Localized triplet diradicals as a probe for electronic substituent effects in benzyl-type radicals: The ΔD scale

Waldemar Adam*, Heinrich M. Harrer, Fumio Kita and Werner M. Nau

Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg

Abstract

The *D* parameter, readily determined by EPR spectroscopy, is a sensitive function of the average distance *r* of separation between the unpaired electrons in the localized triplet 1,3-diradicals 2 ($D \propto 1/r^3$). For convenience, we have defined the difference between the *D* values of the benzylic substituent X and the parent system (X = H), i.e. $\Delta D = D_H - D_X$, as a measure of spin delocalization by the aryl group at the radical site. The additivity of the ΔD values of the monosubstituted diradicals 1 versus the symmetrically disubstituted diradicals 2 demonstrates that such triplet diradicals can be described as a composite of two geometrically fixed cumyl radical fragments. The *D* parameter correlates well with the experimental hyperfine coupling constants (a_{β}), with the calculated α spin densities (ρ_{α}), and the calculated resonance stabilization energies (RSE) for substituted cumyl radicals. These results manifest that the novel ΔD scale constitutes a reliable spectral tool to determine electronic substituent effects in benzyl-type radicals and may serve as a probe to assess the importance of polar substituent effects in chemical σ_{rad} scales.

Triplet 1,3-diradicals can be easily generated photolytically at low temperatures in rigid glass matrices from the corresponding azoalkane precursors [1]. The EPR spectroscopy of such diradicals affords the zero-field splitting (ZFS) parameters D and E [2]. The former is a measure for the electronic spin-spin separation ($D \propto 1/r^3$), the latter describes the symmetry and, thus, the conformation of the paramagnetic species and equals nearly zero for planar triplet diradicals [2].

We have investigated the electronic substituent effects on the D parameter in the localized triplet 1,3diradicals 1 (monosubstituted) and 2 (symmetrically disubstituted), for which X represents a large variety of *para* and *meta* substituents of such previously difficult to handle groups as NO₂, NH₂,

OH, I and even NH_3^+ or O. A dependence was recognized between the *D* parameter and the propensity of the substituent to delocalize spin into the benzyl moiety. Therefore, we defined the $\Delta D = D_H - D_X$ quantity, for which positive values ($\Delta D > 0$) are found for spin-accepting substituents, e.g. *p*-CF₃, *p*-CN, *p*-NO₂, but also *p*-NH₂, while negative values ($\Delta D < 0$) are observed for spin-donating substituents, e.g. *p*-F, *p*-OCOMe or *p*-OH (Table 1) [3]. Interestingly, all *meta* substituents show negative ΔD values, which implies localization of spin at the benzylic positions in the triplet diradicals [3b].

para-X	$ D/hc ^{b}$	$\Delta D^{(c)}$	meta-X	$ D/hc ^{b}$	$\Delta D^{(c)}$
p-NO ₂	0.0414	+ 0.90	H	0.0504	0.00
<i>p</i> -CN	0.0450	+ 0.54	m-CF ₃	0.0508	- 0.04
<i>p</i> -CO ₂ Me	0.0451	+ 0.53	<i>m</i> -NO ₂	0.0510	- 0.06
<i>p</i> -NH ₂	0.0476	+0.30	<i>m</i> -CH ₂ CH ₂ Ph	0.0511	- 0.07
p-CF ₃	0.0493	+ 0.11	<i>m</i> -Cl	0.0512	- 0.08
p-Cl	0.0495	+ 0.09	<i>m</i> -I	0.0513	- 0.09
$p-NH_3^+$	0.0496	+0.08	<i>m</i> -Me	0.0513	- 0.09
<i>p</i> -Br	0.0499	+ 0.05	<i>m</i> -OCOMe	0.0514	- 0.10
p-I	0.0500	+0.04	$m-NH_3^+$	0.0517	- 0.11
<i>p</i> -O ⁻	0.0502	+0.02	<i>m</i> -CN	0.0518	- 0.14
<i>p</i> -Me	0.0502	+0.02	<i>m</i> -OMe	0.0519	- 0.15
н	0.0504	0.00	<i>m</i> -O ⁻	0.0522	- 0.18
<i>p</i> -OMe	0.0509	- 0.05	<i>m</i> -NH ₂	0.0523	- 0.19
<i>p</i> -OH	0.0509	- 0.05	<i>m</i> -OH	0.0526	- 0.22
p-OCOMe	0.0515	- 0.11	<i>m</i> -C≡CPh	0.0529	- 0.25
<i>p</i> -F	0.0521	- 0.17			

