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Abstract

Geometric relations linking the (local) molecular shape of the aggregating
surfactant molecules to the (global) composition of the surfactant-water
mixture. The presence of cubic, tetragonal and rhombohedral phases is
suggested to be due to the formation of hyperbolic interfaces, of minimum
bending energy.

A CRUDE INVENTORY OF SURFACE SHAPES

An instructive example of the range of surfaces accessible in three-dimensional
Euclidean space.is offered by the following two-parameter cartesian equation:

cos (x) +cos (y) +1/a%cos (z/a) = b

If a single value of b is chosen, the level set in three-dimensional space
describes a surface - or set of surfaces. The morphology of these surface varies as
the parameters a and b are varied, and the surface shapes fall into the following
classes:

(1) Globules. These are closed, compact objects, in general ellipsoidal in shape.
They are classified topologically as genus one surfaces, which implies that their
integral Gaussian curvature is positive; they fall within Riemann's ellipsoidal
geometrical class.

(2) Rods. These shapes are open at two ends, the most familiar member is the
cylinder. Their (integral) Gaussian curvature vanishes and they are classified as
parabolic surfaces of genus one. Less familiar examples within this class include
the Delaunay surfaces of revolution.

(3) Sheets. These are rippled planes, of zero Gaussian curvature, hence they too are
parabolic surfaces.

(4)Mesh. These surfaces are less well known. They are saddle-shaped everywhere,
thus their (integral) Gaussian curvature 1is negative, and their geometry is
hyperbolic. They are confined between two planes, and can be described as porous
lamellae. They can adopt constant mean curvature (ref. 1), although the Gaussian
curvature varies over the surface. Mesh surfaces are not minimal surfaces, since
their mean curvature cannot be identically zero. The surfaces generated by the
equation above exhibit a square planar network of tunnels. The genus of a single
*unit cell" of the surface (embedded in the three torus) is two =~ the simplest
topology for doubly-periodic surfaces. Presumably, any two-~dimensional mesh network
can be realised. The other simple two-dimensional net - the hexagonal net =
describes an alternative tunnel morphology. Parallel layers of these square and
hexagonal mesh surfaces (with the nodes of one layer positioned over the holes of
neighbouring layers) result in three-dimensional arrangements of rhombohedral and
body-centred tetragonal symmetry respectively (space groups R3m and I422 resp.).
Their tunnel geometries match those of the rod-structures proposed by Luzzati to
describe the so-called T and R phases found in surfactant systems.
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(5)Strut. This family corresponds to the class of bicontinuous structures: they
carve space into two inter-penetrating sub~-volumes, both continuous, and
topologically identical. They are also hyperbolic and their genus per topological
unit cell is at least three. Many examples have geometrically distinct networks on
either side of the surface. The examples covered by the parametric equation above
carve space into two interpenetrating simple cubic labyrinths. They are topologically
identical to the P-surface, the simplest triply periodic minimal surface. Minimal
surfaces are the simplest examples of hyperbolic surfaces forming bicontinuous space
partitions, since they are curved equally towards both sub-volumes. They are able to
be explicitly parametrised in many cases using equations from differential geometry,
and many new triply periodic minimal surfaces have been uncovered in recent years
(refs. 2-5). The tunnel geometries of the D-surface and the gyroid- consisting of
interpenetrating diamond and oppositely handed Laves graphs respectively - match
those of the structural proposals of Luzzati for bicontinuous cubic phases of space
group symmetries Pn3m and Ia3d (@224 and 0230 in Luzzati's notation) (ref. 6). In the
case of direct (Vi or Iy) phases, the tunnels are filled with paraffin moieties of
the surfactant, while inverted phases (Vy, I) consist of bilayers lining these
surfaces, with polar groups (including water) in the tunnels. The surface description
is useful in that it offers a wide range of possible structures to describe these
bicontinuous mesophases. A unique structural description of these phases must invoke
topology as well as symmetry. For example, the space group Im3m (which has been
detected in binary and ternary surfactant systems), can be realised by a number of
triply periodic minimal surfaces, viz, the P-surface (genus three), the I-WP surface
(genus four), the Neovius surface (genus nine) and the 0,C-TO surface (genus ten).
Luzzati's terminology therefore is incomplete, since it implies the existence of a
single structure for a given symmetry - which need not be the case.

