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Abstract 
In the case of Gaussian chains, in solution or in bulk the expansion of the form 
factor at large q gives a term in q-2 which allows the determination of the 
statistical element and a term in qe4 which depends only on the structure of 
the chain (presence of cross-links, branches, loops etc. One can evaluate this 
term for all the branched structures being able to take into consideration the 
polydispersity. One gives the result fot simple rings and a general formula 
for simple networks. The same methods can be used for block copolymers. 
Asan exampleoneshows that this formulation allows to measure the kinetics 
of transesterification. 

Introduction 

During the last twenty years Neutron Scattering has been a very 
important method for the characterisation of polymeric material#). It did allow 
not only to obtain experimental results not accessible by any other technique but 
also to verlfy and to suggest new theoretical approaches. This technique has been 
partially responsible of the vigorous increase in our comprehension of the 
properties of polymeric systems(2.3). 

If one looks in details the experimental results and their interpretation 
one realises that the majority of the experiments have been devoted to what has 
been called the small angle domain where qR is small. In this expression R is the 
radius of gyration of the molecules and q the modulus of the scattering vector i.e. 
the quantity (4n;/h)sin(8/2)where h is the wavelength of the neutrons and 8 the 
observation angle. The behaviour at large values of q has been much more rarely 
utilised in the field of polymers and this for two reasons ; first, in the domain 
practically accessible to the small angle scattering technique, the intensity follows, 
at large q, the law I(q) = q-D, calling D the fractal dimension of the scattering 
object. For polymers D = 2 if the chain follows the Gaussian statistics. In the 
general case one writes D = l /v ,  calling Y the exponent of the relation R = kN 
between radius of gyration and molecular weight ; as it is well-known Y is equal 
to .6 in the frame of the Flory(4) theory. 

Moreover the experiments are difficult in this range of q since the 
signal is of the order of magnitude of the noise and requires long exposures. 

In the first part of this paper we would like to show qualitatively why 
a careful investigation of the intensity in the high q region provides information 
about the detailed configuration of the chains ; in the second part we shall discuss 
the effect of polydispersity, branching, cross-links and even the existence of 
networks on the scattering of homopolymers and copolymers in solution or in 
bulk. These considerations will essentially be of theoretical nature therefore, in 
order to show that these theories can be used by experimentalists, we shall give a 
brief description of the phenomenon called the transesterification and show why 
neutron scattering is probably the best method to study this reaction in a polymer 
melt. 

1)The general method 

a) A qualitative analysis 
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132 H. BENOIT 

It is evident that, since the scattering intensity considered as a function 
of the scattering vector q is the Fourier transform of the pair distribution of the 
scattering centres, q space and r space are conjugated. In other words one can go 
from the scattering object (in the space r) to its diffusion pattern (in the space q )  
by a Fourier transformation. This means that to small qvalues correspond large 
r values and vice versa. Looking at a scattering diagram as function of q is just 
like looking at the scattering object with a magnifying glass of changing power 
and making afterwards a Fourier transform. When the power increases the field 
decreases and is of the order of 4-1. In this discussion we shall assume that we are 
studying a dilute solution or a system in which the scattering diagram is 
completely described by the form structure factor ; we shall generalize these 
results to any system later. 

Working at low q is equivalent to using a low power magrufying glass. 
In this situation each molecule is practically a point and the only thing one can 
do is to count the number of points which is equivalent to a measure of the 
molecular weight. If the solution is more concentrated one can show that 
neutron scattering gives which, for an ideal solution, is equal to N. To 
summarize the situation : at q = 0 one measures only thermodynamic aspects of 
the solution and one does not obtain any information about its structure. 

If we increase q in order to have q-1 of the order of the radius of 
gyration the molecules are no more point like and what one sees is 
approximately represented in diagram 11. One does not see the details of the shape 
and the structure of the molecules but only their dimensions. It was shown by 
Guinier that, in this domain, one measures the radius of gyration. 

