
Pure & Appl. Chem., Vol. 65, No. 5, pp. 889-894, 1993. 
Printed in Great Britain. 
@ 1993 IUPAC 

Osmotic coefficients of non-aqueous electrolyte 
solutions at thermodynamic and McMillan-Mayer 
level 
J. Barthel and R. Neueder 
Institut fur Physikalische und Theoretische Cliemie der Universitat Regensburg. 
UniversitatsstraOe 31 , D-8400 Regensburg, Germany 
W. Kunz 
Laboratoire d'Electrochimie, Universitk Pierre et Marie Curie, 8 rue Cuvier, 75005 Paris. France. 

Abstract - Precise osmotic coefficients from absolute vapor pressure measurements on various 
-te solutions of organic solvents are given as t,he reference data for use in relative vapor 
pressure measurement methods. The availability of reliable data is used for a study of the 
interdependence of thermodynamic properties and theoretical and experimental SIcMilIan-Slayer 
level methods, such as chemical model and hypernetted chain calculations and small angle neutron 
scattering experiments. 

INTRODUCTION 
The best methods for the determination of osmotic coefficients from very low electrolyte concentrations to saturation 
are vapor pressure measurements. One of the most fre uently applied techniques is the isopiestic method (ref. 1). The 
drawback of this indirect method is the requirement 01 reference data which must be measured by absolute methods. 
Since 1980 a systematic study in our laboratory has provided the reference data for various organic solvent systems 
for practical use (refs. 2-6). 
Vapor pressure measurements yield osmotic coefficients a t  the model-free macroscopic (or thermodynamic) level. The 
information a t  this level are the data sets themselves, which are the input data needed for chemical engineering. 
On the,other hand, the availability of reliable osmotic coefficients a t  thermodynamic level from low concentration to 
saturation for a variety of non-aqueous solutions is a solid base for the study of electrolyte solution models. Most 
of our actual information on electrolyte solutions is based on Hamiltonian models at the MchIillan-Mayer (MM 
level. The solvent is considered as a homogeneous and isotropic medium in which the ions are imbedded. Tlieoretica 
methods at  this level are based on statistical mechanics, such as the chemical model (CM) concept or the hypernetted 
chain equation (HNC). Experimental techniques situated at  this level are static and dynamic light scatterin,g and 
small angle neutron scattering (SANS , They permit the determination of ion-ion correlation functions directly 
from the measurements via structure actors, provided that the ions have sufficiently mass. The interdependence 
of thermodynamic and MM levels will be shown in this paper by the comparison of osinotic coefficients obtained from 
various methods. 

1 

OSMOTIC COEFFICIENTS AT THE THERMODYNAMIC LEVEL 
For salt solutions the vapor pressure of the electrolyte E dissolved i the solvent S can be neglected. The gas phase is 
treated as the real pure gas S with the second virial coefficient B:(gf permitting the calculation of the solvent activity 
a, from the decrease of the solvent vapor pressure Ap at  electrolyte molality m [mol kg-'1 (ref. 2) 

where K*(l) is the molar volume of the pure liquid solvent, 
electrolyte concentration m and zero (pure solvent). The osmotic coefficient 
of a 1.1-electrolyte is given by the relation ( M s :  molar mass of the solvent) 

and p' are the vapor pressure of the liquid phase at  
on the molality scale for the solution 

lna, cp = -- 
2 m M , '  

Precise absolute vapor pressure measurements are executed in our laborator with the help of equipment which is 
described in ref. 7. Actually reference data a t  25OC of about 20 electrolyte soyutions of methanol (refs. 2,3 , ethanol 

saturation. 
The reproduction of the measured osmotic coefficients for use in chemical engineering and technical chemistry can be 
advantageously carried out with the help of Pitzer's equations (refs. 8-10) 

