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Abstract: Recent synthetic works on pheromones are described, the key steps in which are the 
enzymatic desymmetrizations of meso-diacetates or a meso-diol to give optically active 
monoacetates. The target molecules are the pheromones of the gypsy moth (3), the ruby tiger 
moth (4), the African palm weevil (9, the Asian palm weevil (6), the Israeli pine bast scale 
(7), and the spined citrus bug (42). The relationships between absolute configuration and 
bioactivity of pheromones are also summarized. 

INTRODUCTION 

The first insect pheromone whose structure was elucidated by Butenandt in 1959 was an achiral alcohol 
bombykol, the female-produced silkworm moth pheromone (Fig. 1). Subsequently, a number of chiral 
pheromones such as exo-brevicomin, the western pine beetle pheromone, were identified in late 1960’s. 
The stereochemistry of a chiral pheromone must be investigated so as to establish the absolute 
configuration of the naturally occurring material and also to clarify the relationship between 
stereochemistry and pheromone activity. In 1973, the dermested beetle pheromone, which was 
levorotatory, was shown to be the (R)-enantiomer, because the synthetic (S)-isomer was dextrorotatory 
(1, 2). The enantiomers of exo-brevicomin were synthesized in 1974 from the enantiomers of tartaric 
acid (3), and only the (+)-isomer was bioactive (4). 
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Fig. 1. Structures of some insect pheromones 
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Fig. 2. Pheromones synthesized from epoxide 2 

Many pheromones are volatile, and em-brevicomin is an extremely volatile compound. There are, 
however, some pheromones which are non-volatile glucosides. The oviposition-deterring pheromone of 
the European cherry fruit fly is one of them (5).  This taurine-containing glucoside was synthesized by 
three groups (6-8). Other glucoside pheromones are blattellastanosides A and B, which are the 
aggregation pheromone of the German cockroach (9). These steroid glucosides were synthesized by us 
(10). In this lecture I will talk on the new syntheses of volatile pheromones by employing enzymes as 
tools to desymmemze meso-compounds. The relationship between absolute configuration and 
pheromone activity will also be discussed. 

PHEROMONE SYNTHESES VIA AN EPOXY BUILDING BLOCK 

Desymmetrization of 1 (Fig. 2) with pig pancreatic lipase (PPL) gives 2 (11, 12), which serves as a useful 
building block for the syntheses of not only pheromone epoxides (3 and 4) but also pheromone alcohols 
(5 and 6 )  and a ketone (7). 
Syntheses of Pheromone Epoxides 
Our syntheses of pheromone epoxides 3 and 4 are straightforward as shown in Fig. 3 (12). Because the 
enzymatic desymmemzation of 1 gave 2 of imperfect enantiomeric purity (90.8% e.e.), 2 was converted 
to crystalline 10, which was purified by recrystallization. Chain-elongation of 9 (-100% e.e.) via 
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Fig. 3. Synthesis of pheromone epoxides 3 and 4 
Reagents: (a) Ac20, CgHgN (quant).-@) MCPBA, CH2C12 (98%).+c) PPL, (i-Pr)zO, phosphate buffer (pH 7) 
(71%).-(d) TBDPSC1, DMAP. Et3N, CHzC12 (quant).-(e) K2C03, MeOH (98%).-(0 DNBC1, C5H5NEt20;recryst'n 
(53%).-(g) K2CO3, THFNeOH (99%).-(h) TsC1, DMAP, Et3N, CH2C12 (quant).-(i) [Me2CH(CH2)3]2CuLi, E 9 0  
(74%).-(i) (n-Bu)qNF, THF (92% for 13).-(k) (n-CgH19)2CuLi. Et;?O (65%).-(1) (n-C10H21)2CuLi. Et2O (75%).-(m) 
12, Ph3P, imidazole, EQO/MeCN (83% for 2 steps).+) (Z)-Me(CH2)4CH=CHMgBr, CuI, HMPARHF (86%). 
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Fig. 4. Synthesis of pheromone alcohol 5 
Reagents: (a) MCPBA. CH2C12 [71% for (2Rt.3R*)-18, 72% for (ZS*.3R*)-U].-(b) EtMgBr. CuBr, Et2O [25% for 
(f)-syn-5 with 22% of 19; 12% for (f)-anti-S with 17% of 2O].-(c) MyCuLi, Et2O [68% of 21 and 23% of 22; 68% for 
(3R,4R)-26 85% for 28].-(d) Me3A1, pentane/CH2C12 (24% of 21 and 62% of 22).-(e) TsC1. CgHgN.-(f) DHP, TsOH, 
CH2C12.-(g) (n-Pr)2CuLi, Et20 140% for 24; 40% for (3S,4S)-Z6].-@) (n-Bu)qNF(94% for 25; 96% for 29).-(i) TsOH, 
MeOH [97% for (3R,4R)-5; 85% for (3S,4S)-5]. 