<u>TABLE 1:</u> D Parameters and ΔD Values of the Triplet Diradicals 2^{a)}

a) Measured in a MTHF glass matrix at 77 K; b) values given in cm⁻¹, accuracy > 0.0001 cm⁻¹; c) values given in 10^2 cm⁻¹, $\Delta D = D_H - D_X$.

Dougherty's anticipation [4] that no special electronic effects (captodative stabilization, spin polarization, etc.) should play a significant role in triplet 1,3-diradicals, is now confirmed experimentally for the first time by correlating the ΔD values of the monosubstituted 1 with the symmetrically disubstituted triplet diradicals 2. The excellent linear correspondence (Fig. 1) with a slope of 0.55

Fig. 1: ΔD values of the monosubstituted 1 versus symmetrically disubstituted triplet diradicals 2

Fig. 2: *D* values of symmetrically disubstituted triplet diradicals 2 versus a_{β} hyperfine coupling constants of substituted cumyl monoradicals^[5]

The ΔD scale

 $(r^2 = 0.991)$ demonstrates convincingly the additivity of the ΔD values in such localized triplet 1,3diradicals. As a consequence, the triplet diradicals 1 and 2 may be described as a composite of two geometrically fixed cumyl radical fragments [3c]; for the latter substituent effects have been documented [5]. As depicted in Fig. 2, in which the *D* parameters of the triplet diradicals 2 are plotted against the a_{β} hyperfine coupling constants of the corresponding cumyl radicals [5], the excellent linear correlation $(r^2 = 0.948)$ between these two EPR-spectral parameters (*D* and a_{β}) demonstrates conclusively that the localized triplet 1,3-diradicals 2 are an excellent model system to assess electronic substituent effects in cumyl-type monoradicals. Our present treatment entails the first extensive experimental correlation of this kind [3a, 4b].

Since the a_{β} hyperfine coupling constant is a direct measure of the α spin density (ρ_{α}) in cumyl radicals [5] (eq 1), the *D* parameter and, hence, the ΔD values should also reflect changes in α spin

$$a_{\beta} = A + C \cdot \rho_{\alpha} \cdot \cos^2 \theta \tag{1}$$

density in the cumyl radical fragment. This expectation was confirmed by a detailed quantum-chemical treatment of the magnetic spin-spin dipolar interaction for the EPR transitions in triplet diradicals. This analysis revealed, indeed, a direct dependence of the D parameter of triplet diradicals and the local spin densities ρ_A and ρ_B at the radical termini A and B (eq 2), with d as the distance between the A and B

$$D = (3\mu_o g^2 \beta^2 / 16\pi) \rho_A \rho_B / d^3$$
⁽²⁾

spin sites [3c]. This relation opens up the opportunity to evaluate the electronic substituent effects in the triplet diradicals 2. For this reason, the α spin densities (ρ_{α}) were calculated semiempirically (PM3-AUHF/CI) for a large set of *para*- and *meta*-substituted cumyl radicals. As displayed in Fig. 3, the

Fig. 3: Experimental D parameters of the triplet diradicals 2 versus the theoretical α spin density (ρ_{α}) of the cumyl monoradical fragments

D parameters of the triplet diradicals 2 correlate nearly perfectly ($r^2 = 0.962$) with the calculated α spin densities of the cumyl monoradical model systems. This good correspondence between the experimental

results (D parameter) and theoretical calculations (PM3) provides strong evidence that the *para*- and *meta*-substituted localized triplet 1,3-diradicals 2 are an excellent model system for the evaluation of electronic substituent effects in cumyl monoradicals.

