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Abstract - The speed of sound u is a mechanical property of a fluid and is linked 
to thermodynamics by the isentropic compressibility. Very precise values of u can 
be obtained from measurements of the radial resonance frequencies of a spherical 
resonator. Virial coefficients (both acoustic and p ,  V, T ) ,  heat capacities, the gas 
constant R, and thermodynamic temperature T are among the thermophysical 
properties that may be studied using the speed of sound. In addition, analysis 
of the loss mechanisms, which are observed as the resonance half widths, gives 
various transport properties, especially the relaxation times for energy transfer 
between the various modes of motion of the gas molecules. 

INTRODUCTION 

The use of acoustic methods to study the properties of fluids has a long history. For example, the 
speed of sound w a s  used to establish that argon was  monatomic. The first period of intense activity 
(ref. 1) followed the development of the Pierce oscillator (ref. 2) and, similarly, the impact of modern 
electronics resulted in precise apparatus and their use over wide ranges of temperature and pressure 
(ref. 3 - 6). All this work was based on cylindrical cavities but, more recently, spherical resonators 
have been developed into highly precise experimental tools (ref. 7 - 11). Although the construction 
of a sphere is more difficult, the advantages include the sharpest possible resonance frequencies 
(a result of the favourable surface-to-volume ratio), an insensitivity to geometric imperfections, 
and solutions in closed form for various corrections. Currently, the theory (ref. 8 - 11) gives 
corrections for the thermal boundary layer (including corrections for the curvature of the surface), 
the elastic response of the cavity, bulk dissipation in the gas, openings in the resonator's wall, and 
the temperature jump effect. The radial modes are especially useful because they have no viscous 
boundary layer which otherwise would be an important loss mechanism. These factors combine 
to make spherical resonators unrivaled instruments for measurements on gases especially at  low 
pressures. 

The isentropic compressibility ICS provides the thermodynamic link between the speed of sound u 
in a fluid and its equation of state 

u2 = (dp/dp)s  = l/pIC;s (1) 

where p is the mass density. For a gas, it is convenient to expand u2 as a series in the amount 
density Pn = n / V  

u2 = AO t Alpn t A2p; t + . (2) 

which is the acoustic analogue of the virial equation of state 

p/pnRZ" = 1 t Bpn t Cp; + . (3) 
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The speed of sound is obtained from the experimental resonance frequencies 
gon of the radial modes using 

and half widths 

v o n ( 4 - 4  = (fon + *son) - C,(N t *s), (4) 

where von is an eigenvalue and a is the radius of the sphere. The summation represents a aeries 
of corrections that are treated as perturbations. Note that the speed is obtained as (u /a )  so the 
coefficients of equation (2) determined in the analysis of an isotherm are (A, /u2)  and not A,. 

THERMODYNAMIC PROPERTIES 

Virid coefficients 
The second acoustic virial coefficient is defined by 

Pa = RTAI /A0 (5) 

Pa = 2 3  + 2(7Pg - l)T(dB/dT) + ((7Pg - l)'/rPB) T2(d2B/dT2). (6) 

which is related to the second ( p ,  V, 2') virial coefficient B by a second-order differential equation: 

Here +'g = Cf,&/Cpm, is the ratio of the perfect-gas heat capacities. The intermolecular potential 
energy U may be obtained from pa by integration (ref. 12) and, subsequently, other properties 
such as B may be calculated from U. However, to assess the internal consistency and to allow a 
comparison between acoustic and (p, V, 2') virial coefficients, it is usually easier to avoid the direct 
solution of equation (6) by assuming a functional form for B such as 

B = CI t c2 exp(ca/T) 

which may be derived from the square-well potential . 
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Fig. 1. Virial coefficients for Xe. (a) Deviations of Pa from equation (7): .(Pa) = 0.06 cm3 mol-I 
or less than 0.05 per cent. The error bars are 1 standard deviation. (b) Deviations of other results 
from the acoustic measurements. 0 ref. 14, 0 ref. 15, ref. 16, ref. 17, A ref. 18, v 
ref. 19, 0 ref. 20. 