It is important to note here that a number of lower symmetry examples of triply
periodic minimal surfaces can also be realised. These include tetragonal, hexagonal,
orthorhombic, monocliniec, and (possibly) triclinic symmetry classes (refs. 53,7). Some
of these examples are distortions of the surfaces mentioned above, others are of
novel tunnel morphology. Important examples include the genus three H-surface - whose
(identical) tunnels form a hexagonal rod-packing alcng the c¢-axis, linked by
horizontal tunnels - and the tetragonal and rhombohedral distortions of the P and D
surfaces (known as the tP, tD and rPD surfaces respectively).

MOLECULAR SHAPE AND SURFACE GEOMETRY

This brief catalogue of surface structure embraces the range of surface geometries -
elliptic, parabolic and hyperbolic. How do we relate these foxms to self-assembly?

The problem of self-assembly is essentially a thermodynamic one, involving a complex
range of interactions governing the entropy of the system, and entropic terms. We
shall subsume the former contributions within a phenomenological bending energy term,
which assumes preferred curvatures at the polar-apolar interface. This approach
involves a number of assumptions (e.g. small curvature deviations) and is itself

the subject of some debate. However, some justification for the apprcach can be made
in the case of an aggregating species of preferred molecular dimensions. As first
enunciated by Israelachvili, Ninham and Mitchell (ref. 8), these dimensions are the
result of a set of complex interactions. In this case, we can define 'a "surfactant
parameter", v/al, where a is the preferred head group area,v the chain volume and 1
the preferred length ref. (Recent work by Ennis supports this approach (ref. 9)) To
harmonic order, we can describe the deviations of the molecular dimensions away from
these preferred values by the prescription:

F = kq(a-ag)2 + kp(l-1g)2

In our case, we further simplify the problem, and consider the situation where the
two bending moduli are coupled, so that we can write the bending energy in terms of
the actual surfactant parameter adopted by the aggregating chains in the phase, and
the preferred value of the parameter:

F = {(v/al) = (v/al)(}?

If we assume that the chains lie normal to the polar-paraffin interface, the
surfactant parameter can be determined from the Gaussian and mean curvatures of the
interface at the head-groups (K and H resp.), scaled by the chain length (ref. 10):

v/al = 1 + HL + K12/3
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Figure 1: Relation between molecular shape (v/al)
and composition (chain volume fraction, ®) for as
range of aggregation geometries.

This means that we can express the energy of deformation of the surfactant £ilm in
terms of deviations about the preferred curvatures, Hg and Ko, which are set by the
molecular dimensions by the previous equation. We implicitly assume 1local
interactions only, set by the wvalues of the (local) curvatures. Longer range
interactions - for example between opposing sheets ~ are ignored.

Consider first some consequences of the model which can be obtained from
considerations of the packing geometry as a function of surface morphology. Assume
that the bending modulus is small, so that the aggregation geometry is set by the
average value of the surfactant parameter alone. We require a map of the average
value of the surfactant parameter as a function of the (global) composition of the
molecular mixture, consisting here of surfactant and water only.

In general, there is no link between the (local) surfactant parameter -~ or the
surface curvatures - and the compositional constraints (surface to volume ratio,
volume fractions on either side of the surface). However, if we assume homogeneity -
i.e. constant values of Hl and K12, the volume fractions on either side of the
interface determine the values of the curvatures,and hence the surfactant parameter
(ref. 11)! This geometric assumption is equivalent to assuming small values of the
bending energy, if the preferred value of the surfactant parameter is equal to the
average value adopted in the geometry under consideration.

These calculations give plots of the average value of the surfactant parameter as a
function of chain volume fraction for idealised homogeneous globular, rod, sheet and
strut surfaces, shown in figure 1.

