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Abstract: Small-radius Frenkel excitons coupled with phonons can have diverse configurational 
structures depending on the symmetry of the electronic states involved and that of the associated modes of 
the inter-ionic/molecular vibrations. It is considered here that the symmetric excitons arise from the 
coupling with symmetry-retaining vibrational modes and vibronic excitons from the coupling to symmetry- 
breaking modes. Three examples are discussed: (i) formation of the barriers of exciton self trapping, as it 
occurs in the dimer formation at semiconductor surfaces, (ii) parity breaking that occurs at a centro- 
symmetric site and leads to an inversion electric dipole which enhances the polarizability and binding energy 
for pairing vibronic excitons, and (iii) a Bose condensation model of quasi-2D excitons applicable to the 
layered materials. 

INTRODUCTION 

Excitons in crystalline solids have been studied extensively (1-3). An exciton can couple to the phonon field 
resulting in a lattice distortion around itself. The form of lattice distortion depends on the symmetry of the 
associated lattice vibration. The motion of a phonon-coupled exciton in a deformable lattice is hindered by 
its accompanying distortion. An exciton accompanied by a lattice distortion is defined here as an excitonic 
polaron. Now the character of the lattice distortion depends on the magnitude and spatial range of the 
carrier-phonon coupling, and dimensionality of exciton motion. For example, if the exciton couples strongly 
with the atomic displacements in its neighbourhood, a short-range distortion (shrunk distortion) arises lead- 
ing to a small excitonic polaron. In three dimensions (3-D) the distortion is always shrunk (short range), 
but in one dimension (1-D) it is of a long range (spatially extended) at weak coupling and gradually shrinks 
as the coupling increases. The two-dimensional (2-D) self-trapping is an interplay of 1-D and 3-D features 
(4). Excitonic polaron mobile at weak coupling may become immobilized or self-trapped at strong 
coupling. There exists a barrier between free and self-trapped state as first pointed out by Rashba ( 5 ) .  
In this paper, we have studied the effect of symmetry of the associated lattice vibrations on the behaviour 
of small excitonic polarons (6). Non-degenerate electronic states can only couple to symmetry-retaining 
vibrational modes and create symmetric distortions. However, degenerate or nearly-degenerate states 
coupled strongly with the symmetry breaking modes, may lead to vibronic excitons (7). Off-centered 
vibronic excitons may be formed if the original site-symmetry incorporates the spatial inversion. 
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SMALL EXCITONIC POLARONS 

The Hamiltonian of a Frenkel exciton coupled to a lattice can be written as (2,6): 

H = xEi(s )Bf l ( s )Bs(s )  + zJL(s)Bfl(S)Bmr,(s)+ 
ILS (Im)n's 

where El&) and B'&) are the energy and creation operator of an exciton, respectively, with spin s in band 
t and localized at site 1. f';,,,(s) is the excitation transfer matrix element between sites 1 and m, and Pin,, Mw 
and K/n, are the momentum, reduced mass and force constant of an interatomic mode of coordinate Qn,; 
respectively, and Gl,@) is the corresponding coupling constant. As the Hamiltonian must be invariant with 
respect to the site point-group, the symmetry of the electronic levels and that of the coupled vibration is 
interdependent. For instance, the vibration will conserve the original site symmetry if the electronic levels 
are nondegenerate, but the symmetry will be destroyed if these levels are degenerate or nearly-degenerate. 
Symmetry-retaining polarons have been introduced by Holstein (8) a long time ago, while symmetry- 
breaking ones, such as Jahn-Teller and Pseudo-Jahn-Teller polarons (7), have drawn attention only more 
recently. 
Writing the eigenstate of an excitonic polaron in a band t as a superposition of one-exciton states: 

we solve the Schroedinger's equation using the Hamiltonian of Eq.( 1) without the kinetic energy operator 
of lattice vibrations (adiabatic). Thus we get a secular equation as: 

where EAD(t,S) is the adiabatic energy eigenvalue. 

