amphiphile molecule collectively represent the
amphiphilic film.
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Note that the essential content of the foregoing arguments is that small regions or aggregates of amphiphile have only three basic
significant energy scales viz., the energies due to bends of an isolated film, these being distinct for edges and corners, and the energy
of two proximate flat pieces of the film. For generality we must also differentiate between the ends of the amphiphiles, and this is
reflected in the fact that the parameters Vy and V3 are different from V5 and V4.

Upon reflection we see that the lattice model really is simply a way of describing an ensemble of surfaces that can break and tear
but that possess an energy of deformation. The coordinates of the surface are necessarily discrete, but for large aggregates the long
length-scale properties are unaffected by this approximation.?

The centers of all cubes that compose configuration space define a regular cubic lattice. Since the interactions of figure 3 require
knowledge only of a central and six surrounding cubes, one may construct the total energy from octahedral clusters of Ising spins, Each
octahedron involves seven Ising variables, and we may represent the local energy as a function of these Ising spins. The energy of
each of the twenty such octahedral fragments (see Figure 4) may be compiled from the rules in Figure 3. We then require that the chosen
function of the Ising variables correctly reproduces the energies of all twenty local-spin configurations given in Figure 4.

It transpires that the local-energy contribution requires only one- to four-body spin interactions and the Hamiltonian may be written

H=H 2 Cp + Z Ja n'OnCn'+ z Ln' n'OnCnTu + Z Pu,n'n" 0" OnOnCn'Cn 31
< 4 “

n.n n.n'.n na'a".n"

The spin-interaction coupling constants refer to the interactions for isolated spins as well as those between pairs, triples and quadruples
of spins. The two-body spin interactions ”n,n'] are nearest-neighbor (J), diagonal neighbor (M) and linear next-nearest-neighbour

(M2) and their definitions in terms of the elementary energies Vl-V5 are given in Table 1.
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Figure 4. The energy of every local-octahedral Ising spin
configuration. These values may be calculated using the

definitions in Figure 1.

The early detailed studies of this model were confined to the choice of parameters M{=M, My=2M, L, =L,=P=0. If one makes the

choice H=L1=L2=0. corresponding to zero spontaneous curvature of the amphiphile film and equality of the chemical potentials of oil
and water, one would expect to find the bicontinuous microemulsion to be one of the prominent phases. The Hamiltonian then becomes

Hm %Z CaOnCa+ P 2 CaCa'Cn'Ca ' 3.2
- na'ata

O, =a,(a})+a,(a})+a, 3.3

(A’x)fx = fx-l + f:d - 2f: 3 4

3.5

(82)+(a3)+ a3 =23
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ag = -M 3.6
az = -(J +12M) 3.7
ap = -6(J +SM) 3.8

where, to make connection with earlier researches, we set M1=2M (M2=M) and thus,

3.9
J= %‘(l‘u‘;‘(ﬂu b “-)) '%K

M=-K/4 3.10

where K was, in the original literature, referred to as the bending energy of the amphiphilic film.

For this set of restrictions one finds that the present model is equivalent to that of Widom, except for the presence of a four-body
term that reflects the selection of an independent comner energy in Figure 3.

As it stands this is a model that can be studied using mean-field theory or Monte-Carlo simulation. In either case one may calculate
the properties for different energy parameters (V-Vs) and as a function of the chemical potentials of oil, water and amphiphile. The
results are presented in the form of phase-diagrams where one plots the phase-iransition lines and phases that are stable in the various

regions. The construction of such phase-diagrams are often the result of considerable effort and we will not enter into the details in the

10

main text. The interested reader should consult reference 10 for a discussion of mean-field theory"" and reference 11 for simulation and

renormalization calculations. One cut of the complete phase diagram is presented in Figure 5.
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Figure §. A cut (L1==L2=0. H=0, P=0, M=M1,M2=2M) of the lattice model composed
from simulation, renormalization and other calculations (see reference 11).