The results are only exact for parallel planes (Lg phases), and chain-filled
spherical (L1) and cylindrical (H1) micelles. For reverse globular (L2) or
cylindrical (Hp) micelles they are approximate, since both curvatures and chain
lengths cannot be fixed simultaneously. The paraffin volumes in these reverse phases
are the Voronoi regions, set by the geometry of the micellar packing, which are most
nearly homogeneous when the number of faces in the Voronoi cells is maximised. Thus,
the data for globules and rods are most apposite to body centred cubic sphere
packings, and hexagonal cylindrical packings (ref. 11). It is known that no
hyperbolic strut surface can have constant mean and Gaussian curvatures (ref. 12).
However, the data is an approximation to a single-sheeted (strut) interface, which =~
if the surface is decorated with surfactant monolayer - leads to bicontinuous
structures, consisting of a labyrinth of polar moieties interpenetrated by a
labyrinth of paraffin chains.
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We have also calculated the local~-global relation for symmetric bilayers and reverse
bilayers lining triply periodic minimal surfaces (ref. 1l1l). If the symmetry of the
surface is cubic, the resulting structures consist of two intertwined polar strut
networks separated by a bilayer forxr values of the surfactant parameter larger than
unity (V, phases), and two interpenetrating paraffin strut labyrinths for values of
the surfactant parameter between 1/2 and 2/3 (V; phases) - these structures are
tricontinuous. (Note that the results for V; phases shown here differ from those
shown in (ref. 11), due to an error in the latter calculations.)

The calculations for mesh structures are less quantifiable. Since these structures
are of intermediate topological character to strut and rod surfaces, the regions of
parameter space accessible to meshy; phases (with polar 2-d mesh networks in a
paraffin continuum) are expected to lie between the curves for monolayer struts and
reversed cylindexs. (The lower limit of chain concentration in this mesh phase
depends on the pore volume in 'the mesh structures). This morphology can only occur
for values of the surfactant parameter exceeding 2/3. It is easy to demonstrate that
mesh; phases (with 2-d paraffin networks embedded in a polar continuum) occur for
values of the surfactant parameter between 1/2 and 2/3. In this case, the layer
spacing (and consequent volume fraction) is independent of the surfactant parameter,
and the upper limit of chain fraction is determined by the pore volume fraction,

RELATIVE STABILITY OF GLOBAL GEOMETRIES

In order to compare these data with actual molecular mixtures,we must compute
relative values of the bending energies of actual surfaces, since the data so far
offer average values of the surfactant parameter only. Such computations are not
easy, since they require knowledge of the global surface geometry.

Consider the case of bilayers lining periodic minimal surfaces. Recent investigations
of Nitsche support the claim that minimal surfaces minimise the bending energy with
respect to deformations of these surfaces (ref. 13). The Gaussian curvature of
minimal surfaces necessarily varies from point to point. For V, morphologies, if the
chain length is constant (so that the bilayer is of constant thickness), the bending
energy scales with the square of these curvature deviations (assuming the bending
energy form given above). A relative estimate of these deviations is afforded by
comparing the actual surface to volume ratios of periodic minimal surfaces to the
ideal value, derived under the assumption of constant Gaussian curvature. Parallel
surface theory gives the result for ideal homogeneous minimal surfaces:

V[G3/2n(2—2g)]=3/4, where G denotes the normalised surface to volume ratio (=s/v2/3)
and g is the genus per topological unit cell®.

Actual wvalues of this index for some triply periodic minimal surfaces are (in
ascending order of bending energy):

surface genus (per topological u.c.) index
D 3 .7498
I-wp 4 .7425
gyroid 3 .7665
CLP (c/a=V2) 3 .7751
P 3 .7163
Neovius 9 .6640
F~RD 6 .6577

® In many cases the topological unit cell differs from the cell
detected in X-ray measurements.
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Since the local-global curves depend on the surface to volume ratio, wé can utilise
the actual values (rather than the "ideal" value), to plot the curves for a range of
triply periodic minimal surfaces. These curves are shown below.
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Thus, the symmetry of the bilayer must change upon dilution, in order to retain the
preferred molecular shape. Particular mesostructures are only expected to occur over
a few percent variation of chain volume fraction (for fixed molecular dimensions).
The most favoured cubic mesophases (due to their low bending energy cost) are
expected to be the gyroid (Ia3d)->D (Pn3m)~->I-WP (Im3m)->P (Im3m) surfaces on water
dilution. These symmetries are indeed most frequently observed in experimental
studies of bicontinucus V3 phases, having been seen in ionic and nonionic
surfactants, soaps and lipids (refs. 6,14).

