Comprehensive investigation of the solution photophysics and theoretical aspects of oligothiophenes of 1-7 rings

Ralph S. Becker ${ }^{1}$, J. Seixas de Melo, ${ }^{1,2}$ Antonio L. Maçanita ${ }^{1}$ and Fausto Elisei ${ }^{3}$
1. Instituto de Tecnologia Química e Biológica, Rua da Quinta Grande, n.6, 2780 Oeiras, Portugal
2. Departamento de Química, Universidade de Coimbra, Coimbra, Portugal
3. Dipartimento di Chimica, Universita di Perugia, Perugia, Italy

Abstract

Photophysical ($\phi_{\mathrm{F}}, \tau_{\mathrm{F}}, \phi_{\mathrm{T}}, \tau_{\mathrm{T}}$), absorption $\left(\mathrm{S}_{\mathrm{o}} \rightarrow \mathrm{S}_{\mathrm{x}}\right.$ and $\left.\mathrm{T}_{\mathrm{I}} \rightarrow \mathrm{T}_{\mathrm{x}}\right)$ and emission (fluorescence and phosphorescence) have been evaluated for thiophene ($\mathrm{n}=1$) and oligothiophenes ($n=2-5,7$). In addition $\mathrm{k}_{\mathrm{F}}, \mathrm{k}_{\mathrm{IC}}$ and $\mathrm{k}_{\mathrm{ISC}}$ have been evaluated for $\mathrm{n}=2-5,7$. In general ϕ_{F} increases from $\mathrm{n}=2$ to 5 and becomes constant ($\mathrm{n}=5-7$) whereas ϕ_{T} decreases overall from $n=2,3$ (nearly same) to constancy at $n=5,7$. The $\mathrm{k}_{\text {ISC }}$ progressively decreases and k_{F} remains approximately constant as n increases from $n=3$ to 7 . The τ_{F} progressively gets longer while τ_{r} gets shorter as n increases and both become constant at $n=5,7$. Based on $\mathrm{k}_{\mathrm{F}}\left(\right.$ or $\left.\tau_{\mathrm{F}}^{\circ}\right)$ and other data, it is clear that the ${ }^{1} \mathrm{~B}$-type state is always below the ${ }^{1} \mathrm{~A}$-type state fron $\mathrm{n}=2$ to and including $\mathrm{n}=7$, in contrast to other existing predictions (for $\mathrm{n}=6$ and greater). Although fluorescence exists for all compounds, except thiophene, no phosphorescence has been observed ($\phi_{\mathrm{p}} \leq 5 \times 10^{-4}$), except thiophene. Mechanisms rationalizing the photophysical behavior are given.

INTRODUCTION

The α-oligothiophenes (designated $n=2,3 \cdots$ or $\alpha 2, \alpha 3 \cdots$), particularly those with higher n value, are very important for their use in molecular electronics, charge storage and non-linear optical applications (1-3). The lower oligomers ($n=2,3$) act as biophotosensitizers (for example 4,5)
 and $\mathrm{n}=3$ acts as a singlet oxygen sensitizer (for example 6). Some absorption and fluorescence studies of solid films have been done (for example 7-9) and more quantitative data on fluorescence quantum yields $\left(\phi_{\mathrm{F}}\right)(6,9,10)$ for some compounds has been done in solution. There is very little fluorescence lifetime (τ_{F}) data in solution (10) and for the solids (11). Triplet data in solution is available on only two compounds where the triplet yield $\left(\phi_{T}\right)$ value for $n=3$ has ranged from $0.2(6)$ to $0.75(12)$ to $\geq 0.9(13,14)$. it is quite probable that the early estimate (6) is not correct. Data is also available for $\mathrm{n}=4$ (6). The singlet oxygen yield (ϕ_{Δ}) is known for several compounds now ($9,12,13,15$) and for $n=3$, the value is ≈ 0.8 $(9,12)$ around $0.8(15)$ and $\approx 0.7(13)$. There is some substantially disagreement in an impossible direction between ϕ_{T} and ϕ_{Δ} for $\mathrm{n}=4\left[\phi_{\mathrm{T}}=0.2\right.$ (6) and $\left.\phi_{\Delta}=0.7(9)\right]$. Triplet lifetimes $\left(\tau_{\mathrm{T}}\right)$ have been obtained ($6,9,12$, 16,18) for $\mathrm{n}=3,4$ and 5 in solution and there is some disagreement. For the couple of cases where there is τ_{T} data for the solid film, the lifetimes are considerably shorter ($15-30+$ fold $)$ for the film than in solution. This likely originates because of the oxygen quenching for the film but even then, there is some considerable disparity in the lifetime for the same compound $(18,19)$.