This cut corresponds to equal chemical potentials for oil and water (H=0), zero spontaneous curvature of the film (L=L;=0), P=0, and
the choice M=M;, My=2M. It should therefore be a cut where the bicontinuous microemulsion phase is prominent. In fact, since the
microemulsion is spatially disordered we identify it with the disordered (or paramagnetic) phase of the spin-model. In another figure
(Figure 6) we present a more schematic version of the extended model for P>0.

It should be noted that the densities of the components can always be reconstructed from the average values in the spin model.
Thus, the density operators are,

ﬁ'“(n)=-2£(1+c_) 3.11
p%(n) = %(1_0.) 3.12
5*%(n.4) = 5(1-0,0,..) 313

where 4 is the orientation of the lipid (AB) molecule that lies between sites n and nn + ﬁ(ﬁ = X,y,%) These quantities are zero or unity
) and
(g‘g”i). Also, the fluctuations in these averages may also be calculated and compared to the results from neutron scattering. Thus,

depending on whether a molecule is present at site n. The average densities are then just given simply by the averages (0‘,

for example, for a bicontinuous microemulsion with equal volume fractions of oil and water pM=<§M) is equal to
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3-phase equilibria Line of tricritical
points

Figure 6. Phase-diagram in space of Ising-model
couplings, j(=J/KT), m(=M/XkT), P=(P/KT), for the
range -1/96<P<0. The points Q, L, R, Py, P5, Q. Q,
have been marked to provide a relation to the more
detailed phase-diagram of reference 10. The para-
magnetic phase is identified with isotropic mixtures
of oil, water and amphiphile. In the vicinity of the
curve L and in the interior of the capped elliptical

cylinder the disordered phase takes on the properties
of microemulsion.

pt8 = (ﬁ“)((cl) = 0). In this case,

GM/M(n — ) = (5% (n)55 () = %(c_c_,) 3.14

where 85 = — (p)-

Using all of these relations it is possible to reconstruct the predictions for the amphiphilic solution from those of the equivalent
Ising Model. Thus, for example, by computer simulation we can calculate the water-water correlation function. Examples are given in
reference 11.

To make the Ising model a little bit simpler to understand and to pursue some analytical calculations we shall now make a
continuum approximation that should describe long length-scales fairly well. This is achieved by making the "soft-spin"
approximation and entails replacing the discrete Ising spins, for which g, =1, by a continuum "spin” variable, ¢(r) which may

have any value between oo, We begin our study by constructing an effective LGW Hamiltonian.12 To do this we perform a Hubbard
transformation on the partition function of the Hamiltonian (3.2) with P=0. The result of this transformation is

Z= Ze'H=jD¢ne_H(‘Pn) 3.15
On
- 1 do, 3.16
Don = i Ly L o
3.17

1 -
H= —52%10111% - tn(2cosh ¢n)
n n

The LGW Hamiltonian is constructed by expanding the last term in equation 3.17 and keeping only the terms up to quartic order,
since typically, all of the higher powers will be irrelevant to the study of near critical behavior of the theory. Transforming to Fourier
space we see that the coefficient of the quadratic term is _oal —1- We therefore define

Kq=0gq+1 3.18

Within the mean-field theory the phase-transition from the paramagnetic to the non-uniform phase with wave vector g occurs at

K, = oand VK, = 0.12 Thus, close to the transition line we can expand in powers of K, 1 obtain,

3.19
H’%‘”‘quzxq +T%I¢ql¢qz¢qs¢q. q+q2+q3+q4)
q q

In this paper we shall concentrate our attention on that region of the phase-diagram in the vicinity of the Lifshitz point (g, = 0).
In this region it is possible to expand K. in the powers of g to obtain,

2 4. 0 a4 3.20
Kgq=bg +b1g? +b3q* +bs D, q
i=1
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where,
by = 1-6(j +5m) 3.21
b, = (Jj +12m) 3.22
by = —m 3.23
by = — () +12m) 3.24

and i=1,2,3 denotes the x,y,and z directions respectively. It is worth pointing out that the resulting form of the LGW Hamiltonian
is believed to be the simplest possible for description of the bicontinuous phase and, therefore, in some sense is canonical. The
scaling of the bare coupling constants with the microscopic energies and chemical potentials is an additional benefit of having begun
with a lattice model.