Svmmetric Excitonic Polarons 
We consider a two-site case, I and m, taking m = 1-1 an only one energy band t in Eq.(3) to obtain a 
quadratic equation. Usually El, KI and GI are independent of the site 1 and Yl,l., = f".,,~ = 91 for nearest 
neighbors. For a symmetric mode, taking Ql, = -el.,,, = Q! we get: 

where the band index t is dropped for simplification and EAD.(Q/) thus obtained is a double-well potential 
for I9/1 < G:/K, centered symmetrically at Ql = 0 with two side minima at Qo* given by: 

Jrn Q =f 
GK ' (tt (5) 

where we have assumed GI = G, Kl = K and 3i = 9. The configurational distortions at +Qo and -Qo relate to 
the two sites at I and 1-1, respectively. EAo-(Q) has a maximum at Q = 0 which forms a real barrier due to Y, 
and the exciton bandwidth, 29, splits EAD+(Q) and EAo-(Q) at the symmetric point. The exciton-phonon 
coupling lowers the exciton energy below the peak of EAD-(Q) to form an excitonic polaron band. 
Having solved the adiabatic problem, we consider as the potential in the Hamiltonian for a two site 
vibronic problem as: 
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where M is the reduced mass of a two site oscillator (M' = Mi* + MI-I-'). We solve the Schroedinger's 
equation by a linear combination of ground-state harmonic-oscillator wave- functions centered at the two 
wells. We thus obtain the fullwidth, G ~ v i b ,  of the excitonic polaron band as: 

centered at Ep given by: 

The binding energy of an excitonic polaron can be defined as EB = -EP. S = exp{ -(~EJTIAo)[ 1-(3/2E~~)*]} is 
the overlap integral, and EJT is defined as EJT =G2/2K, which is equivalent to the Jahn-Teller's energy for a 
degenerate case. Qo is real for 1J<2EJr, the condition for forming a small excitonic polaron of radius 
proportional to EBml (EB in cm-I). 

Jahn-Teller (JT) Excitonic Polarons 
We next consider a doubly-degenerate conduction band arising from two local levels ( t  and t'). We set the 
energy El, = El,, (= 0 )  and assume the band-off-diagonal coupling to an interband-mixing mode independent 
of the site, as = Ql = Q. Using the two sites approximation again, we define a composite mode QI as QI 
= Qcos(p), = Qsin@), which gives a symmetry-breaking component at p = x/4 leading to QI = QI-I = 
Q/&. The corresponding APES is obtained as: 

E R D * ( Q ) = ,  ' [  K Q  2+, /4GzQz+2(9:+9)  - :. *29r I - J , . I J W ]  (9) 

EAD+ (Q) and E A ~ .  (Q) split adiabatically at Q = 0 by EA~+(0)  - EAD.(O) = J&l, which is the effective free- 
exciton bandwidth. The JT excitonic polaron lowers the site symmetry without violating the parity 
conservation and induces a configurational distortion away from the symmetric site at Q = 0. The excitonic 
polaron hops between neighbouring sites inciting a local lattice distortion, while its energy falls down into a 
narrow excitonic polaron band. 

Pseudo-Jahn-Teller (PJT) Excitonic Polarons 
Here we consider a conduction band originating from two nearly- degenerate local levels, due to the inter- 
site coupling. We assume t and t' to be of opposite parities and set El, = = -Elf, = -El.ltv = -End2. Also, 
by setting QI = QI-I = Q, KI = K1.1 = K and GI = GI.) = G/2, and assuming 3, = 9,, = 9 we get: 

A saddle-point splitting of the two branches now results from both the energy gap Etff between t and t' and 
the exciton hopping term 9. We find virtual extrema ofEADf at Q = 0 and *Qo where 

In the weak coupling limit, ~EJT/&- < 1, the real extrema appear at Q = 0 only: an anharmonic well of the 
upper branch EAD+(Q) and another one of the lower branch EAD-(Q). The excitonic polaron is on- center 
retaining the particular site symmetry. This harmony is disrupted at strong coupling, 4&/En, > 1, and the 
central extremum of EAD.(Q) turns into a maximum and two lateral wells appear at ~ Q o .  The upper branch 
E A ~ + ( Q )  grows steeper but retains a minimum at Q = 0. In this coupling range the original symmetry is 
broken and the exciton becomes off-center to a lower symmetry at +Qo. The two branches come as close as 
En' at Q = 0. Due to the polaronic effect, the exciton energy is lowered from one of the free exciton bands, 
of width 9, or to an excitonic polaron band of width GE,,, given by: 
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and centered at an energy E~ as: 

where S,, = eXp{-(2E~r/~O)[l-(E,,/4E,,>21). One gets the large-radii excitons for ~ E J T  - En, and small- 
radius ones for ~ E J T  >> En‘. The vibronic exciton band hosts the hopping between off-center sites. 
The above analysis of excitonic polarons amounts to carrying out a renormalization of the exciton Hamilto- 
nian, obtained as: 