One of the big questions concerns the state order, particularly regarding the lower two (π, π^{*}) states. In polyene type molecules, the state order between the 1-photon (allowed) and the 2-photon (considered forbidden in conventional spectroscopy) states is dependent upon the length of the polyene where the electron-electron interaction is important and varies significantly with the chain length (see for examples 20, 21). In this series when there are 4 or more double bonds, the forbidden $2^{1} \mathrm{Ag}$-like state is below the $1^{1} \mathrm{Bu}$-like state. In the case of α-oligothiophenes it appears based on solution data, that even up to eight-ten double bonds ($n=4,5$) the $1^{1} \mathrm{Bu}$-like state is lowest (22). Two photon spectroscopy has located an ${ }^{1} \mathrm{Ag}$ state above the ${ }^{1} \mathrm{Bu}$ state in $\mathrm{n}=2$ (solution) and $\mathrm{n}=6$ (film) and these have been assigned as the $2^{1} \mathrm{Ag}(7,22)$. It has been claimed (23) that for $n=6$ in a solution environment, the $2^{1} \mathrm{Ag}$ state is below the
${ }^{1} \mathrm{Bu}$ state (23) - we will show that this is not the case. As implied it has been accepted that the allowed ${ }^{1} \mathrm{Bu}$ state is always below the "forbidden" $2^{1} \mathrm{Ag}$ state, from $\mathrm{n}=2$ to 5 . Recent SCF, multi CI calculations on thiophene itself (2 double bonds) (24) present an interesting potential dilemma since in this case, the $2^{1} \mathrm{~A}_{1}$ state ($42900 \mathrm{~cm}^{-1}, 232 \mathrm{~nm}$) is predicted to be below the $1^{1} \mathrm{~B}_{2}$ state ($46140 \mathrm{~cm}^{-1}, 216 \mathrm{~nm}$, and in contrast to $\mathrm{n}=2-5$). Also of notable importance, the oscillator strengths for each is nearly the same. Others (25) have reported, via MCD, at least two bands in the region calculated above (at $42430 \mathrm{~cm}^{-1}, 235 \mathrm{~nm}$ and 45490 $\mathrm{cm}^{-1}, 219 \mathrm{~nm}$ with the overall maximum at $43315 \mathrm{~cm}^{-1}, 230 \mathrm{~nm}$). A $3^{1} \mathrm{~A}_{1}$ state is calculated to be at 53960 $\mathrm{cm}^{-1}, 185 \mathrm{~nm}$. Although we will discuss more on state order later, the specter arises that if the state order is correct for thiophene ($2^{1} \mathrm{~A}_{1}$ below $1^{1} \mathrm{~B}$), and the $1^{1} \mathrm{~B}$ state is below the $2^{1} \mathrm{~A}$ state for $\mathrm{n}=2-5$ as accepted, and if the state order predicted for $n=6,7$ etc. were to be true $\left(2^{1} \mathrm{~A}_{1}\right.$ below $\left.1^{1} \mathrm{~B}_{2}\right)$, then the $2^{1} \mathrm{~A}$ state would cross to first above ($\mathrm{n}=2$) then below ($\mathrm{n}=6$) the $1^{1} \mathrm{~B}$ state - a wholly unknown phenomenon! Others (26) have predicted the ${ }^{1}$ A state below the ${ }^{1} B$ state ($n=2$ to 4) with crossing occurring between $n=4$ and 5 ; however, by reduction in the amount of configurational interaction (CI) (which seems not to have any rational justification), the ${ }^{1} B$ state was predicted to be lowest for all α-oligiothiophenes through $n=6,7$ [which for the latter, others have predicted the ${ }^{1}$ Astate lower (23)]. The latter authors (23) have also done restriction of CI plus some empiricism to treat dithienyl polyenes (27) and extended it to the polythiophene members, vide infra.

RESULTS AND DISCUSSION

Recall in the Introduction we noted the problem of state order as a function of the number of rings in the oligomer. Before we consider this important aspect in more detail, we present in Table 1 considerable photophysical data with the absorption and fluorescence data primarily in dioxane and the

Table 1. Photophysical Data in Dioxane and Acetonitrile at 298 K

Cpd. (n)	Abs. ${ }^{(1)}$ max	$\begin{gathered} \mathbf{F}^{(2)} \\ \max \end{gathered}$	$\phi_{\mathrm{F}}{ }^{(3)}$	$\begin{aligned} & \tau_{\mathbf{F}}^{(4)} \\ & (\mathrm{ns}) \end{aligned}$	$\begin{aligned} & \mathbf{k}_{\mathrm{F}}^{(5)(6)} \\ & \left(\mathbf{n s}^{-1}\right) \end{aligned}$	$\mathrm{k}_{\text {IC }}{ }^{(7)}$	$\mathrm{k}_{\text {ISC }}{ }^{(7)}$	$\begin{aligned} & \mathrm{T}-\mathrm{T}^{(n)} \\ & \max \end{aligned}$	$\phi_{T}{ }^{(7)}$	$\begin{aligned} & \tau_{\mathrm{T}}^{\mathrm{T})} \\ & (\mu \mathrm{s}) \end{aligned}$
1	232	-	$\leq 5 \times 10^{-4}$	-	-	-	-	-	-	-
2	303	362	0.018	0.046	0.37					
					0.38	1.1	18.6	370	0.93	124
3	354	407,426	0.066	0.21	0.31					
					0.33	0.26	5.3	460	0.90	62
4	391	437,478	0.18	0.49	0.37					
					0.34	0.28	1.5	560	0.71	32
5	416	482,514	0.36	0.82	0.44					
					0.39	0.047	0.74	630	0.63	20
6	434(P)	510(P)	0.40,0.32	0.73	0.43	-	-	685(P)	-	-
7	441	522,560	0.34	0.85	0.40					
					0.35	0.049	0.73	740	0.60	21
8	446(P)	538(P)								
9	454(P)	548(P)								
10	460(P)	554(P)								
11	464(P)	563(P)								
12	469(P)	569(P)								
13	474(P)	573(P)								