Now the physical meaning of the term quadratic in momentum is evidently just a surface energy. We also note that the coefficient
b, the effective bare tension, contains both an interaction term (m) and the relative chemical potential (j).13 Therefore the bare
tension may be chosen by adjusting molecular structure and concentrations independently. In this regard it is important to maintain the
picture of the interface as one that is truly open to mass transfer, rather than a simple mechanical surface. The coefficient of the quartic
term in momentum reflects both curvature and compression contributions, and will also serve to set the energy scale, while the (p4
term is the leading effect of the excluded-volume interactions. Since, near the Lifshitz point, the cubic anisotropy is small we

spherically average the last term in the equation (3.20). Finally normalizing the quartic term of (3.20) to 1 we have the effective action
2

3.25
H= -é-£|¢qf2(q4 +bq® +c) +%£¢qlq"h¢‘h¢‘h 8(aq1+q2 +q3+4qy)

and
b= =20(j +12m) 3.26
(J+32m)
c=120!j+5m!—20 3.27
(J+32m)
-__800 3.28
T (j+32m)
We will use this action as a starting point for the analysis of the fluctuations.
We study the renormalization of the coupling constants within a modified Hartree approximation. The fully self consistent
equation for the self energy is shown diagrammatically in figure 7 and may be written,

3 2 3 3.
_z(p)=%jc(q.- E)-(—;i’-ci)%+%J'G(q:£)3(k:£)c(p—q—k:z)(gx;!a (‘;_”’)‘§+o(;,s) 3.29

1 3.30
G(q:x)= '
q* +bq? +c - 2(q)
This equation corresponds to the resummation of the most divergent diagrams of the theory. We note that our choice of normalizing the

coefficient of q4 to ; is a calculational convenience and was not necessary. It is satisfactory if the coefficient of the quartic term in the
2

expansion of Z(q) is small. Later we shall see that, typically, this is indeed the case.

Figure 7. The self consistent equation for the self energy in the modified Hartree approximation. Here
the bold faced lines denote the renormalized propagator, and the filled circle is the self-energy. The

first two diagrams have been evaluated in Section 3. The final one (0(1,3)) is discussed in reference 14,

The one-loop diagram , being momentum independent, will renormalize only the coefficient ¢, while the other diagrams will
renormalize both the quadratic and quartic terms via the second and fourth derivatives of Z(q)ina Taylor expansion for small q. That

one may neglect the higher powers of q that are generated by renormalization and truncation of the self-consistent series at low orders
. . . . . e 15 .

in the evaluation of £~(Q) and x’**(0) is an assumption that is difficult to justify rigorously,”~ though one can estimate the
corrections by evaluation of one further order than that considered in the renormalization. However, on general grounds one can argue

that the corrections are small. The interested reader should consult the original paper.14
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Now the one-loop integral has been previously performed in equation (3.2). It is, however, more convenient to perform the two-
loop integral in real-space,

d’q d’k - 3.31
G kR)G(p-q-Fk = [e*"Q? 3 ’
Jola)e(R)G(p-q )6”—)5(—2;-)1- [e*ra(rid’r
G(r) is just a two-point function (q)( Co(r )) that can easily be obtained by contour integration to give
X]
G(r)= K’T,;,.(%,) 3.32
where, K= 1 3.33
B 21:(4c-b’)!
1
1 (6,0 3.34
I3 2 4
2n_(fe_b) 3.35
d 2 4
The renormalized ¢, and b, are given by
¢, =c—X(0) 3.36
b =b-22"(0) 3.37