(rr)n~s b 

where 3;’ = 6zn./2 and &I,@) = El&) + EP are the renormalized hopping and single-particle energies, 
respectively. While the energy lowering tends to stabilize the vibronic exciton, the interwell hopping tends 
to restore the original site symmetry. Eq.(12) projects an energy gap En’ onto an off-center polaron hopping 
band SE,a composed of energy levels from the vibronic mixing of & and &. This band is wider for ~EJT/&, 2 
1 close to the onset of an off-center instability. Consequently, a large-radius exciton makes rapid flips 
between off-centered sites bringing back on the average the original site-symmetry. At ~ E J T I E ~ ~  > 1, SE,< is 
too narrow to sustain the interwell transfer; so the small-radius vibronic exciton gets immobilized in a 
lower-symmetry well. 

APPLICATION OF EXCITON SELF TRAPPING 

Here we consider a special case of exciton self-trapping that leads to the localization of a pair of holes at a 
chemical bond in semiconductors (9,lO). The process leads to the bond-breaking and ejection of atoms 
from the surface. Also the di-electron localization taking place at Ga dangling bonds is predicted by density 
hnctional calculations near adatoms on GaAs surfaces assisted by strong lattice relaxation (1 1). The 
combined process may be regarded as an exciton-pair localization. 
We consider a two-step localization process in which two holes (or electrons) are trapped at a bond in a se- 
quence. While the first hole stays trapped, the second one experiences a potential U(r) due to the first hole, 
including the screening effect of the electron-hole atmosphere and the carrier-lattice interaction potential. 
The potential U(r) is repulsive at long range but attractive at short range, as given below: 

where r is the separation between the two holes, ro the trapping radius, O(r) the step function, 
rD = ekeT 8pme2 is Debye’s screening radius, K the dielectric constant and m the free carrier density. 
Defining an attractive potential U d  between the two holes we can get U=E= GQ - UO = UO - ELR < 0, where 
UO is the Hubbard’s repulsive potential. We can now write the Hamiltonian as: 

In- 

H = Hh + Hph i- Hhph (16) 

Hh = P2 + U(r,O) 
2mh 

P2 1 H~~ = - + - KQ’ 
2 M  2 
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where b(r) = aU(r,Q)/i?Qlpzo is the hole-phonon coupling coefficient and K = Ma2 is the mode force 

constant. For solving Schroedinger's equation with the adiabatic Hamiltonian HAD = H - pl2M we choose 
a basis of two eigenstates of Hh + Hh.ph: (i) a free hole state I&) with energy Ek and (ii) a bound state Ib) 
with energy Eb. Thus we get: 

E* ( Q )  = f(Hbb + Hkk d-) 9 (20)  

where 

(21) 
1 

Hbb = (b INAD lb) = yK(Q-Qbf - (Ern- W-Uo) 

with bbb = (blb(r)lb) =-G, bu = (klb(r)lk) = 0, bbk = (b(b(r)lk) = -G(blk)h. The bound-state minimum at Q = 
Qb in Hbb is stabilized by a lattice relaxation energy ELR = G2/2K and destabilized by the bound hole kinetic 
energy Eb, roughly equal to the free hole half-bandwidth W, as well as by Hubbard's energy Uo. Since the 
overlap of a free hole state with the bound hole state is infinitesimally small, the phonon-assisted transition 
rate, k,, from Ik) to Jb), becomes dominant and is obtained as (12): 

where 

E b k  is the crossover barrier between parabolae Hbb and Hkk relative to the minimum energy, E k ,  o f &  The 
crossover occurs at Qbk , given by: 

We sum over the energy in the sea of free hole states (Fig. l), and then the rate in Eq.(24) becomes: 

where 
Hbk = bbk~bk=-(w+~o-Ek)(b lk) ,  , 

and then converting the summation into an integration in Eq.(25) we get: 

where p(E)  is the hole density of states. For a surface, we can set p(E)  = NJW, where N, is the number of 
surface bonds, and then Eq.(26) becomes: 
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where 
2 "  2 (w+uo)' 

~ ( u )  = - Jexp( -+x ,  u = 
f i o  4EmkaT ' 

and uz is related to the bamer height EM between free and self-trapped hole states shown in Fig. 1, which is 
obtained as: Ebo = KQz,/2 = ( W + U O T / ~ E ~  . At u >> 1 the rate in Eq.(27) is proportional to exp(-uz) = 

eXp(-EbdkBT). 