Figure l (a)  shows values of Pa for xenon (ref. 13) in the temperature range 190 to 360 K as deviations 
from equation (7): the results are internally consistent a t  the same level as the very small estimated 
errors in Pa. Deviations from literature values pf 3, which show considerable scatter, are plotted 
in Fig. l (b)  with a much less sensitive ordinate scale: all the results trend towards the same values 
at high temperatures. In a similar way, third acoustic virial coeficients r., are obtained from A2 
but methods of obtaining estimates of the third ( p ,  V, 2') virial coefficient C from 7. are less well 
established. 
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Properties from the limit of ua as p + 0 
The leading term of equation (2) is given by 

A0 = RTyPg/M. ( 8 )  

Consequently, the speed of sound allows determination of rpg, and hence the heat capacities by 
a non-calorimetric method, the composition of a binary mixture through the molar mass M, and 
metrological measurements of the gas constant R and thermodynamic temperature T. 

Heat capacities. Since (Aola') is the quantity obtained from analysis of an isotherm, the ratio of 
the heat capacities 

YPB = ( A o / u ' ) ( M / R T ) ~  (9) 

requires the radius a. However, calibration measurements with a gas of known 7Pg, such as argon, 
gives 
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Measurements with nitrogen between 80 and 373 K allowed a detailed test of acoustic determination 
of heat capacity. For nitrogen the characteristic temperatures for rotational and vibration are about 
3 K and 3300 K, respectively. Consequently, it might be expected that rotation would be classical 
and vibration essentially unexcited; hence CpsBm should be 3.5R. However, our experimental heat 
capacities exceed 3.5R by a small amount (always less than 0.0015R) as Fig. 2(b) shows. The 
explanation is not, as one might think, the vibrational contribution, shown as the dashed curve in 
Fig. 2(b), because the experimental C;$ are dynamic values obtained at  frequencies well above the 
high-frequency limit for dispersion (the relaxation time 7 m 1 s for conversion between translation 
and vibration is very long for N'). Rather the deviation of C,,/R from 3.5 results from centrifugal 
distortion. The solid curve in Fig. 2(b) was calculated from statistical mechanics using spectroscopic 
valuesof the rotational constants and there is excellent agreement within our estimated experimental 
error of about 10-5R except, perhaps, a t  the highest temperature where once again purity problems 
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are likely due to nervousness a t  degassing the resonator and its transducers at temperatures much 
above 373 K. 

The gas constant and thermodynamic temperature. Measurements with a gas of known 7Pg and M 
at  the temperature T(H20, s+l+g) of the triple point of water (known exactly) provide a route to R. 
Acoustic determinations using cylinders (ref: 26) and spheres (ref. 10) have both been reported. In 
each case, the work probably represents the ultimate that can be achieved using current technology, 
but the work with a spherical resonator was more accurate by a factor of 5 demonstrating the 
superiority of spherical geometry at low pressures. 

Again both cylinders (ref. 3) and spheres (ref. 27) have been used for primary acoustic thermometry 
with the necessary length measurements obtained from optical interferometry or dilatometry with 
mercury. However, the strong analogy that exists between acoustic and electromagnetic waves 
within a cavity permits an interesting alternative. An electromagnetic form of equation (4) may be 
written with the important difference that the speed of light co in vacuum is defined exactly, so a 
measurement of the microwave resonance frequency fc is equivalent to a measurement of the radius 
a. If the measurements are referenced to the temperature TI = T(H20, s t l t g )  then 

T/Tr = {(Ao/a2)T / ( A O / ~ ’ ) ~ )  x ( f ~ l f r ) ;  t . . (12) 

where the microwave resonance frequencies fc have been used in place of a and the . . . represent a 
series of corrections that must be made. So far we have applied this approach to temperatures over 
the range 100 to 373 K. 

TRANSPORT PROPERTIES 

The resonance half widths are the result of loss mechanisms which depend on transport properties 
such as thermal conductivity K and viscosity v.  To determine these quantities it is usually necessary 
to consider acoustic modes of different symmetry. In a sphere, for example, the viscous boundary 
is absent for radial modes but the non-radial modes have both thermal and viscous contributions. 
However, the design of a spherical resonator minimizes these effects and only rough estimates of n 
and 11 can be obtained. Cylindrical resonators, with their much larger boundary layers, have been 
used to determine these quantities (ref. 3, 26). 