1. (P) indicates predicted values based on a $1 / \mathrm{n}$ vs. E (max) plot.
2. (P) indicates first fluorescence band maximum based on a plot of $1 / n$ vs. $E(\max)$. For $n=3,4$, the second band is the maximum whereas for $n=5,7$, it is the first band.
3. At 77 K a weak phosphorescence is seen for $\mathrm{n}=1$ (thiophene) with a maximum at $\approx 431 \mathrm{~nm}$ ($0-0$ at \sim 355 nm). The values for $\mathrm{n}=6$ are from references 10 and 9 respectively.
4. The 46 ps value is in benzene, all the remainder are in dioxane. The value for $n=6$ is from reference 10 .
5. For k_{F} of $\mathrm{n}=2, \tau_{\mathrm{F}}$ considered to be 46 ps .
6. Values above the line are in dioxane while those below are in acetonitrile.
7. Values in acetonitrile except $n=7$ in benzene; for $k_{\text {IC }}$ and $k_{\text {ISC }}$ of $n=2$, the τ_{F} is considered to be 46 ps .
triplet data in benzene and acetonitrile. Of first concern to us relative to the state order assignment is the k_{F} information $\left(\mathrm{k}_{\mathrm{F}}=1 / \tau_{\mathrm{F}}^{\circ}\right.$ where $\left.\tau_{\mathrm{F}}^{\circ}=\tau_{\mathrm{F}} / \phi_{\mathrm{F}}\right)$.

Note that all k_{F} values correspond to $\tau_{\mathrm{F}}^{\circ}$ values of $\approx 2.5-3 \mathrm{~ns}$, typical of emission lifetimes from allowed states. Furthermore, we calculated the expected k_{F} values based on the Strickler-Berg equation over the first absorption band for $\mathrm{n}=2-5$, and 7 . The agreement between the measured k_{F}, Table 1 , and the calculated values was excellent, ranging from 0% to 14% deviations (one case only for 14%, all of the rest were less than 7%). These results provide very convincing evidence that the first observed transition and lowest excited state is a (1-photon) allowed transition/state and of (1) ${ }^{1} \mathrm{~B}$-type, and not of (2) ${ }^{1} \mathrm{~A}$-type (generally 1-photon forbidden, at least by comparison to ${ }^{1} \mathrm{~B}$-type). This is true for $\mathrm{n}=2-5$ and 7.

Based on some spectroscopic data for α, ω-dithienyl polyenes, restrictive CI calculations, extrapolated curves of ${ }^{1} \mathrm{~A}$ and ${ }^{1} \mathrm{~B}$ state energies of some polythiophene oligomers and the difference in state energies expected for $n=6$ in a crystal state as in an alkane host, it was stated that the $\underline{2}^{1} \underline{A}$ state would be below the $1^{1} \underline{B}$ state for $\mathrm{n}=6$ and all polythiophene oligomers containing more than 6 rings (23). It is clear for $\mathrm{n}=7$ that the $\underline{1}^{1} \underline{\underline{B}}$ state is below the $\underline{2}^{1} \underline{\underline{A}}$ state and therefore we are convinced that this same order must be true for the $n=6$ oligomer. Consequently, the predicted state (23) orders for $n=6,7$ at least, are not correct and the projected $2^{1} \mathrm{~A}, 1^{1} \mathrm{~B}$ energy curves as a function of $\mathrm{n}(23)$ are also not correct.

Based on the location of the $2^{1} \mathrm{~A}$ state in bithiophene ($\mathrm{n}=2$) in solution (7) and for sexithiophene ($\mathrm{n}=6$) in the crystal (22) which we have corrected for a crystal to solution spectral shift, and a plot of this data (as well as that for the $1^{1} \mathrm{~B}$ state) vs. $1 / \mathrm{n}$, we believe the crossing point of the $2^{1} \mathrm{~A}$ state and the $1^{1} \mathrm{~B}$ states could occur near/at $n=9$. Polythiophenes where $n=9$ and 11 exist (albeit they have several alkyl groups), so these would be worth examining regarding $\tau_{\mathrm{F}}, \phi_{\mathrm{F}}, \mathrm{k}_{\mathrm{F}}$ and $\tau_{\mathrm{F}}^{\circ}$ to determine if the latter two are compatible with an ${ }^{1} \mathrm{~A}$ or ${ }^{1} \mathrm{~B}$ state. In addition, ϕ_{T} and τ_{T} data would permit comparison of all the measurable and determinable data ($\mathrm{k}_{1 \mathrm{C}}, \mathrm{k}_{\mathrm{ISC}}$) with $\mathrm{n}=5$ and 7 .