Fig. 1. Adiabatic potentials of the sea of free holes (left) and of the bound hole (right). 

ELECTROSTATIC RESPONSE 

Another example is the electrostatic response of off-centered vibronic excitons. Previous studies have sug- 
gested that exciton pairing may occur via a dipole-dipole coupling (13). Here we show that the exciton 
pairing may be enhanced by symmetry breaking through off-center displacement, similar to the situation in 
ammonia molecule (14). The peculiar behaviour of polarons coupled to asymmetric modes has already been 
suggested by Holstein (8) who found that the coupling to an asymmetric intramolecular vibration could 
split the vibronic potential double well, which is quite similar to what is found in the theory of the inversion 
spectrum of the ammonia molecule. 

Electric-field coupling 
As excitons are polarizable, they may be expected to couple to an external electric field through permanent 
or induced dipoles. Consider an extra charge el, localized at site Z, whose interaction energy with a 
quantized field of small excitons can be written by multipole expansion as: 

IT = S,., W(i, jlw') BL Bjv'S , (28) 

where Ui = e & R ?  and F, = elRi/KR$ is the field due to the extra charge. piW, is a v-v' mixing dipole: 

pi,, = J' w:(ui eui wvt (ui dui , (3 0) 

where wv(u) are Wannier's functions. 
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The expectation value o f H  in HD-;Q) state at EAD.(Q) is obtained as: 

(Hljj)s ( A D - ; Q ~ H ~ ~ ~ ~ A D - ; Q )  = - p j n * ~ i  cos(4jn.) =-pjn,<Q>*Fi , 

where incorporating the adiabatic off-center dipole at Q we get: 

Averaging of Eq.(3 1) over the ground state centered at *Qo gives: 

The eigenvalues of the complete vibronic Hamiltonian 

give 

Thus the field widens the tunneling splitting 6 ~ ~ 2  but leaves the binding energy Ep(F) unchanged. The 
field-dependent term in Eq.(34) is a monopole - induced-dipole coupling potential giving rise to a binding 
energy Ub as: 

where 

[ Pin%(Qo) c o s ( ~ J 9 P  

Qn. (0)  
a n b  = 

is a renormalized vibronic polarizability (cf (14,15)). 

(37) 

Dipole-dipole pairing 
The exciton-exciton pairing interaction also can be described in a similar way. Defining a pair interaction 
Hamiltonian as: 

U, = e2/KR,,2, plap = (wu(ul)leuilwp(ul)> and qrap = (Wa(Ul)le2U,21Wp(Ul)). Using the symmetry we get plap = 0 
(a = p) and qrap = 0 (a f p). Setting y = a and 6 = p we get a coupling constant composed of an intraband 
(a = p) monopole-monopole interaction and of an interband (a z p) dipole-dipole term. Excitons may pair 
due to the energy matrix element W(apa0lijji). At (a f p) the corresponding part of IT, becomes: 
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Adding ITii in the exciton Hamiltonian as: 

H = C(ij)ap Tijap B L  Bjp + Ciu EiwBLBiw+I€ij . (40) 

we can solve again the Schroedinger's equation similar to Eq.(33) and get a dispersive pairing interaction 
of excitons with a Van-der-Waals binding energy ub as: 

which can be renormalized by exciton-phonon coupling, and then we get 

The effective well-interchange frequency then becomes 6~ii12A. 

DIMERS IN LAYERED MATERIALS 

The dimer condensation has been observed in materials with conducting planes separated by parallel insu- 
lating layers. Highly polarizable off-centered oxygens O(A) of an insulating layer may promote the forma- 
tion of dimers: excitons or bipolarons. Here we will discuss the Bose condensation and binding energy of 
dimers. 