Here the prime stands for differentiation with respect to q. Inserting the above results into the self consistent equation (3.4) we obtain

2 [ (xy)2 3.38
b, =b- < .= -
47 (xy)2 k(9x+y) 8Yx+y)
c,=c+——%—+;’r[3ml-x{if_cat_x(i)é} 3.39
where, BAVE  48a%(ay)i 4 y
#=2e. +b, 3.40
y=2Je. -b, 3.41

and b and C are the bare parameters given by equations (3.26) and (3.27). Note that b, has a status of a renormalized surface tension,
measured relative to the curvature contribution. We can solve these non-linear equations numerically for any given choice of bare
couplings, b and c.

Note that the variation of d and § as a function of j and at fixed m is more meaningful in the interpretation of the Hamiltonian as
a microemulsion model. By considering the transcription from coupling to solution-model constants(4,5]

A#=_%K+J 3.42

K
m==—— 3.43
4

one sees that this choice amounts to fixed bending cnergy of the amphiphilic film (x), and decreasing amphiphile concentration (Ap).
Evidently d should increase, reflecting the increase in domain size. The mean-field theory of this is qualitatively incorrect, while the
renormalized theory agrees qualitatively, with fair quantitative agreement. As an example (figure 8) we consider the cut m=-.048 for |
between .5 and .66, a line that passes close to the renormalized Lifshitz region. The values of 4 increase , and in principle diverge as
one crosses the Lifshitz point. The Monte-Carlo values of m=-.11, and j varying between .65 and .95 corresponding to a cut close to
the Monte-Carlo Lifshitz point, is presented in figure 9 for comparison. Though there is a fair amount of scatter in the points reflecting
both statistical fluctuations and sensitivity to fitting for small and large values of d, we note that both theory and simulation are in
quite good qualitative agreement with such experimental values of d and & as a function of concentration as we possess.16 However,
as of yet no serious attempt has been made to fit a sequence of data using the recursion relations (3.13) and (3.14).

4. THE INTERFACIAL TENSIONS AND STRUCTURE OF THE INTERFACES
BETWEEN PHASES IN THE LATTICE MODEL
Within the context of mean-field theory one may also construct the interfacial profiles and tensions between the various phases
that are in equilibrium in the phase-diagrams, Figures 5 and 6. The interfacial tensions derived from such calculations are expected to be
qualitatively correct.!’ One may also heuristically associate the mean-field profiles with the interfacial structure of small regions of
the interface. As we shall see, the tensions calculated for the present lattice model are characteristically low, even when there is no
proximate critical point. Thus, in the region of three-phase oil-water-lamellar-coexistence one finds that the oil-lamellar phase or
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passes close to the predicted renormalized Lifshitz point.  close to the Monte-Carlo predicted Lifshitz point.

water-lamellar phase tensions are all ultra-low (of order 10'4kT). One also finds interfacial structure rather reminiscent of liquid-
crystalline order at the interface between the oil-rich and water-rich phases.18 In fact that this implies the existence of a non-trivial
length-scale, besides the correlation length, at the interface between isotropic phases. The precise evolution of these length-scales as
a function of the parameters of the model is readily determined numerically, or approximately by a perturbation theory based on the
susceptibility of the isotropic phases. It is also worth noting that this phenomenon is intimately related to the peak in the scattering
intensity that was discussed in the previous section. It is a prediction that has not yet been checked by experiments, though such
studies are now becoming feasible. In the calculations presented below, in Figures 10-12, we plot the particle-density for each layer, z.
These results are obtained by averaging the mean-ficld free-energy functional, over the x,y directions and then minimizing with the
respect to the layer densities, subject to the asymptotic conditions for the two bulk phases that are in equilibrium.