To link our ΔD -based electronic substituent effects to linear free-energy relationships (Hammett equation), an energy measure of radical stabilization is required [6]. For benzyl and cumyl radicals, Arnold [5] has reported a direct dependence between the variation in α spin density (ρ_{α}) and the radical stabilization energy (RSE). In view of the latter correlation and since we have shown that the D parameter of the triplet diradicals 2 correlate with the α spin densities in cumyl radicals, a correspondence between the substituent promoted variations of the D parameter in the localized triplet diradicals tabilization energy (RSE) in the corresponding cumyl radicals was expected. Such RSE values may be conveniently assessed by computing the rotational barrier [7] as the difference (eq 3) between the energy of the 90° conformation (no delocalization between the radical site and the

$$RSE = \Delta H_f(90^\circ) - \Delta H_f(0^\circ)$$
 (eq 3)

aryl moiety) and the 0° conformation (maximal delocalization) [5,7]. These computations were performed in the same way as for the α spin density (*vide supra*) by consideration only of the most interactive substituents, e.g. *p*-NO₂, *p*-NH₂ or *m*-NH₂, for which the angle dependence is exhibited in Fig. 4.

Fig. 4: Theoretical model for the computation of the resonance stabilization energy (RSE) in cumyl radicals in which $\theta = 0^\circ$ represents full and $\theta = 90^\circ$ no spin delocalization

Fig. 5: Plots of the calculated RSE of cumyl monoradicals versus the D values of the triplet diradicals 2 and versus the calculated spin densities (ρ_{α})

parameter as well as with the calculated α spin density. Both linear plots demonstrate impressively that the variations in α spin density (ρ_{α}) of substituted cumyl radicals are related to the corresponding radical stabilization energies (RSE). Therefore, electronic substituent effects are accounted for nicely by the *D* parameters of the triplet diradicals **2** and, hence, by the ΔD scale.

How does our spectroscopic ΔD scale fare with the reported chemical σ_{rad} scales for electronic substituent effects in radical reactions? To date, four chemical σ_{rad} scales are available, based on appropriate radical reactions, which deal with electronic substituent effects on benzyl radicals [8-11]. For example, the Fisher scale [8] is based on the N-bromosuccinimide-initiated hydrogen abstraction from aryl-substituted *m*-cyanotoluenes. The most comprehensive scale is Creary's [9], which considers the relative rearrangement rates of 2-aryl-3,3-dimethylmethylenecyclopropanes. The Jackson scale [10] employs the thermolysis of dibenzylmercury compounds and the most recent one from Jiang [11] applies the dimerization rates of substituted trifluorostyrenes for this purpose. Unfortunately, the correspondence between our spectral ΔD and the reported chemical σ_{rad} values is mostly poor (Fig. 6); however, in the

Fig. 6: ΔD versus reported chemical σ_{rad} values

chemical σ_{rad} scales, polar contributions in the transition state (propably also in the ground state [12]) may operate, which would encumber a reliable assessment of the electronic substituent effects in radicals. To determine whether polar effects may play a role in the σ_{rad} scales, a two-parameter Hammett analysis (eq 4) was performed for the Creary scale (σ_{Creary}), since this scale encompasses the largest set

$$\Delta D = \rho_{\rm rad} \cdot \sigma_{\rm rad} + \rho_{\rm pol} \cdot \sigma_{\rm pol} \tag{4}$$

of available substituents for comparison. Indeed, a substantial improvement in the linear correlation $(r^2 = 0.576 \text{ to } 0.903)$ was obtained, when corrections for polar effects were made in terms of Hammett polar substituent constants (Fig. 7). This two-parameter analysis reveals that polar substituent effects are important in chemical radical scales, but the electronic substituent effects are predominantly radical-type in nature, as expressed by the Hammett reaction constants ($\rho_{rad} = 1.00 \text{ versus } \rho_{pol} = 0.41$).