An additional loss mechanism is possible for polyatomic molecules. The exchange of energy between 
the translational modes and the internal vibrational modes is often slow on a molecular time scale 
and may be characterized by a relaxation time r. When the angular frequency w = 2sf becomes 
comparable with l / r ,  the vibrational modes do not reach equilibrium during the acoustic cycle and 
the effective heat capacity is reduced 

c p ( w )  = c p  - 8wrC*b /( 1 $- W r )  (13) 

where C,jb is the vibrational contribution. Consequently, 7 increases with frequency as does the 
observed speed. If a fraction A = c h b / c p  of the total heat capacity relaxes with a time constant 
r ,  then 

7(w)/7 fil wr(7 - 1)A W(1 - 7A) - 8 1  (14) 

from which it is clear that the imaginary part of { 7 ( ~ ) } ‘ / ~ ,  which determines the contribution of 
vibrational relaxation to the half width g, is proportional to wr; whereas the speed dispersion, the 
real part of {7 (w) } ’ I2 ,  varies as ( w ~ ) ~ .  Consequently, provided WT is small compared with unity 
(and equation 14 incorporates this assumption), estimates of r can be made from the experimental 
half widths with sufficient accuracy for the difference {u(w = 0) - ~ ( w ) }  to be calculated with 
negligible error. If measurement of u is the principal objective, then the speed dispersion io merely 
another correction that must be made. However, these relaxation processes are a valuable source of 
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information for the transfer of energy within molecules and molecular collisions. Since the transfer 
is possible only during a collision (the number of which will be proportional to l /p),  it is rp  (rather 
than r alone) that is most nearly constant and ( f / p )  is the quantity one adjusts to sweep through 
a dispersion curve. Consequently, the capability of a spherical resonator to work at low pressures 
compensates to some extent for the low frequencies and there is good agreement between our values 
of r p  and those obtained at  much higher frequencies (ref. 28). 

MEASUREMENTS UNDER DIFFICULT CONDITIONS 

Since the speed of sound is formally independent of the amount of substance, acoustic methods may 
be used to study the equation of state of a gas at low reduced temperatures where more conventional 
methods are often unreliable due to the effects of adsorption. A set of measurements for methanol 
illustrates the performance of the technique at low pressures. Figure 3(a) summarizes the results 
which cover the temperature range 280 to 360 K. For the lowest isotherm, the vapour pressure of 
methanol is only about 5 kPa and work was restricted to pressures below 3 kPa. These are rather 
unfavourable conditions since the correction for the thermal boundary layer reached 480x of f o , ~  
for the first radial mode at a pressure of 1 kPa. Nevertheless, values of the speed of sound obtained 
from individual modes still agree to about 4 0 ~ 1 0 - ~  of u and the whole isotherm wad internally 
consistent to about the same level. No doubt work could be extended to still lower pressures using 
appropriate transducers and signal averaging, but 1 kPa probably represents the practical limit of 
the experiment at this stage. However, it is not easy to visualize a ( p ,  V , T )  experiment with a 
relative precision of for a polar fluid below 3 kPa. 
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Fig. 3 (a) Isotherms between 280 and 360 K for methanol (ref. 29). (b) Deviations from a smoothing 
equation for (0.85CH*+O.l5CzHs) a t  300 K; the error bars are the standard deviation of < u > at  
each pressure (ref. 30). 

At high pressures the problems are rather different. The shell motion now dominates the corrections 
to the observed resonance frequencies and, at the highest pressure of the isotherm shown in Fig. 
3(b) for the mixture (0.85CHl t 0.15C2Hs), the shell correction is about lo-' of the observed 
frequency. Elastic anisotropy and minor shell resonances create problems, and considerable care 
must be exercised in selecting the appropriate modes for study. The deviations of the experimental 
results from a smoothing equation with 5 adjustable parameters are shown in Fig. 3(b) and we see 
that the agreement between modes at a particular pressure, and the consistency of the isotherm 
as a whole, is better than Since the shell correction is approximately linear in density, the 
performance of the experiment can be estimated at higher pressures. Thus an internal consistency 
of a few parts in of u2 should still be possible in a stainless steel resonator for argon at 20 MPa 
or methane at 50 MPa (densities of about 300 kg m-3). However, other acoustic techniques, such 
as variable-path length cylinders and pulse methods, with their use of quartz transducers would 
be more appropriate, not least because the sample volume is smaller, as the density of liquids is 
approached. 
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