In Figure 10 we plot a typical oil-water interface along the three-phase equilibrium surface between oil, water and lamellar phase.
We note the symmetrical interfacial structure, Figure 11 corresponds to an oil-microemulsion interface that is on the three-phase
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Figure 10. Typical density plot for oil-water interface for Figure 11. Typical oil-water interface for & point on the
a point on the oil, water, liquid-crystal equilibrium surface. three-phase equilibrium surface between oil, water and
Note the presence of interfacial structure. On the inset we isotropic phase, but far from the curve L.
have presented the amphiphile density distribution across the ’
interface. The interfacial tension corresponding to this profile

is ultra-low.

equilibrium sheet, but somewhat away from the lamellar phases. For this reason the tension is still not extremely low, nor is there any
discernible interfacial structure. Also, for these values of the parameters the oil-water interface is found to be wet by the third,
microemulsion phase, a matter to which we shall return in some detail at the end of this section.

The next result, Figure 12, is derived for a point on the isotropic three-phase equilibrium surface that is much closer to the lamellar
phase. Consequently, one might expect the appearance of interfacial structure. However, although the oil-water interface (not shown)
is structureless, the oil-microemulsion or water-microemulsion (Figure 12) interface has structure, mainly confined to the
microemulsion side. This is an observation that might be checked experimentally. One can show, in fact, that within the present
model this particular type of interfacial structure is commonly associated with Winsor III equilibria and may, in some measure, be used
to differentiate between these and conventional three-phase cquilibria.
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At this point we may pause to review the origins of ultra-low interfacial tension, at least within the framework of the present
lattice model. Actually, many of the important applications of amphiphilic dispersions stem from the remarkably low interfacial
tensions found between the phases in the three-phase triangle, so this question has caused considerable interest and controversy in the
literature. More recently it has become common to attribute the phenomenon to the near-cancellation of the bare surface-tension and

the transverse component of the pressm’e.19 There is both expcrimenla120 and theoretical?! evidence that such effects are indeed
significant. However, the predictions of the lattice model imply that the resolution to the question may not be so simple and that such
cancellations lead to low, but not ultra-low, tension. To see that this is the case we recall that, because of the constraint that there are
no direct oil-water contacts, all of the amphiphilic film satisfies the Schulman condition.22

We have, in addition, chosen the zero of energy to be that of flat amphiphilic film so that at any temperature the tension of a
perfectly flat interface would be zero. This choice ensures that the conjectured condition for ultra-low tension is automatically satisfied
by the construction of the lattice Hamiltonian. However, finite temperature effects cause fluctuations that disrupt and bend the interface
in a number of ways and it thereby acquires an effective tension. This tension has been calculated for the three-phase equilibrium surface
between oil-water and isotropic phase of Figure 6, The tension is low across most of the surface, but becomes ultra-low only near a
tricritical point, or near the multistate surface from which the layered phases emerge. This multiphase surface had earlier been identified
by requiring that the work required to insert an amphiphile into the film vanish. Note, therefore, that one appears to require this further
constraint upon the microscopic parameters and chemical potentials of the model before the tensions become comparable to those that
are conventionally called ultra-low. Given the integrity of the predictions of the model so far, one expects such a constraint must also
be satisfied by experimental systems with ultra-low tension, an obscrvation which could readily be evaluated experimentally. In fact,
as we shall see later, the picture offered by the microemulsion model leads one to suppose that the practical rules-of-thumb at present
used to predict ultra-low tensions are actually a reflection, albeit an imprecise one, of the constraints implied by the present model. We
note finally that, since this explanation of the origin of ultra-low tension does not require proximity to any critical point, there is no
implication that the compositions of the three phases should be nearly the same. In fact, typically the three-phase Winsor III
equilibrium in this model are far from being critical when one considers compositions of the components. This point is important
since it rationalizes some of the apparently conflicting observations on these systems that were mentioned in the introduction of the
paper. This point is connected to another puzzling observation; thus the oil-water interface of a Winsor III state is typically non-wet