Figure 1 : Schematic representation of the different q domains 

If we increases q still further we reach either domain I11 or 111' 
depending on the concentration : diagram I11 corresponds to dilute solution, 
diagram 111' to moderately concentrated solution called semi-dilute by de 
Gennes (1979)). From diagram III it is clear that one sees only a part of a molecule 
: the scattering does not depend on molecular weight and one obtains 
information about the statistics of the chain and its persistence length. If the 
solution is concentrated (diagram 111') one sees parts belonging to different 
chains and one obtains information about the length of the chain which separate 
two contact points ( called the correlation length). Increasing q will leave only 
one part of one chain in the field. (diagram IV) and if the chain has lateral 
dimensions small compared to the longitudinal ones it will look like the chain of 
statistical mechanics.. If the persistence length is large compared to q-1 and if the 
diameter of the cylinder containing the side groups is small enough one will 
observe a behaviour typical of a rigid rod. 

For still larger values of q (diagram V), q-1 becomes of the order of the 
length of the chemical bonds, the local structure of the chain begins to play a role. 
One is no more in the small angle scattering range and one of difficult problems 
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which will not be discussed here is to know the exact range of q's to which the 
theories summarized in the next part of this paper can be applied. 
From this analysis a few conclusion can be deduced : 

At large q (diagram 111 or m' and IV) the scattering intensity does not 
depend on the molecular weight. The length of the chain is detected only by the 
effects of chain ends. The probability of observing one of them in the field of 
observation decreases when q increases. For large q it is a rare event (specially for 
large molecular weights) which does not affect the results. Neutron scattering 
gives, in this range, information which is independent of the chain length, 
polydispersity and even concentration as long as the average distance between 
two chains is large compared to q-1. In this range, one does not need to extrapolate 
at zero concentration and the scattering depends only on the nature of the 
chains. 

For many reasons the limits between the different domains which are 
discussed here and have been arbitrarily fixed at R, the radius of gyration andR 
the statistical element of the chains are not precise. One should, to be correct, 
speak about "cross over" regions where the dominant factor influencing the 
scattering changes continuously. 

To summarize this discussion one can say that for a single linear chain 
there are three distinct domains 1) the zero angle and the Guinier domain where 
one can measure the molecular weight and the radius of gyration (Rg), at least for 
dilute solutions. 2) The intermediate domain l / R g  <q < 1 / R  where the scattering 
depends only on the chain statistics and sometimes a th rd  domain 1 / R  <q 
where, if the monomer is thin enough, the chain behaves like a rigid rod. . 
b) The general equation 

We have, until now, considered chains with fractal dimensions D 
saying only that scaling arguments show that, for these chains, in the q range 
characterised by diagram IV, I= q - D .  The value of the constant C ,  which depends 
on the concentration and the scattering length of the monomers, is a classical 
result for rods, Gaussian chains, and chains with excluded volume and will not 
be discussed here. 

If we consider an asymptotic expansion of I(q) at the high q limit it is 
evident that, in order to go from diagram IV to diagram III one has to add a new 
term in the expressian of I(q). This problem is difficult in the case of chain with 
excluded volume since it seems that the simple expression used by Loucheux, 
Weill and BenoR is not valid. It has been solved for rods but in this lecture we 
shall limit our attention to the case of Gaussian chains. Introducing the quantity 
S(q)= I(q) /a% one can write, following Debye(5) 

(1) 
L 

S(q) = "(q) = -[pN - 1 + exp(-pN)] 
u2N 

calling a the contrast factor of the monomer, N the number of monomers in the 
scattering volume and p the quantity q2 b2/6 where b is the statistical length or 
the Kuhn segment. 

At high q this reduces to : 
? ?  
L L  

S(q)= -- - 
w Nw2 

The first term gives the asymptotic behaviour and depends only of the 
statistical element . The second term gives N the molecular weight. One can 

0 1997 IUPAC, Pure and Applied Chernistry09,131-14i 



134 H. BENOIT 

explain qualitatively why the second term, which is a correction due to the finite 
value of N since it disappears for N = 03 decreases the scattered intensity. This is 
due to the end effects. Each time the magnifier of figure 2 meets an end (Fig. 2b) 
the scattering diminishes This term is therefore proportional to the number of 
chain ends and allows in a polydisperse system the measurement of this number 
which is equivalent to the number average degree of polymerization Nn. If we 
compare this result with the result of a f arms star made of identical branches of n 
segments, we obtain at large q : 

2 f-3 
S(q) = - + - 

P nP2 
(3) 

One sees that for f 12 one- recovers Eq. 2. The second term which will be 
called z' writing equation 3 on the general form : 

has a sign which changes for f= 3. If f is larger than 3 the presence of the cross-link 
points increases the scattering intensity and suppresses the negative contribution 
of the chain ends. 

a b C 

figure 2 
a) Infinite chain, b) Influence of a chain end, c) Influence of a cross-link 

More generally the problem we want to discuss is the calculation of the 
parameter z' as a function of the structure of the chain, i. e. the existence of 
branches, rings and the case of networks. Before doing so it is interesting to 
discuss the experimental methods one can use to evaluate experimentally the 
value of the parameter z'. 

c) The experimental determination of the parameter 2'. 