The ϕ_{F} is very low for $\mathrm{n}=2$ and increases to $\mathrm{n}=5$ and then, becomes constant through $\mathrm{n}=7$, Table 1. The general behavior is parallel for τ_{F} which is very short for $\mathrm{n}=2$ and increases and becomes constant from $n=5$ to 7 . Note the relatively small variation for k_{F} as a function of the number of rings, Table 1. As we will show elsewhere, this is also true across a number of solvents for $n=3-7$, where more commonly, k_{F} is very constant for $\mathrm{n}=4$ and greater (we have restricted data for $\mathrm{n}=2$ because of the very short life-

Fig. $1 \phi_{\mathrm{F}}$ and ϕ_{T} as a function of n where ${ }^{-}\left(\phi_{\mathrm{T}}\right)$ and $\left(\phi_{\mathrm{F}}\right)$.

Fig. 2 Rate constants $\mathrm{k}_{\mathrm{F}}, \mathrm{k}_{1 \mathrm{C}}$ and $\mathrm{k}_{\text {ISC }}$ as a function of n where \square is $k_{\text {ISC }}, O$ is $k_{1 C}$ and ∇ is k_{F}.
time). Moreover, the values of k_{F} are in general quite similar for a given n (for $\mathrm{n}=3 / 4$ and greater) among the various solvents. In Table $1, \phi_{\mathrm{T}}, \phi_{\mathrm{F}}, \tau_{\mathrm{F}}$ and τ_{T} data are presented. From this data we can determine the fluorescence rate constant $\mathrm{k}_{\mathrm{F}}=\phi_{\mathrm{F}} / \tau_{\mathrm{F}}$, the internal conversion rate constant (from S_{1}) $\mathrm{k}_{\mathrm{Tc}}=\left(1-\phi_{\mathrm{F}}-\phi_{\mathrm{T}}\right) / \tau_{\mathrm{F}}$ and the intersystem crossing rate constant $\mathrm{k}_{\text {ISC }}=\phi_{\mathrm{T}} / \tau_{\mathrm{F}}$. All of the foregoing are presented in Table 1. There is no linear relationship between ϕ_{F} and n or $1 / \mathrm{n}$ - note that from our data, ϕ_{F} becomes essentially constant from $\mathrm{n}=5$ (for 5 and 7) and, the inclusion of data for $\mathrm{n}=6$ of others (see Table 1) strongly supports this contention. In the case of ϕ_{T} there also does not appear to be any linear relationship with n or $1 / \mathrm{n}$ - note that ϕ_{T} of $\mathrm{n}=2$ and 3 are both very high and similar and then ϕ_{T} does undergo a progressive decrease as n increases and becomes con-

Fig. 3 Absorption spectra of oligothiophenes $n=5,7$. stant. Recall that the τ_{F} becomes progressively longer as n increases whereas τ_{r} becomes progressively shorter. However, note in both cases a leveling off clearly occurs from $\mathrm{n}=5$ to greater n . This is parallel to the behavior of ϕ_{F} and ϕ_{T}, Figure 1 and Table 1.

All of the above translates into some interesting results for $\mathrm{k}_{\mathrm{F}}, \mathrm{k}_{\mathrm{IC}}$ and $\mathrm{k}_{\mathrm{ISC}}$ as a function of the number of rings, Table 1 and Figure 2. Note that in both dioxane and acetonitrile, k_{F} does not undergo significant variation, as the number of rings increases (ϕ_{F} and τ_{F} are increasing in a quite parallel manner and becoming relatively constant by $n=5$). On the other hand, $\mathrm{k}_{\mathrm{ISC}}$ shows a progressive and notable decrease to $n=5$. In the case of $\mathrm{k}_{1 \mathrm{c}}$ there is a significant overall decrease from $\mathrm{n}=2$ to 5 (with $\mathrm{n}=3$ and 4 being close in value). The total non-radiative rate constant $\mathrm{k}_{\mathrm{NR}}=\mathrm{k}_{\mathrm{ISC}}+\mathrm{k}_{\mathrm{IC}}$ is dominated by $\mathrm{k}_{\mathrm{ISC}}$ which of course means $\mathrm{k}_{\mathrm{ISC}}$ is significantly greater than k_{IC} (up to 20 x). With k_{F} remaining constant while k_{IC} and $\mathrm{k}_{\mathrm{ISC}}$ are decreasing, ϕ_{F} increases as n increases; moreover, although ϕ_{T} decreases, it is not anywhere near as significant as the ϕ_{F} increase, Figure 1. Of course the latter result occurs because $\mathrm{k}_{1 \mathrm{c}}$ is decreasing and $k_{\text {ISC }}$ is approaching k_{F}. In fact, the total quantum yield of ϕ_{T} $+\phi_{\mathrm{F}}$ stays above 0.90 in all cases, and is as high as 0.99 .