23 though there has been at least one observation of a transition to wening.24

by the microemulsion,

In the calculations described above one notes that for values of the parameters near the multistate surface, and consequently for a
structured interface, the oil-water interface is not wet by the microemulsion phase. We may pursue the issue of wetting across the
Winsor progression somewhat more systematically using mean-field calculations of the type described above. In this case, however,
one must study the phase-diagram as a function of the coupling constants H and L that break the inversion symmetry. This permits us
to locate the critical-end-points that bound the Winsor progression. These parameters involve, respectively, the difference in chemical
potentials of oil and water and the spontaneous curvature of the amphiphilic film. These quantities in turn reflect the changes in the
concentration of oil and water and in the amount of brine or cosurfactant present in the system. For ionic surfactants the Debye
screening induced by the addition of salt can significantly affect the propensity of the amphiphilic film to bend toward water regions,
thereby reducing the magnitude and removing the symmetry in the edge and corner energies of the lattice model. For our purposes it is
important to note that most of the freedom present in the parameter space of the Hamiltonian is removed if one chooses to study such
phase equilibria. The interfacial tensions and contact angles measured for these phase equilibria are dependant on relatively few or none
of the parameters of the model. This is a useful consistency check on our understanding of the meaning of the microscopic parameters
in the model.

We examine the surface of isotropic three-phase equilibria of the symmetric model. The three interfacial tensions may be computed
and a curve of wetting transitions determined (see Figures 13 and 14). To one side of the curve w(j,m,P) (rp:.%) the isotropic
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Figure 13. The sheet of isotropic three-phase equilibria in space of 008
parameters j, m, P. Above the surface one has the oil and water 1
micellar phases and beneath it the isotropic phase. In the vicinity of
the curve L the isotropic phase possesses the properties of micro-
emulsion. Note that on the shaded portion of the surface the oil-
water interface is not wet by the isotropic (microemulsion) phase.
The curve w(j,m,P) thus represents a curve of second-order wetting
transitions. The curve L and W are fairly close together so, in
accordance with most experimental observations, we conclude that
microemulsion tends not to wet the oil-water interface.

Line of tricritical

Sheet of isotropic
1nts

3-phase equilibria “@..1%¢
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Figure 14. Location of a wetting transition for oil-water
interface. The broken line is 20, whilst the full curve
is 0., At the crossing the microemulsion wets the oil-

0.000250 S R ST R VI T DU Thany waler interface. The points marked on the curves indicate
0 003 006 000 0.2 o.ils 018 021 024 627 03 the figures where density profiles for those values of the

parameters have been presented.

surfactant-rich phase wets the oil-water interface. On the other side (shaded) the oil-water interface is non-wet, as might be expected of
a microemulsion. Note that, as one proceeds to the line of tricritical points, the extent of the region for which the interface is non-wet
shrinks, reflecting the normal trend that wetting accompanies the vanishing of interfacial tensions near a tricritical point. However,
there is a novel phenomenon present in the lattice model of microemulsions. The interfacial tensions become small as one proceeds in
either of two directions on the equilibrium sheet. Thus, as P becomes small the tensions vanish as one approaches the line of tricritical
points. However, for fixed P the tension also becomes small as one approaches the multistate sheet (or tends to the curve L) because, as
we have explained, the work for inserting an amphiphile molecule into the amphiphilic film is vanishing. This second mechanism for
lowering the tensions is entirely unrelated to near-criticality and therefore carries with it no implication that the interface should be wet
nor that the volume fractions of the components in different phases should be the same. On the contrary, the contact angles actually
increase with decreasing oil- and water - microemulsion tensions. One can readily see that the issues of wetting, low interfacial
tensions and near-criticality, (as determined by the volume fractions of the. components), are subtle and potentially confusing if one
does not understand the global nature of the phase-diagram. Presumably the most common three-phase equilibria that are called Winsor
I states are those that lie inside the non-wet region of the equilibrium surface. In some cases they may also be proximate to a
tricritical point, reflecting a small corner energy term. Also, in some experiments one is probably close to both of the critical end-
points, a matter to which we shall presently return. In either case the tensions would be lowered as a consequence of being close to a
critical region we have mentioned. However, it is probable that the dominant effect in lowering the tension is proximity to the
multistate surface, rather than any of these critical points. The interface would then be non-wet because the third phase, whether it be
liquid-crystal or microemulsion, always has a higher tension with oil or water than in the case of critical wetting.