The first method can be the use of what is called the Kratky plot where one plots 
@S(q) or q2I(q) as a function of q2 . This gives to Eq.4 the form : 

12 362' 
s2 SW =p +&qT (5) 

If one uses this type of diagram one obtains the curves represented on figure 3 
(1). If z' is negative one obtains e diagram (a) if it is positive diagram (b). One 
other way of representing the data uses the Zimm-plot, where, this time S-l(q) is 
plotted as a function of q2 as in figure 3(2). The corresponding equation is : 

(6) s-l(q)=- q2p - z  
12 
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Neutron scattering by polymers 135 

figure 3 : 1) Kratky plot and 2) Zimm -plot 

All the curves corresponding to the same type of chains have the same 
asymptotic slope ; the asymptotes are parallel. c is the intercept of these 
asymptotes with the y axis. The diagram a of figure 3;2 corresponds to c negative 
and the diagram b to c positive. Since this experimental determination is easy it 
is worth to examine in more details the theoretical interpretation. 

11) The case of branched polymers 

Let us consider a chain molecules made of s branches of the same 
length n (N = sn), defining a branch as a linear chain going from one cross-link to 
another one or from one cross-link to a free end. This chain has c cross-links of 
functionality f. This means that f branches start from each cross-link point. It is 
also assumed that no ring structures is present : the structure of the chain is thus 
that of a Coyly tree. As it has already been shown the calculation of the 
asymptotic value of S(q) is not difficult . Calling si(q) the term corresponding to 
the branch i and Sij(q) the cross-term corresponding to the interferences between 
branches i and j one can write : 

The contribution of Si(q) is the contribution of a linear chain. The term 
sij(q)vanishes at large q if the chains i and j are not connected. One has just to 
evaluate the number of connected pairs (cf[f-l]), each one contributing for 1/$. 
This leads to(6) : 

2 d(f-1) 2 
S(q) = - + - - - 

p snp2 np2 
and in the Zimm representation : 

0 1997 IUPAC, Pure and Applied Chemistry69,131-142 



136 H. BENOIT 

since the numbers s, c, f are related by the equation s-1 = c(f - 1) one obtains the 
final result: 

2 1  f 
P nv 

S(q)=- + ---+ f-2 - ;I 
or, using the inverse : 

S-l(q)=2 P 1  - z [ f - 2 - ; 1  f 

If the number of branches is large, as in the case of low density 
polyethylene, f/s can be neglected and Eq. 11 becomes : 

S-'(q) = -- - [ f -21 
2 4n 

Before being able to use these equation for the characterisation, of 
polymers one has to study the effect of polydispersity. 

It is difficult to take into account the simultaneous polydispersity of 
the length of the branches, the functionality and the number of branching points 
which means that each case requires a special discussion. One could give a 
general formula but it is more interesting to look at the simple case of low 
density polyethylene. In this case one can say that f = 3 since f = 2 corresponds to 
no branch; Assuming the main chain to be long one obtains : 

.-I 1 
L l  

S(q) = - + 7 
P np2 

calling 5 the number average length of the branches. 
This result is extremely simple and it would be interesting to check it 

experimentally since this method is the only one able to give a direct estimation 
of the length of the branches. 
The domains of application. 

We are now able to discuss the form factor of branched molecules and 
the question is to know the cases where one can use the formulae we have 
established. Since, if one uses the Random Phase Approximation of de Gennes@), 
which is the most used interpretation method, the q dependence appears only by 
the use of the form factor of the different constituents, it is legitimate to use the 
approximation which has been proposed in all the cases where R.P.A. is valid. 

111) The case of block copolymers. 