(ref. 4), acetonitrile (ref. 4), and 2-propanol (ref. 4) are known at  concentrations ranging from 0.03 mo 1 ~ l r n - ~  to 

mi.$, and 
A* dT '=-c 1 

2 
a-1 = f " + m B * + m 2 C * ,  fa=--  

l + b d T '  

where N A  is Avogadro's number, e is the elementary charge, k is the Boltzmann constant d' and i' are the density 
and permittivity of the pure solvent, zi is the charge number of ion i ,  and 6 ,  P(O), @(')I P ( ' ) ,  a l ,  a2 and C" are 
adjustable parameters. Experience shows that the parameters I),  a1 and LY~ can be kept constant for classes of 
electrolyte solutions, reducing the numbers of parameters which must be individually adjusted for an electrolyte 
solution to four (ref. 3). 
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Methanol: 
NaI 
NaBr 
NaC104 
KI 
RbI 
Et4NBr 
Pr4NBr 
B u ~ N I  
Bu4NBr 

Ethanol: 
N a1 
2-Propanol: 
N a1 
Acetonitrile: 

Et4NBr 
Pr4NBr 

Bu4NBr 
Bu4NCl 

Bu4NC104 

N a1 

B u ~ N I  

Table 1 gives a survey on the Pitzer parameters of all investigated non-aqueous solutions permitting the reproduction 
of the measured data  with a precision of about 1% (refs. 2-4). 

p(0) 

0.305321 
0.105766 
0.135468 
0.001875 
0.054520 
0.146567 
0.138803 
0.123951 
0.108319 

-0.002388 

0.153991 

0.099940 

-0.015 102 
2.284410 
0.042074 

0.072603 
0.040221 

-0.055027 

TABLE 1. Paran 
2 2  

0 
0 
0 
0 
0 

10 
10 
10 
10 
15 

10 

10 

0 
10 
10 
10 
10 
10 

= 

0.008 
0.002 
0.005 
0.006 
0.004 
0.009 
0.003 
0.004 
0.00.5 
O.OOT 

0.014 

0.009 

0.006 
0.008 
O.OOT 
0.008 
0.010 
0.010 

0.195320 
0.557814 
0.200269 
0.553097 
0.085276 

-0.809858 
-0.53701 1 
-1.336730 
-0.361489 
-2.115999 

0.6198422 

0.8397516 

0.007456 
-5.665390 
-0.734840 
-0.327851 
-0.608572 
-0.310654 

0 
13.9328 
2.07255 

ters of eqs. 3 a t  25OC 
p(2) I C" 

0.015844 
-2.488500 
-0.026001 

-8.70830 I 0.012212 

range 

0.02-0.8 
0.04-0.7 
0.06- 1.3 
0.02-0.7 
0.02-0.4 
0.04- 1.9 

0.04-0.9 
0.04- 1.7 
0.05-2.5 

0.07-1.6 

0.04-1.9 

0.06-0.8 

0.06-1.5 

0.05-2.4 0.041.6 I 
0.040.4 

A*: 1.294076 (Methanol), 2.00537 (Ethanol), 2.81616 (2-Propanol), 1.11204 (Acetonitrile) 
a1 = 2, b = 3.2 for all solvents 
Units: A*, q, az, b ( d m ) ;  / . ? ( O ) ,  /.?(l), /?(*I (kglmof); C" (kg2/mo12)  

CALCULATION OF OSMOTIC COEFFICIENTS AT THE MM LEVEL 
The Gibbs-Duhem equation for an electrol te solution at  molality rn and mean activity coefficient yk of a 1.1-electrolyte 
can be transformed with the help of eq.(2? to 

Eq.gb)  splits u the activity coefficient -y* of the solute into two parts, the degree of dissociation Q and the activity 
coe cient y i  o!the 'free' ions,in the solution. This division follows from the assumption of an equilibrium of cations 
C+ and anions A- and ion pairs [C+A-]O (or undissociated electrolyte molecules CA) in the solution 

d(rn@) = m dIn(rnTk), T* = a&. (4 a,b) 

and extends the application of eq.(4a) to partially associated or incompletely dissociated electrolytes (ref. 2) .  
The integration of eq.(4a) yields the relations that express the osmotic coefficient @ as a function of the activity 
coefficient 7k 

m 
@(m) = l+--/mdlnyk. 1 

0 

Eq.(6) is the starting equation of the CM calculations for osmotic coefficients, when the theoretical activity coefficient 
7f of the CM is inserted. 
The CM. is a Hamiltonian ,model taking into account long-range and short-range interactions in the solution by 
superposition of a Coulombic (WG(r)) and a non-Coulombic (Wij *(r)) mean force potential 