Bose condensation temperature of 2-D dimers 
The Bose-condensation temperature of a gas of noninteracting 2-D dimers of bulk density nb is usually 
written as (16,17): 

3.3 1 ~ ~ ~ ; ~ ~  
Tc = 213 113 ks m 2 ~  mi D 

(43) 

where mm is the transport effective mass. mlD is a c-axis leak effective mass. Here we will present a way to 
calculate mlD and m 2 ~  so that T, can eventually be calculated. Given the monomer hopping energy, t,,,, the 
dimer hopping term, fb, is obtained by second-order perturbation from negative-U or small- polaron tight- 
binding Hamiltonians as f b  = 4(9tmt/ub; ub is the dimer binding energy, g is the coordination number (1 8). 
We get the effective dimer transport mass as: 

where db is the dimer hopping distance. 
The leaked mass mlD can be derived by tight-binding arguments using the axial CT energy gap ECT, which is 
the gap energy of two relevant orbital or hybrid axial states. ECT will couple to the axial stretching modes 
since they modulate the orbital overlap. A polaron-narrowed CT gap 2 f l D  results as: 

where ~ C T  = ECT/~EJT(CT and uCT = J ( ~ E ~ ~ T / A U C T ) J = .  E J ~ C T  = GCT%CT and AUCT are the as- 

sociated JT energy and bare- phonon frequency, respectively, KCT = MCTU& is the force constant of 
the CT-coupled oscillator with reduced mass MCT. The 1-D hops come across a barrier between two 
configurational wells separated by dlD = 2 J w u c T  . We get mlD as: 

Using Eqs.(43-46), the Bose condensation temperature can be calculated. 
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Bindinn e n e r a  
Assuming that the apical oxygen atom O(A) contributes to the pairing of in-plane carriers we get: 

(47) 
1 

ub=lanb(Fi  +FJ.(Fi+Fz)  , 

where is the O(A) electrostatic-polarizability tensor and Fi is the electric field produced by the i-th 
carrier at the apex site. 
As O(A) traverses the off-centered volume its polarizability gets modified. Consequently avib is the polariz- 
ability tensor of an off-centered ellipsoid rather than of a single ion. Coupling to A2, bond-stretching yields 
two off-centered sites along c-axis, and then one gets: 

and coupling to E, bond-bending yields four off-axis sites in layer as: 

where PA,E are mixing dipoles and tA,E are the tunneling splittings of the transfer between off-center sites. 
tA,E are like tlD with their respective JT energies, force- and mixing- constants given by: 

Using tA,E in Eq.(47) through a,, and an we get 

Ub=~[a,(F?,+F:)+a,F:], F = F I + F z  . (49) 

Using point-charge electrostatics F,  = *(e/Rj) Ri , where Ri is the separation between O(A) and the i-th 
carrier. Writing F, = Fcoscp we get: 

I \ 2  

where the angle (Rl,R2) = x-2cp for a symmetric geometry with R1 = R2 = R. We calculate the polarizabili- 
ties and minimize -& to get: 

We find qopt - x/4 for bihole dimers. There from we compute R and the optimal geometry of a pair, The 
results of our calculations, using K = 5 (16), suggest that both intra- and inter- plane pairing are possible 
with a hole-mediator separation of -5% as shown in Fig.2. 

Fig. 2, 

(La, Sr) 0 

(La, Sr) 0 cu02 
Likely geometries of intra- 
and inter-layer hole dimers 

1::2 in high-T, materials. 

(La, Sr)  0 

(La, Sr) 0 

(La. Sr )  0 0 (La, Sr )  ion 

0 Cu hole 

(La, Sr)  0 0 0 (A) 
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T?-D phase diagrams 
To incorporate a dependence on the number of excited electron-hole pairs we note that both the axial 
hopping energies t, and tm should depend on the carrier's density p ,  since they do so on the plane-to-apex 
separation r,, known to shrink as p increases: t ,  I to@) = Ah!, tm@) = tm(0) + (dtJdr,)(dr,/dp)p and r, = 
ra@) = ra,-(ra,-ra,)p where 3Sf4; rat and r,, relate to the undoped and heavily doped phases respectively. 
The phase diagrams of non-interacting small bosons are then obtained as (17): 

Eq.(52) holds for any mechanism yielding a pairing energy ub. The polarization model combines it with 
Eq.(50). ub being temperature-dependent, Eq.(52) and Eq.(50) comprise a transcendent system to be 
solved numerically for each T,, as shown in Fig.3. 
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