Despite the very high values of ϕ_{T} for $n=2$ and 3 (near 1) and high values for $n=4,5$, we have not observed

Fig. 4 Room temperature absorption (\cdots) and fluorescence ($-\cdots$) and 77 K absorption (--) and fluorescence (-) of $\mathrm{n}=2$.
any phosphorescence for $\mathrm{n}=2$ and 3 at 77 K in an ethanol glass or a mixed aliphatic hydrocarbon glass, or even in the presence of 10% ethyl iodide. These emissions would be easy to observe for $n=2$ and 3 even with a quantum yield of 10^{-3} (or even lower) since they are expected to emit in spectral regions easily accessible by sensitive photomultiplier tubes ($550-650 \mathrm{~nm}$ and $700-800 \mathrm{~nm}$). This clearly infers that the radiationless rate constant out of the lowest triplet to the ground state is very large compared to the radiative one which is not true out of the lowest singlet. Note however we do believe we see phosphorescence for $n=1$, thiophene, with a maximum near 435 nm ($0-0$ near 355 nm).

We are unaware of any data for $n=2$ to compare with our important photophysical parameters. Some data exists for ϕ_{T} for $n=3$. For ϕ_{T}, values of $0.2(6), \geq 0.9(13), 0.95(14)$ exist vs. our value of 0.93 . It is very likely that the 0.2 value is incorrect. In the case of the 0.95 value (14), a value of ϕ_{T} for the naphthalene sensitizer of 24,500 was used (from cyclohexane data), yet the experiments were done in ethanol where a value of 40,000 exists (28) - in such a case ϕ_{T} would then be ≈ 0.6. The \geq 0.9 value was determined from $\phi_{T}{ }^{\cdot} E_{T}$ data and a value of E_{T} (from singlet-triplet absorption)(13). Also ϕ_{F} data exists, varying from $0.05-$ 0.08 .

For $\mathrm{n}=4, \phi_{\mathrm{T}}$ was determined to be 0.2 (6) vs. our value of 0.71 (and ϕ_{F} : 0.11 cyclohexane and 0.20 ethanol vs. our value of 0.18). ϕ_{F} has also been found to be 0.12 (95% ethanol) (29). For

Fig. 5 Fluorescence spectra of oligothiophenes $\mathrm{n}=2-5,7$. $\mathrm{n}=5$ and $\mathrm{n}=7$ we are unaware of any solution photophysical data.

The solution absorption spectra of the compounds at room temperature are generally devoid of structure, Figure 3. However, the low temperatures (77 K spectra) as represented by the fluorescence excitation spectra can be quite structured as for example in Figure 4. This resolution increase is particularly noticeable for $n=2$ and 3 , and although present for $n=4-7$, it is less pronounced. We have found an excellent linear correlation between $1 / n$ and the energy of the maximum (and $0-0$) of the first transition. From the correlation with $E(\max)$, we have predicted (P) the location of the maxima for $n=6,8-13$, Table 1 (in the case of $n=6,9$ and 11 , some experimental data was available for comparisons). The predictions are in general in excellent agreement with experiment. Extrapolation to polythiophene itself gives an absorption at $\sim 535 \mathrm{~nm}$.

The solution fluorescence spectra of $n=3-7$ show some degree of resolution while for $n=2$, only one clear band exists, Figure 5. At room temperature the second band is the maximum for $n=3,4$ but the first is the maximum for $n=5$ and greater (almost equal in $n=5$). Table 1 summarizes the data for $n=2-$ 7. At 77K, there is again a marked increase in the resolution, particularly for $n=2$ (and 3), Figure 4. At 77 K , the band that was the maximum (first or second) may ($\mathrm{n}=4,7$) or may not ($\mathrm{n}=3,5$) invert regarding which is the maximum. We have found an excellent linear correlation between $1 / \mathrm{n}$ (or $1 / \mathrm{N}$ where N is the length of the nolecule in \AA) and the energy of the first and second fluorescence bands. From this correlation we have predicted the location of the first band for $\mathrm{n}=6,8-13$ in Table 1. Extrapolation to polythiophene gives values of ≈ 619 and $\approx 705 \mathrm{~nm}$ for the first and second bands respectively.