Though this phenomena has been reproduced with numerical calculations, it is also useful to develop a more intuitive
understanding The tensions between all of these interfaces are quite low at low temperatures and, for the case of the oil-water interface,
is significantly modified only by the in-layer fluctuations of the interface. However, the tensions with the lamellar phases or
microemulsion are also affected by the fact that the principal fluctuating layer that defines the interface is hindered by the other
amphiphilic films in the middle phase. This observation is closely related to the fact that there is a second, well-characterized length-
scale (d) present in the lamellar and bicontinuous phases, viz., the average distance between the layers. As a consequence, these
interfacial tensions tend to be higher than those between the simple oil-water interface where one has only micelles on either side of
the interface. This means that if the third phase is sufficiently structured, that is, contains sufficient flat amphiphilic film then it will
tend to form a lens rather than spreading out to wet the oil-water interface. Thus, even though all the interfacial tensions may be
becoming lower on approach to the multistate surface, the amphiphilic film within the bicontinuous phase is becoming more flat and
has a greater tendency to damp the interfacial fluctuations of the principal amphiphilic monolayer that defines the interface.
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Figure 15. An instantaneous configuration from a Monte-Carlo simulation of
the bicontinuous microemulsion-water interface. This calculation was carried out
for a point on the three-phase equilibrium surface represented by figure P. Notice
the degree of roughness of the interface, a phenomenon that would not be present
(&) for aa simple liquid-gas interface. The structure in the microemulsion side of the
interface that was apparent in the mean-field calculations (figure 15) arise from the
large domains that aggregate behind the principal amphiphilic film. Note care-
fully that this particular point was located using Monte-Carol simulation. It thus
represents an interface at the Winsor III phase-equilibrium.

Water

Furthermore the propensity of the middle phase to wet the oil-water interface is to a large degree determined by the lengths § and d since
these determine the degree to which the principal monolayer is hindered. Finally in Figure 15 we have presented an instantaneous
simulation configuration of an interface between water-rich and microemulsion phases. This example is presented to give a qualitative
impression of the water-bicontinuous microemulsion interface at the Winsor III state. The configuration was prepared by first locating
the Winsor I equilibrium by Monte-Carlo simulation of the heat-capacity and energy. An initial condition for the interfacial
simulation was then constructed by filling half of the cube with equilibrated microemulsion and half the cube with an equilibrated water
configuration. Average-structure von Neumann boundary conditions are then applied and the simulation re-equilibrated. However, we
note that the interface is much more rough than one would expect from liquid-gas interface. In addition there is a tendency for large
micellar aggregate to form on the microemulsion side, this being reflected in the mean-field density profile of Figure 12.

Note that we can now understand one more of the interrelations between experimental observations. Thus the condition that
results in low tensions by stabilizing large amounts of flat amphiphilic film also results in a non-wet oil-water interface.

Such relationships may mean that the different attempts in the literature to resolve between classical three-phase equilibria and the
Winsor III state for oil-, water- and bicontinuous-microemulsion are quite closely connected, even if they are not in quantitative
agreement. This issue of how one should distinguish microemulsion is an interesting matter, and we shall return to it in the conclusions
to this paper.