Wij(r) = W$(r)  + WG(r). (7) 

This model subdivides the space around an ion into three regions (refs. 11,12): 
(i) r 

(ii) a 5 r 5 R, within which a paired state of oppositely charged ions, the so-called ion pair. suppresses the Ion 

a, a being. the minimum distance of two oppositely charged ions, which is assumed to be the sum of effective 
cation and anion radii, a = a+ + a - ,  and 

interactions with other ions in the solution, where a 5 r 5 R is the region of the non-Coulombic p o t e n t i 3 - v  

The cutoff distance R of the short'range cation-anion interactions is generally identified with the upper limit of ion-pair 
association. Chemical evidence requires us to set R = a+ + a-  + n . s where s is the length of an orientated solvent 
molecule and n= 0. 1 or 2. 
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0.Q 

0.6 Fig.1. Simulation of the osmotic coefficient CP of Bu4NI solu- 

The  relevant quantities of the CM for the calculation of the osmotic coefficient, & and Kp' are given by the relations 
(5b) and (9) 

InTo = 0, 
dld' 

e2 m d  
K2 = 1 6 T q N ~ ( Y c ,  C = 

In& = -- K q  +In 

!I= 

l + n R  l + m M E '  

8 n ~ , ~ *  kT 1 + m M E I  
where d and d' are the density of the solution a t  molality m and zero (pure solvent), &I& is the molar mass of the 
electrolyte, and the other symbols were already explained. 
The  association constant Id") is generally used for application of the CM equation to the measurements. It can also 
be written in terms of the & potentials (ref. 12) 

R Kim) = 4n Nad' exp [- 7iT-1 A G i  / r2 exp [$] d r  , AG; = N A  W&. 

aMM is the osmotic coefficient in the equilibrium state of the solution characterized by the variables p (particle density), 
T temperature), p = p o  + II (pol external pressure; n, osmotic pressure). Experiments at the thermodynamic level 

p = p o  (generally the standard pressure lo5 Pa). Conversion is carried out by the relation (ref. 17) 
yie I d osmotic coefficients CP in the Lewis-Randall system characterized by the variables m (niolality), T (temperature), 

Integral equation methods assume interaction potentials of the type 

where uTj(r) is a short-range contribution which is either a step potential or a continuous potential. 
The  step potential (refs. 19,20) is analoguous to that of the CM for Wij(r), eq.(8), and also uses the quantities Wi; 
(i, j =+ or -) as adjustable parameters. The HNC parameters show the same pattern as the CM parameters, see 
Fig.2. Acetonitrile solution data are correlated by a common straight line, in contrast to methanol solutions where 
two lines are needed, one for alkali metal salt solutions, the other one for tetraalkylammonium salt solutions. Such 
different behaviour is also known from other CM studies as the result of the interaction of the lone electron pair of 
methanol oxygen with alkali metal ions and the solvophobic effect of the big tetraalkyl ammonium ions (ref. 20). 
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5‘ ’ Fig.2. Correlation of the non-Coulombic interaction energies 
AG;- = N A  W:- from low concentration CM and IINC step 
potentials carried out for every salt at equal cutoff distan- 
ces R+- = a+ + a- + s. Full points and broken lines: 
methanol solutions; squares and full line: acetonitrile solu- 
tions; l:NaCl, 2:NaBr, 3:NaI, 4:NaC104, 5:I<I, G:RbI, 7:CsI, 
b:Et,NBr, 9:BudNBr, 10:Pent4NBr, 11:Bu4NI, 12:Bu4NC104, 