When cooling to 77 K (a rigid matrix) not only does the resolution of the absorption spectra increase, but there is a noticeable red shift of the absorption maximum from $1300 \mathrm{~cm}^{-1}(\mathrm{n}=2,4,5)$ to 1600 $\mathrm{cm}^{-1}(\mathrm{n}=3)$ to $1900 \mathrm{~cm}^{-1}(\mathrm{n}=7)$. However, there is essentially no shift $\left(\leq 125 \mathrm{~cm}^{-1}\right)$ for the first or the
second fluorescence band. Given the Franck-Condon forbidden shape of the first transition, there is obviously a change in the geometry in the excited state. This could be consistent with a quinoid-like structure in the excited state, also see later discussion. Remembering that there is a significant red shift of the absorption maximum on cooling, we believe that the shift results from reduction of "single" bond-be-tween-the-rings twisting in the ground state making the molecules more planar and conjugated. In the case of fluorescence, there is essentially no shifting on cooling. At room temperature, solvent shell relaxation around the now quinoidal excited state can occur. However, it cannot occur at the low temperature in the rigid solvent matrix and emission is to a "planar" ground state (vs. a twisted one at room temperature). This combination of circumstances results in essentially no shifting of the fluorescence bands.

Although we shall publish more elsewhere, different theoretical calculations gave different results regarding the nature of the most stable conformer. For example, for $\mathrm{n}=3$, MM2 (Force Field Optimization) and MNDO93/PM3 showed the all-s-trans conformer to be the most stable while MOPAC and MNDO93/AMI showed that it was the all-s-cis conformer. However, except for MM2, the relative energy difference between any of the three possible conformers (planar) was only $0.9 \mathrm{~K} \mathrm{cal} / \mathrm{mole}$. Even higher level calculations for $\mathrm{n}=3$ of the D Gauss and ab initio types showed only a $2.4 \mathrm{~K} \mathrm{cal} / \mathrm{mole}$ difference among any of the conformers (as did MM2), with the all-s-trans conformer lowest. Thus it would be highly questionable if it would be possible to predict the most stable isomer using MOPAC, MNDO93/PM3 or MNDO93/AMI and at least questionable for the others. Literature data (30) is clear that in the solid, the all-s-trans form is the stable conformer. For $\mathrm{n}=5$, using MM2, D Gauss and ab initio methods, the difference between the all-s-trans and all-s-cis conformers became much more demarked ($5-8 \mathrm{~K} \mathrm{cal} / \mathrm{mole}$) with the all-s-trans the lowest. Other methods give results parallel to those for $\mathrm{n}=3$ with some increase in the energy difference (up to 1.5 K cal) albeit they may predict the wrong conformer as the most stable (MOPAC and MNDO93/PM3).

We have calculated transition energies using ZINDO (with MOPAC geometries). In the case of $\mathrm{n}=5$, the energy of the lowest transition predicted for the all-s-trans conformer was within $\approx 400 \mathrm{~cm}^{-1}$ of the experimental value (422 nm vs. $\approx 415 \mathrm{~nm}$ experiment) while for the all-s-cis conformer, the predicted value was $3000 \mathrm{~cm}^{-1}$ too low an energy (473 nm). We can thus feel confident that the conformer present in solution for $\mathrm{n}=5$ is the all-s-trans albeit it may have some $\mathrm{S}-\mathrm{C}(\alpha)-\mathrm{C}(\alpha)-\mathrm{S}$ twisting. In the case of $\mathrm{n}=2$ and $\mathrm{n}=3$, the predicted differences in the absorption maxima for the all-s-trans and all-s-cis are to small to use the same technique of comparison with experiment to distinguish the dominant conformer.

Now that we have the critical information on (1) state order, (2) how $\phi_{\mathrm{F}}, \phi_{\mathrm{T}}, \mathrm{k}_{\mathrm{F}}, \mathrm{k}_{\mathrm{ISC}}$ and k_{IC} vary with n, (3) how the absorption and fluorescence vary with temperature and why, (4) the lack of emission from the triplet, and (5) some information on geometry, we shall try to explain the behavior of $\mathrm{k}_{\mathrm{F}}, \mathrm{k}_{\mathrm{IC}}$ and $\mathrm{k}_{\mathrm{Isc}}$ as a function of n and the lack of phosphorescence. First recall k_{F} is quite constant as a function of n , a 20% variation, while $\mathrm{k}_{\text {ISC }}$ undergoes up to a 20 fold decrease as n increases and, becomes essentially constant at $\mathrm{n}=5$ and greater. There is expected to be only a small error in each of k_{F} and $\mathrm{k}_{\mathrm{ISC}}$ relative to that possible in k_{IC}. The error in τ_{F} is expected to be $5-8 \%$, and $\sim 5-10 \%$ in ϕ_{F}. Although the error in ϕ_{T} is very probably no better than 15%, the $\mathrm{k}_{\text {ISC }}$ change would be no worse than about this same error. However, k_{IC} depends on a difference term: $\mathrm{k}_{\mathrm{IC}}=\left(1-\phi_{\mathrm{F}}-\phi_{\mathrm{T}}\right) / \tau_{\mathrm{F}}$ that approaches zero, particularly for the cases of $\mathrm{n}=2$ and 3. For example for $n=3$ in benzene, the determined values of ϕ_{F}, and ϕ_{T} are 0.07 and 0.95 respectively. Obviously $\phi_{\mathrm{F}}+\phi_{\mathrm{T}}$ is greater than 1 which cannot be true. However, assuming the ϕ_{F} value and ϕ_{T} values of $0.92,0.91$ and 0.90 , we obtain values of $0.06,0.13$ and $0.19 \times 10^{9} \mathrm{sec}^{-1}$ for $\mathrm{k}_{\text {tc }}$ respectively - thus a 2% change in ϕ_{T} results in a 300% change in k_{IC}. Also, $\mathrm{k}_{\mathrm{ISC}}$ would only change $\approx 3.5 \%$ over this same ϕ_{T} range (τ_{F} constant). It does appear that for the case with acetonitrile as the solvent, there is an overall decrease although not systematic, in k_{lC} from $\mathrm{n}=2$ to $\mathrm{n}=7$, Table 1 . In other solvents, there appears to be more scatter. Much of the problem very likely originates in errors primarily of ϕ_{T}.