In conclusion, we have shown that the *D* parameter of localized triplet diradicals, experimentally measured by EPR spectroscopy, provides the novel spectral ΔD scale to assess electronic substituent effects in benzyl-type monoradicals. The ΔD values correlate well with experimental hyperfine coupling constants (α_{β}), with the calculated α spin densities (ρ_{α}), and the resonance stabilization energies (RSE) for cumyl radicals. A good linear correspondence is achieved between ΔD and the chemical σ_{rad} values,

© 1997 IUPAC, Pure and Applied Chemistry 69, 91–96

Fig. 7: Plots of ΔD against the Creary σ_{rad} values (σ_{Creary}) without (left) and with (right) correction for polar effects by means of a two-parameter Hammett analysis

e.g. the Creary scale, provided the polar substituent effects are corrected for by means of a twoparameter Hammett treatment. In view of the inherent difficulties to establish a generalized chemical σ_{rad} scale, we contend that our spectral ΔD scale constitutes a reliable measure of electronic substituent effects in benzyl-type radicals.

Acknowledgements

We are grateful for generous financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for a doctoral fellowship (1992-94) to W.M.N..

Literature

- a) Coms, F. D.; Dougherty, D. A. Tetrahedr. Lett. 29, 3753 (1978).
 b) Adam, W. Reinhard, G.; Platsch, H.; Wirz, J. J. Am. Chem. Soc. 112, 4570 (1990).
- [2] a) Dougherty, D. A. in Kinetics and Spectroscopy of Carbenes and Triplet Biradicals; Platz, M. S. (ed.) Plenum Press: New York, (1990), p- 117-142; b) McGlynn, S. P.; Azumi, T.; Kinoshita, M. in Molecular Spectroscopy of the Triplet State, Prentice Hall, Englewood Cliffs, N. J. (1969).
- [3] Adam, W.; Fröhlich, L.; Nau, W. M.; Korth, H.-G.; Sustmann, R. Angew. Chem. Int. Ed. Engl. 32, 1339 (1993).
- [4] a) Dougherty, D. A. Acc. Chem. Res. 24, 88 (1991). b) Stewart, E.G. Ph. D. Thesis, California Institute of Technology, (1992).
- [5] Arnold, D. R. in Substituent Effects in Radical Chemistry; Viehe, H. G.; Janousek, Z.; Merenyi, R. (ed.); Reidel & Dordrecht, Netherlands, NATO ASI ser., Ser. C, (1986), Vol. 189, p. 171-188.
- [6] Exner, O. Advances in *Linear Free Energy Relationships*, Shorter, J. (ed.); Plenum Press, New York (1972), p. 50.
- [7] a) Dorigo, A. E.; Li. Y.; Houk, K. N. J. Am. Chem. Soc. 111, 6942 (1989). b) Bordwell, F. G.; Zhang, X.-M.; Alnajjar, M. S. J. Am. Chem. Soc. 114, 7623 (1992).
- [8] Fisher, T. H.; Meierhofer, A. W. J. Org. Chem. 43, 224 (1978).
- [9] Creary, X.; Mehrsheikh-Mohammadi, M. E.; McDonald. S. J. Org. Chem. 52, 3254 (1987).
- [10] Dinctürk, S.; Jackson, R. A. J. Chem. Soc. Perkin Trans. 2, 1127 (1981).
- [11] Jiang, X.-K.; Ji, G.-Z. J. Org. Chem. 57, 6051 (1992).
- [12] Nau, W.M.; Harrer, H.M., Adam, W. J. Am. Chem. Soc. 116, 10972 (1994).