/ 4  a /  

// - 1 2  - -10 

12 ii I 13:Bu4NC1, 14:Pr4NBr. 
- > *  

I G : - ( C M )  
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According to Friedmann et. al.(refs. 21-23) the continuous short-ran e potential ti*.(.) can be modelled by thc sum 
of a repulsive potential CORij(r), a cavity term CAVij(r), and a 8urney term EURij(r), = C O R j ( r )  ,+ 
CAVij(r) + GURij(r). The repulsive potential is a soft core potential in r-’ .  The cavity term CAVij(r) is a potential 
decreasing as r - ,  so as to reflect the polarization effects in spherical cavities around the ions. These two potentials 
use the ionic radii ai and a j  as the distance parameters. The Gurney term GURij(r)=Aij(V,,/V:), results from 
the overlap of the solvation spheres (Gurney spheres) if two ions have approached one another to distances less than 
the radii of their solvation spheres, Ri = ai + nis and R j  = a j  + njs; Vmu(Ri, R j ,  r )  is the overlap volume at  a 
center-to-center distance r of the ions, V,. is the molar volume of the pure solvent, and Ai j  are tlic IIelmholtz energies 
to transfer the solvent from the overlap region to the bulk solvent. 
The Helmholtz energies Aij are the adjustable parameters of the Friedman-Gurney model, generally arbitrarily chosen 
to fit the experimental osmotic coefficients. Their non-Coulombic parts are not the results of explicit averaging over 
the solvent properties. They can be considered as ‘effective’ empirical potentials a t  the MM level whose parameters 
are flexible enough for a satisfactory data reproduction. Nevertheless, such ‘arbitrary’ potentials do not merely serve 
to represent the experimental data; statistical mechanics provides a link between these MM potentials and ion-ion 
correlation functions yielding the information on the solution structure. 
Integral equation techniques directly link the interaction potential uij(r) to the pair-correlation function gij ( r )  
(refs. 20,21,24) 

The HNC equation successfully approximates Tij with the help of the total and direct correlation functions, hij(r) 
and cij ( r )  

The total correlation function hij(r) is related to the pair-correlation function gij(r), hij(r)=gij(r) - 1; the direct 
correlation function cij(r) is defined by the Ornstein-Zernicke equation. 
Eqs.(l4) can be solved iteratively for gij(r) as afunction of uij.(r). Convergency problems due to Coulombic interactions 
are overcome with the help of appropriate changes of the original IINC algorithm (refs. 5,25). 
A critical judgement on the MM-level calculations must take into account that a multitude of MM-level Hamiltonian 
models can always be found for the same system (refs. 12,26). Fig.3 shows the reproduction of the osmotic coefficient 
of the system NaBr/methanol with the help of calculations at  low electrolyte concentrations and IINC-calculations at  
high concentrations with a continuous and a step potential. 

d 

0.85 

Fig.3. Osmotic coeflicients of NaBr in  methanol (25OC) 
full line: experimental data 
broken line: Chemical Model 

HNC Step Potential A Continuous Potential 

0.80 
0 0.2 0.4 0.6 0.8 

m 
mol kg-’ 
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When the gij(r) functions do not correctly correspond to the interaction potentials the calculated free energy results 
may be incorrect (refs. 27,28). A verification by BD (Brownian Dynamics) simulations is then advisable (ref. G ) ,  
especially for the aqueous solutions of higher charged electrolytes or the low permittivity solutions of small ions. 
In some cases osmotic coefficients alone may not be sufficient to determine a unique interaction model. Quite different 
potential models and hence different sets of gij ( r )  can correctly describe osmotic coefficients over wide concentration 
ranges. 
On the other hand, calculated osmotic coefficients are sensitive to slight changes in the potential parameters. This 
means that models which qualitatively suggest a very similar physical picture may lead to distinctly different osmotic 
coefficients, especially a t  higher salt concentrations. 