tosylate 11 by means of organocopper chemistry yielded (+)-disparlure (3, the pheromone of the gypsy 
moth, Lymantria dispar) and the pheromone 4 of the ruby tiger moth, Phragmatobia fuliginosa. The 
present synthesis (15.8% overall yield) of 3 is more efficient than our previous ones by either starting 
from (+)-tartaric acid (1.1% overall yield) (13, 14) or by employing the Sharpless asymmetric 
epoxidation (12.2% overall yield) (15, 16). The epoxy building block 9 can also be employed in the 
synthesis of other pheromone epoxides. 
Syntheses of Pheromone Alcohols 
Palm weevils are the major pests of coconut and oil palm crops. In 1993 Rochat er al. identified 
3-methyl-4-octanol (5 )  as the male-produced aggregation pheromone of the African palm weevil 
(Rynchophorw phoenicis) in Ivory Coast (17). Fig. 4 demonstrates the way how we clarified the relative 
and absolute configuration of the natural 5 by stereoselective syntheses coupled with GC analysis (18). 
In order to determine the relative configuration of the pheromone, the racemates of both syn- and anti-5 
were synthesized from (E)-  and (Z)-17. Their GC comparison with the natural pheromone revealed it to 
be syn-5. Both the enantiomers of syn-5 were then synthesized from the chiral building block 9. 
Cleavage of 9 was executed under two different conditions. When 9 was treated with lithium 
dimethylcuprate (19), the major product isolated in 68% yield was 21, and the regioisomer 22 was the 
minor product (23%). On the other hand, treatment of 9 with mmethylaluminum (20) yielded 22 (62% 
yield) as the major product with 24% of 21. After chromatographic separation, these two regioisomers 
21 and 22 were converted into (3R,4R)-5 and (3S,4S)-5, respectively, by employing organocopper 
chemistry as shown in Fig. 4. GC analysis of the enantiomers of syn-5 was carried out on a Cyclodex-B 
column. Coinjection of the synthetic products with the natural pheromone proved it to be (3S,4S)-5 (18). 
In the same manner, the enantiomers of syn-4-methyl-5-nonanol (6), the major component of the 
male-produced aggregation pheromone of the Asian palm weevil (Rhynchophorus vulnerarw) (17), were 
synthesized, and the natural pheromone was shown to be (4S,5S)-6 (21). 
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Fig. 5.  Synthesis of pheromone ketone 7 
Reagents: (a) PivCI, C5HgNjCH2C12 (93%).-(b) HF, (n-Bu)qNF. THF (91%).-(c) (COC1)2,DMSO. Et3N. CH2C12 [69% 
for 34; 96% for 38; 845 for (R)-7 (2 steps)].-(d) PhjP=C(Me)C02Et, THF (91%).-(e) Me3Al (10 eq), H20 (6 eq), 
CH2C12 (92%).-(f) TBSCI, imidazole, DMF (92%).-(g) (i-BukAlH, hexane/Et20 (89% for 37; 93% for 40).-(h) 
(EtO)zP(O)CH2C02Et, n-BuLi, THF (72%).-(i) 1) S03GjHgN, THF. 2) LiAlH4 (39%).-(i) (n-Bu)qNF, THF. 