We now return to the general topic of interfacial tensions in the Winsor III three-phase equilibrium. In particular we wish to
establish the idea that the present lattice model is capable of reproducing the characteristic pattern of tensions to which we referred in
the introductory section of this paper. One would certainly expect this to be so since, as we have previously commented, the extended
parameter space contains the oil-microemulsion and water-microemulsion critical-end-points. In addition, we know that the symmetric
model (H=L{=L,=0) that contains the bicontinuous microemulsion phase possesses a region of non-wet three-phase equilibria. The
essential ingredients of the interfacial tension plots are, therefore, already present. In Figures 16-18 we have presented calculations of
the oil-water (Gow) oil-isotropic phase (cou) and water-isotropic phase (GWH) tensions between the critical end-points.

In the absence of any constraints beyond those implied by the phase equilibria it is possible to choose an arbitrary relationship
between j and m. This will in turn select a trajectory that, for the symmetric three-phase condition (1}=lo=h=0) corresponds to a point
on the three-phase equilibrium sheet. We therefore present three plots for j+11m=0 (Figure 16), j+12m=0 (Figure 17), j+13m=0 (Figure
18) these corresponding respectively to oil-water interfaces that are dry, undergoing a wetting transformation, and wet by isotropic
phase. Recall also that the isotropic phase tends to have the properties of microemulsion only for the first two choices of the j, m
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Figure 17. The interfacial tensions across the Winsor progression. Figure 18. Here the isotropic phase wels the oil-water
(Note that - L, L=L;=Ly). The left-hand and right-hand-sides interface. Such a transition has recently been confirmed
KT

by various researchers (see, for example, reference 24).
correspond respectively to water-microemulsion and oil-microemulsion ‘
critical end-points. This trajectory (j+12m=0) crosses the three-phase
surface (figure 16) very close to the wetting curve so the oil-water inter
face is almost wet by isotropic phase. Also, since we are fairly close
to the curve L, the isotropic phase still possesses the properties of
microemulsion. Indeed, this may be viewed as a marginal microemulsion
(see section 4).

relation, these being quite close to the curve L of Figure 6. The oil-water interface is non-wet for the first case (j+11m=0), in accordance
with the experimental observation that, generally, Winsor III oil-water interfaces are not wet by microemulsion. It would in principle,
be possible to make another selection that would produce a wet interface. It should be noted that, although the Winsor III interface is
typically non-wet, a transition to wetting has been observed in at least one case. Such a situation is possible in the present model, but
one would then predict that the peak in the S.A.N.S. data would move to smaller wave number. It would be interesting to check these
ideas with measurements of tensions and of S.A.N.S. experiments.

In summary then, we have observed that Winsor III states tend to have non-wet oil-water interfaces because of the proximity to the
multiphase sheet. Also, for Winsor III states, there are peaks in the experimental S.A.N.S data and these tend to occur at small wave-
number. Similarly, in the present model one finds that as one proceeds along the three-phase surface towards the multiphase sheet one
begins to see the emergence of a second length-scale in bulk and interfacial properties, this reflecting the proximity of an ordered phase
on the phase-diagram. The two phenomena described above, the general absence of a tendency to wet and a secondary length scale, are
related in the present model and, we believe, in the experiments. Thus, in this section we have commented that the flattening of the
amphiphilic film causes the oil-water interface to be non-wet whereas, in our discussions of the correlation function we have shown that
this same aspect is accompanied by a second length scale in the structure factor.

Having established the capacity of the model to describe these phenomena we may now turn to a rather old but practical question
about the nature of an "optimal” microemulsion. In early experimental studies it was realized that a number of technologically
important features of microemulsion are associated with the minimum in the oil-water interfacial tension that is found in the symmetric
bicontinuous portion of the Winsor III state. From the arguments above, one may establish an understanding of the origins of this
minimum in the oil-water tension. This permits us to establish to correspondence of microscopic interactions to the classical
definition of an optimal microemulsion. However, in the space of parameters of this model there exists other degrees of freedom that
might be exploited in establishing a more refined definition. A number of such questions have yet to be studied.
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