EXPERIMENTAL DETERMINATION OF OSMOTIC COEFFICIENTS AT THE MM 
LEVEL 

The coherent scattering intensity I ( q )  of the ions in solution is a function of the wave length A of the incident neutron 
beam and of the scattering an le 0 which can be related to the so-called wave-number transfer, q = (4a/X)sin(0/2). 
The scattering intensity directfy reflects the MM pair-correlation function gij (r) (refs. 20-31) via the structure factor 
Sij ( q )  

I ( q )  = C C ( s i  - so) K (sj - so)  4 Fi(q)Fj(q)Sij(q), ( 1 6 4  

where si,sj, and so are the scattering length densities of the ions i ,  j and of the solvent, K and V, arc the molar 
volumes, and 

I sij(q) = Pibij -I- PiPj sin(qr)[gij(r) - 11 r dr. 
sin(qai) - qai cos(qoi) 

Fi(q)  = 3 
(qai)3 

F;(q)  is the form factor amplitude of a spherical ion i with radius ai. The structure factor Sij ( q )  is the Fourier transform 
of the MM pair-correlation function gij(r) and hence can be directly compared to the experimental scattering spectra. 
However, there is also a direct relation between the osmotic coefficient and the scattering intensity (ref. 31). The 
extrapolation of eqs.(l6) to zero wave number transfer, q + 0, yields the thermodynamic limit 

Electroneutrality requires that S++(O) = S+-(O) = S--(O) = S(O), yielding 

I ( 0 )  = [(s+ -so) v+ + (s- - s o )  L I Z  S(0) = [(s - s o )  VI2 S(O), (18) 

where V = V+ + V- is the partial molecular volume of the electrolyte and s = s+V+ + s-V-)/V is its scattering 
length density. S(0) is related to the osmotic pressure via the osmotic compressibi \ ity xoJm 

Substitution of Il, eq.(llb), in eq.(l9a) yields the relation between I ( 0 )  and the osmotic coefficient 
[moZ dm-’]) 

( c ,  molarity 

ac 
a(cQMM 

I ( 0 )  = 1000 [(s -SO) VIZ NAC 

0.2 

Fig.4. Absolute intensity I(0) of the coherent contribution of 
n-Pent4NBr (in 2-PrOH) to neutron scattering at q=O (full 
points). The full line was calculated from experimental vapor 
pressure data QM”(ref. 31) according to eq.(20). 

0 0.5 1.0 1.5 
C 

mol dm-3 

Fig.4 shows the comparison between I ( 0 )  extrapolated from a scattering experiment on solutions of n-Pent4NBr in 
2-propanol and I ( 0 )  calculated with the help of 4 2 0 )  from experimental osmotic coefficients determined by vapor 
pressure measurements (ref. 31). Because of the high precision of the (ac/ac@)-data from vapor pressure measurements 
(ref. 31) Fig.4 reflects the accuracy of the absolute scattering measurements showing that precise measurements of 
osmotic coefficients can be used for exact calibration of scattering data. This is of special interest at high electrolyte 
concentrations where the contributions from multiple scattering to the neutron spectra are important. 
Fig.4 also satisfactorily explains by the comparison with scattering intensities from thermodynamic data the surprising 
result that the experimental scattering intensities decrease at salt concentrations beyond 0.60 mol dm-3. 
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Fig.5. Comparison of the coherent neutron scattering spectra 
of Bu4NBr/I120 solutions (full points) at electrolyte conccn- 
trations of 0.30 mol dm-3 (1) and 0.15 mol dm-3 (2) with 
model calculations (full lines 1 and 2). For explanations see 
the text. 

Figs.5 show experimental SANS spectra of aqueous n-Bu4NBr solutions (ref. 32). The theoretical curves of Fig.5a arc 
calculated with the help of gi,(r) functions published by Ramanathan et. al. (ref. 22) who adjusted the underlying 
Friedman-Gurney potential to the osmotic coefficients from vapor pressure measurements reported by Ku ,(ref. 33). 
The predicted scattering intensities at low scattering angle are in good agreement with the measured scattering data. 
The theoretical curve at  the higher electrolyte concentration differs significantly from the experimental one. Another 
adjustment of the potential parameters which takes into account both the vapor pressure and the scattering data yields 
the results shown in Fig.5b (ref. 32). This comparison illustrates a feature of HNC calculations previously discussed. 
The knowledge of the concentration dependence of osmotic coefficients is important, but in some cases this reference 
is insufficient to distinguish between different assumptions on ionic distribution functions and information from other 
experimental techniques is needed. 
Various examples where experimental and theoretical methods are combined with the information from osmotic 
coefficients are given in refs. 6,30. 
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