Despite the lack of clarity in the trend of $k_{1 C}$, it is quite clear that $k_{\text {ISC }}$ dominates both k_{F} and $k_{\text {IC }}$ and that in general, k_{F} is greater than k_{IC}. However, recall no emission is seen from the triplet so that the radiationless process from this state are very highly dominant which is not true for the singlet state at all. Given the fact that ${ }^{1} \mathrm{~B}$ state is the lowest singlet state, none of the considerations given above are explicable in terms of state order change in the singlet manifold. We believe all of this can be understood by a combination of factors. There is evidence from our absorption and emission work (and we could sepa-
rately theorize) of the possible existence of a lowest excited singlet state having some quinoid character. Furthermore this quinoid character would involve some charge transfer compared to the ground state. This circumstance could account for small internal conversion since inter-ring torsional twisting mode coupling to the ground state would be minimal. Also the charge transfer character could enhance singlettriplet coupling and thus intersystem crossing. We also surmise that in the triplet state the charge densities are much more similar to the ground state, compared to S_{1}, and that the geometry is also similar to that of the ground state, compared to S_{1}. In such a circumstance, single bond inter-ring twisting torsional coupling to the ground state could occur resulting in a significant radiationless mechanism/process (apparently $\approx 100 \%$). The decrease in $\mathrm{k}_{\text {ISC }}$ as n increases could originate from a progressively more delocalized charge transfer character with accompanying decreased singlet-triplet coupling.

In order to obtain some verification of the foregoing qualitative mechanism, we have carried out charge density calculations in the ground and excited states. For thiophene there is large change in charge on sulfur (formal charge +0.02 to -0.22) and α-carbons (-0.14 to +0.03). For bithiophene, similar large changes occur for each of the sulfur atoms (+0.004 to -0.15) and for the inter-ring α-carbons $(-0.035$ to +0.05$)$. The charge change on the other α-carbons is also large (-0.14 to -0.01). The B-carbons also undergo changes, one of which is about double those of thiophene (0.02). It is clear that there is in fact very significant charge transfer occurring between the ground state and first excited singlet state. It is unequivocal that a change in electronic structure has occurred and although it is less certain, the data seems compatible with contribution from a quinoidal form. Also with the large increase of formal negative charge on sulfur in the excited state (from +0.004 to -0.15), there is the possibility of increased H -bonding with the H on the nearest β-carbon.

Regarding the foregoing, we must keep in mind that we do not know the $\phi_{T}, \mathrm{k}_{1 \mathrm{C}}$ or phosphorescence yield for thiophene. We do not observe any fluorescence at room temperature and this also seems to be the case at 77 K . This is not true for the oligothiophenes. The phosphorescence seems to be quite weak for thiophene but we do not know whether this originates from a large k_{IC} or a large radiationless rate constant out of T_{1}. The point is that there may be some radiationless modes intrinsically present in the thiophene ring which we have not adequately considered in the discussion of the $n=2-5,7$ compounds. Also of course, there could be significant singlet-triplet coupling occurring via the intramolecular heavy atom route in thiophene, which in theory would be present in the oligothiophenes. Even if this is true, it is clear that this factor alone is insufficient to account for the large change (decrease) in singlet-triplet coupling (as reflected by ϕ_{T} or $\mathrm{k}_{\mathrm{ISC}}$) that occurs as n increases.

EXPERIMENTAL

Fluorescence quantum yields were measured using methyl-l-pyrenoate ($\phi_{\mathrm{F}}=0.83$ in cyclohexone) and 3-chloro-7-methoxy-4-methyl-coumarin ($\phi_{\mathrm{F}}=0.12$ in cyclohexane) as standards. All fluorescence spectra were corrected for the wavelength response of the instrumental system. Fluorescence decays were obtained using a time correlated single-photon-timing technique with a wavelength shift of $300 \mathrm{fs} /$ nm . The decays were deconvulted using a Microvax 3100 employing the method of modulating functions (31).