Syntheses of a Pheromone Ketone 
(2E,4E,8E)-4,6-Dimethyl-2,4,8-decatrien-7-one (7, Fig. 5 )  is the major and highly active component of 
the female-produced sex pheromone of the Israeli pine bast scale (Matsucoccus josephi), which is the 
pest of pine forests in Israel (22). The minor component 30 is much less active than 7. Although a 
synthesis of (f)-7 was reported recently (23), the absolute configuration of the natural 7 has remained 
unknown. Our experience in the syntheses of related pheromones such as the pheromone of Matsucoccus 
feytaudi 31 (24) and the pheromone of Matsucoccus matsmurae (matsuone) 32 (25) suggested that the 
pheromone of Matsucoccus josephi might be (R)-7. The chiral building block 9 was therefore converted 
to (R)-7. The enantiomerically pure 9 furnished epoxy ester 35, which was treated with 
trimethylaluminum in the presence of a small amount of water (26) to give 36. Dialdehyde 38 derived 

Fig. 6. Synthesis of pheromone hemiacetal42 -1 
Reagents : (a) 1) EtMgBr. THF EtCHO; 2)p-TsOH, MeOH (74%).-(b) LiAlH4, NaOMe, THF (89%).-(c) TBSCI, DMAP, 
Et3N, CH2Cl2 (99%).-(d) (E)-EtCH=CHCH2C02H, DCC, DMAP. CH2C12 (87%).-(e) 1) LiN(SiMe&, H M P W H F  2) 
TMSCl; 3) dil.HC1.-(f) LiAlH4. THF [89%; (f)-48:meso-48=11:89].-(g) Ag2CO$elite, C6H6 (85%).-(h) (i-BukAlH. 
toluene (88%).-(i) AqO,  DMAP, CsHgN, CH2Cl2 (quant).-Q) lipase AK. phosphate buffer (pH 7) (89%).-(k) Jones 
CrO3. M y C O  (70%).+1) 1) K2CO3, MeOH; 2) dil.HC1; 3) EtO2CN=NC02Et, Ph3P. THF (81%). 
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from 36 was submitted to chain-elongation reaction at the both ends of the molecule to give diester 39. 
The corresponding diol 40 was deoxygenated (27) at the both ends to give 41, whose deprotection and 
oxidation afforded (R)-7. Synthesis of (S)-7 is in progress. The bioassay of (R)-7 is now under way by 
Dr. E. Dunkelbaum in Israel. 

SYNTHESIS OF THE PHEROMONE OF THE SPINED CITRUS BUG 

The spined citrus bug (Biprorulus bibax) is an important pest of citrus in southern Australia (28). Oliver 
et al. (29) isolated and identified a new hemiacetal 42 (Fig. 6) as the major component of the 
male-produced pheromone of B. bibax. The absolute configuration of the natural 42 was shown to be 
3R,4S (30, 31). We became interested in developing an efficient synthesis of (*)-42 so as to use it 
practically. Ireland's ester-enolate Claisen rearrangement (46447) (32) was successfully employed for 
that purpose as shown in Fig. 6, and (*)-42 was bioactive when combined with other pheromone 
components like linalool, nerolidol and farnesol (33). The overall yield of (f)-42 on the basis of 43 was 
39% (10 steps) (31). 