Note that the detection of a certain symmetry (by, for example, X-ray scattering)
does not amount to a mesostructural determination. Other techniques must be used to
determine the surface topology. One such technique requires only the measurement of
lattice parameters as a function of the composition of the sample (ref. 15).

The experimental situation with regard to surfactant parameters less than unity, is
less clear. Tiddy et al. have reported the preferred formation of "intermediate"
anisotropic phases at the expense of cubic phases in numerous ionic as well as
nonionic surfactant-water mixtures as the chain length is increased (ref. 16). This
suggests that the film rigidity is indeed central to the stability of mesophases, a
conclusion supported by the observation that less flexible, fluorocarbon chains form
intermediate phases, while their hydrocarbon relatives form cubic phases (ref. 17).
For other surfactant-water systems, both intermediate (anisotropic) and cubic
mesophases occur. Thorough studies of the SDS-water system by Kékicheff have revealed
the presence of tetragonal and rhombohedral as well as a cubic mesophase (ref. 18).
Luzzati's group have also found tetragonal phases in dry long-chain calcium soaps
(ref. 19).

We propose that these intermediate phases can be understood in terms of surfactant
monolayers, 3just as cubic phases are a signature of curved bilayers. Explicit
calculations of relative bending energies for monoclayer geometries are difficult,
however some trends can be deduced. An approximate trend of increasing bending energy
with increasing genus for periodic minimal surfaces exists, with genus three and four
surfaces being most favoured. Analogous behaviour for monolayers (which need not lie
on minimal surfaces) suggests that mesh surfaces, of genus two, should be the most
favourable hyperbolic geometry. Here too, maximisation of symmetry is expected in
order to further decrease bending energy costs. On these tentative grounds, we expect
the formation of sgquare or hexagonal mesh structures, of both direct and reversed
morphologies (with paraffin and polar groups in the mesh networks respectively).
While periodic minimal surfaces exhibiting tetragonal and rhombohedral symmetries
occur, in general they are expected to incur a higher bending energy cost than their
cubic counterparts. Thus, the hypothesis that these intermediate phases are of
similar topology to cubic phases is at odds with the fact that intermediate phases
are preferred over cubic phases for higher film rigidities.)
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These trends suggest that the presence of bicontinuous cubic phases, as well as
rhombohedral or tetragonal intermediate phases, is indicative of the formation of
homogeneous hyperbolic interfaces, just as hexagonal phases can be taken to be a
signature of a parabolic interface. For example, the tetragonal (P~65%) =-> cubic
(Im3m)-> rhombohedral (®P~60%) transitions seen in the SDS-water system (ref. 18) can
occur with a variation of the value of the surfactant parameter between about 0.7 and
0.6 if the topologies are respectively mesh; -> Vi -> mesh;. The rhombohedral to
cubic transition can occur by a simple intergrowth of neighbouring mesh networks,
coupled with the formation of extra tunnels linking the mesh sheets. This process is
analogous to the continuous topological changes seen in DDAB ternary microemulsions
(ref. 20), and is a second order transition. The transition to the (reversed)
tetragonal phase involves a more dramatic rearrangement and is expected to be first
order, as measured.

DISCUSSION

This simple model requires more quantitative data to confirm its tentative
conclusions. However, it is striking that the symmetries and topologies of the better
characterised bicontinuous cubic phases, as well as the symmetries of intermediate
phases can be understood.

Since the model assumes a single preferred value of the surfactant parameter, it is
most applicable to "clean" systems. Extending the range of preferred surfactant
parameters is expected to disfavour homogeneous geometries. For example, the V;
phase in the lipid monoolein-water system disappears in less pure lipid mixtures.
Indeed, the homogeneous D-surface is lost in the mixed lipid system, and the gyroid
geometry extends through the V; phase region (ref. 21).

We expect the range of structures accessible to multicomponent systems to be larger,
including the possibility of higher topology bicontinuous bicontinuous phases (not
necessarily of cubic symmetry), due to the range of accessible molecular dimensions.
However, in order for these ordered mesophases to form, the bending moduli and
molecular dimensions must be reasonably constrained, to preclude melting.
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