The triplet yields were obtained using energy transfer from benzophenone to the oligothiophenes $\left(\varepsilon_{\mathrm{T}}\right)$ and obtaining the product $\phi_{\mathrm{T}} \varepsilon_{\mathrm{T}}(32-33)$.

ACKNOWLEDGEMENT

We wish to thank Paritosh K. Das of Phillips Petroleum Company for carrying out many of the calculations, and H. Wynberg, Groningen, for the sample of $n=7$ (two n-butyl groups).

REFERENCES

1. P.N. Prasad and I.K. Nigam (eds), "Frontiers of Polymer Research", Plenum Press, New York, 1991.
2. J.L. Bredas and R.R. Chance (eds), "Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics and Molecular Electronics", Klwer, Dordrecht, 1991.
3. D. Fichou, F. Garnier, F. Charra, F. Kajzar, J. Messier, "Organic Materials for Non-Linear Optics", Royal Society of Chemistry, London, 1989.
4. J. Bakker, J. Jommers, I. Nieuwen-Huis and H. Wynberg, J. Biol. Chem., 254, 1841 (1979).
5. D. McLachlan, T. Arnason and J. Lam, Photochem. Photobiol., 39. 177 (1984).
6. J.P. Reyftman, J. Kagan, R. Santus and P. Morliere, Photochem. Photobiol., 41, 1 (1985).
7. N. Periasamy, R. Daneli, G. Ruani, R. Zamboni and C. Talani, Phys. Rev. Lett. 68, 919 (1992).
8. F. Fichou, G. Horowitz, B. Xu and F. Garnier, Synth. Met., 48, 167 (1992).
9. D. Oelkrug, H - J. Egelhaaf and F. Wilkinson, private communication.
10. P. Garcia, J.M. Pernaut, P. Hopiat. V. Wintgens, P. Valat, F. Garnier and D. Delabouglise, J. Phys. Chem., 97, 513 (1993).
11. C. Taliani, R. Danieli, R. Lazzaroni, N. Periasamy, G. Ruani and B. Zamboni, Synth. Met., 55-57, 4714 (1993).
12. R.S. Becker and S. Chakravorti, Chem. Soc. India Conference, 1990.
13. J.C. Scaiano, R. W. Redmond, B. Melita and J.T. Arnason, Photochem. Photobiol., 52,655 (1990).
14. R. Rossi, M. Ciofalo, A. Carpita and S. Ponterini, J. Photochem. Photobiol., A: Chem., 79, 59 (1993).
15. C.S. Foote in "Light Activated Pesticides", J.R. Heitz and K.R. Downum, ed. ACS Symposium Series 339, Washington, DC, 1987, p 36.
16. C. Evans, D. Wier, J.C. Scaiano, A. Mac Eachern, V.T. Arnason, P. Morand, B. Hollebone, L.C. Leitch and B.J.R. Philogene, Photochem. Photobiol., 44, 441 (1986).
17. F. Charra, D. Fichou, J.M. Nunzi and N. Pfeffer, Chem. Phys., Lett, 192, 566 (1992).
18. X. Ching, K. Ichimura, D. Fichou and T. Kobayashi, Chem. Phys. Lett., 185, 286 (1991).
19. J.M. Nunzi, N. Pfeffer, F. Charra and D. Fichou, Chem. Phys. Lett.
20. R.S. Becker, Photochem. Photobiol., 48, 369 (1988).
21. P. Taven and K. Schulten, Phys. Rev. B36. 4337 (1987).
22. D. Birnbaum, D. Fichou and B.E. Kohler, J. Chem. Phys., 96, 165 (1992).
23. D. Birnbaum and B.E. Kohler, J. Chem. Phys. 96, 2492 (1992).
24. L. S. Andres, M. Merchan, M. Fulscher and B.O. Roos, Chem. Phys. Lett., 211. 125 (1993).
25. R. Hakansson, B. Norden and E.N. Thulstrop, Chem. Phys. Lett., 50. 305 (1977).
26. D. Belijonne, Z. Shuai and J.L. Bredas, J. Chem. Phys., 98, 8819 (1993).
27. D. Birnbaum, B.E. Kohler, C.W. Spangler, J. Chem. Phys., 94, 1684 (1991).
28. I. Carmichael and G.L. Hug, J. Phys. Chem., Ref Data, 15, 1 (1986).
29. R. Rossi, A. Carpita, M. Ciofalo and J.L. Houben, Gazz. Chim. Ital., 120. 793 (1990).
30. F. Van Bolhuis, H. Wynberg, E.E. Havinga, E.W. Meijer and E.G. J. Staring, Synth. Met. 30, 381 (1989).
31. G. Striker, "In Deconvolution and Reconvolution of Analytical Signals", M. Bouchy, Ed., University Press, Nancy, France, 1982, p 329.
32. F. Elisei, G.G. Aloisi and H. Gorner, J. Phys. Chem. 95, 4225 (1991).
33. G.G. Aloisi, F. Elisei and L. Latterini, J. Chem. Soc. Faraday Trans., 88, 2139 (1992)