We then executed desymmetrization of meso-50 by using lipase AK (31). Desymmetrization of a 
meso-diacetate like A with lipases is known to give a monoacetate like B (34-36). Accordingly, meso-50 
was converted to (3S,4R)-(-)-49 via 51. The absolute configuration of (-)-49 was supported by another 
synthesis of itself by employing Corey's CBS reagent [(R)-5,5-diphenyl-2-methyl-3,4-propano-1,3,2- 
oxazaborolidine (54)] for the reduction of 53 to give (S)-45b [79% e.e. as estimated by the HPLC 
analysis on Chiralcel OJ of (S)-45c] as shown in Fig. 7 (31). The stereochemistry of (S)-45b was proved 
by its conversion to the known lactone (9-57 (38). Esterification of (S)-45b with (Q-3-hexenoic acid 

OH a o  b OR e OAc 9 OAc h 
-COzH - A O T B S  - -0TBS 4 -0TBS - -OR - 

(f)-45b 53 (S)-45b R-H (S)-55a R=TBS (5)-56 
d b ( S ) - 4 5 c  R-DNB ' L ( S ) - 5 5 b  R=H 

Fig. 7. Synthesis of pheromone hemiacetal42 -2 
Reagents : (a) PDC, MS 3A, CH2C12 (83%).-(b) 54, BH3.THF, THF (65%).-(c) DNBC1, CgHgN.-(d) AcO2, C5H5N 
(92%).-(e) H2, Pd-C, n-hexane.-(f) aq.HF, MeCN (90%. 2steps).-(g) Jones CrO3, Me2CO.-(h) 1) K2CO3, MeOH; 2) 
p-TsOH, CgHg (51%. 3 steps).-(i) (E)-EtCH=CHCH2C02H, DCC, DMAP, CH2C12 (91%).-(i) 1) LiN(SiMej)p, 
HMPARHF; 2) TMSC1; 3) dil.HC1.-(k) 1) aq.HF, MeCN 2) Et02CN=NC02Et Ph3P, CgHg [32% based on (9-461.-(1) 
lipase AK, CH2=CHOAc (63%).-(m) 1) K2CO3, MeOH, then dil.HC1; 2) (R)-1-naphthylethylahe, recryst'n (51%). - (n) 
Et02CN=NCO2Et, Ph3P, THF (92%).-(0) (i-Bu)2A1H9 toluene (99%).-(p) 1) K2CO3, MeOH, then dil.HC1; 2) 
(S)-1-naphthylethylahe, recryst'n (57%). 
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gave (S)-46, which yielded (2S,3R)-47 through the Claisen rearrangement. Deprotection-lactonization of 
(2S,3R)-47 furnished (3S,4R)-49. This lactone was levorotatory, supporting the previous assignment of 
(3S,4R)-configuration to (-)-49 on the basis of the enantioselectivity of lipase action. 

Finally, we prepared enantiomerically pure (3R,4S)-42, the natural pheromone, and its antipode. 
Acetylation of meso-48 with vinyl acetate in the presence of lipase AK gave ent-51 of 89% e.e., which 
was purified by recrystallizing (+)-58. Reduction of (+)-49 with diisobutylaluminum hydride gave the 
natural pheromone (3R,4S)-42. Similarly, (2S,3R)-52 was purified by recrystallization of (-)-58, which 
furnished the unnatural enantiomer (3S,4R)-42 of the pheromone. These enantiomers were bioassayed by 
Dr. D. G. James in Australia. The natural enantiomer (3R,4S)-42 was highly attractive against B. bibax, 
but curiously the unnatural enantiomer was also a half as active as the natural one. 

mOnly  one enantiomer is bioactive, and the antipode 
does not inhibit the action of the pheromone. 
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Fig. 8. Relationships between absolute configuration and bioactivity of pheromones 
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RELATIONSHIPS BETWEEN ABSOLUTE CONFIGURATION AND BlOACTlVlTY 
OF PHEROMONES 

As shown in Fig. 8, the relationships between stereochemistry and pheromone actfvity are not simple but 
complicated. The precise meaning of this diversity may be clarified only after more extensive 
investigation of the nature of pheromone perception by insects. 

CONCLUSION 

Because the available amount of an insect pheromone is limited, synthesis is the indispensable tool for 
the determination of the absolute configuration of a chiral pheromone and also for the supply of a 
sufficient amount of a pheromone. 
It is my privilege to acknowledge the contribution of my coworkers whose names appear in the 
references. 
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