One assumes that the copolymer is made of two types of units, A and B 
and that they have the same statistical element (this requires just to change 
adequately the definition of the degree of polymerisation Na or Nb ). The form 
factor of such a copolymer changes with the contrast factor of the parts A and B 
and depends of three terms : the form factor of the part A which will be called 
Paa(q) the form factor of the part B called Pbb(q) and a cross-term : 

corresponding to interferences between scattering points A and B. 
The calculation of Paa(q) is identical to what has been done in the case of 
homopolymers and gives, in the frame of our hypothesis, the result of Eq. 8 : 

(15) 2 cafa(fa-1) 2 
P SanaP2 nap2 

N aPa a(q) = - + 

0 1997 IUPAC, Pure and Applied Chemistry69, 131-142 



Neutron scattering py polymers 137 

calling this time Sa the number of branches A of length na ,fa the functionality 
corresponding to the A branches and c, the number of cross-link points. The 
result has the same form for the part B and the only problem is the evaluation of 
the CTOSS-teIIII Pab(q). 

Since two interfering points are never on the same branch one sees 
that the first term 2p-1 in Eq.15 is absent. The only term which has to be 
evaluate is the p-2 term . It is the sum of the fa& contributions of the junctions 
where fa branches A meet branches B. This can be written formally as : 

Sometimes one can use the'folfowing method : if one considers the 
copolymer as an homopolymer one can express the total form factor as the 
following sum : 

(Na + Nb l2p (9) = N$ p(q) + N% pb(q) +2Na Nb pab(q) (17) 

The calculation of the scattering in the general case is to complicate to 
be presented here and we shall give only one example : the linear multiblock 
copolymer in bulk") 

A B  A B  A B A  B 

figure 4 

The copolymer is made of 2s blocks (sa = sb), each of them comprising 
na monomers a and Q., monomers b. Following the notations of BenoPt and 
Hadzioannou we introduce n = n, + nb and the quantities u and v such as 
na= un and nb = ~n (U+V = 1). 
Using Eq. 15 one obtains for Paa(q) or Saa (q) : 

&(q) is obtained replacing a by b and u by v. 

the form : 

The use of Leibler(8) expression for the scattered intensity of a two types of blocks 
copolymer in bulk leads, when there are no interactions, to : 

The direct calculation of Sab(q) is tedious and we use Eq. 17 which takes 

p (q) = U'pa(q) +V'pb(q) + 2uvpab(q) (19) 

2uv 1 1 1 1 
u u n u  V S 

S(q) = - {1---[-+---]} 
This formula can be obtained starting form the value evaluated fo the whole 
copolymer. 

If the system is polydisperse the only polydispersity which has to be 
taken into account is the polydispersity of the length of the segments and one can 
show that one obtains, using this time the inverse form : 
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138 H. BENOIT 

calling N, i i a  and fib the number average molecular weight of the polymer and 
of the blocks A and B. If the number of blocks is large i i a  and fib are smaller than 

N and the last term can be neglected making the measurement of ii possible. 
It is interesting to note that when the distribution of the blocks A and B is the 
most probable distribution nw/nn= 2 the straight line of Eq. 21 in the S-’(q) 
representation gives the scattering curve for any value of q. This is the 
generalisation of a classical result on homopolymers, obtained by Zimm who 
showed that, if Mw/Mn= 2, S-l (9) is a linear function of q2 . 
IV) Chains with loops 

0 10 20 30 40 

Figure 5 The quantity pP(px) in arbitrary units for different values of the parameter z. Going from 
top to bottom one has successively z = 1,0.8,0.5,0.2, 0. 

Until now we have ody  consider chains where there is only one way 
to go from one point to another. If one wants to generalize the preceding 
paragraphs to chains presenting loops one has first to evaluate the large angle 
scattering by a Gaussian chain forming a ring. This has been done by Casassa(9) 
obtaining : 

2 4  
S(q)=- +- 

P v2N 
One recovers the Gaussian p-1 term but the second term which, 

following our qualitative discussion should be zero is positive and identical to 
what has been evaluated for a four arms star. Instead of evaluating the total ring 
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one can calculate the scattering by a segment of n statistical units in a ring of N 
segments. This calculation has been done by Kosmas and al.(10) which obtain: - 

2 2 n  
u u2n 

S(q) = - + + 2R - 1) 
. I  

When N is ifinity on recovers the linear chain and when z= n/N=l 
the complete ring. Figure 5 illustrates this result showing, in the Kratky 
representation, the quantity pS(q), for all values of q, as a function of p for 
different values of z= n/N. One sees that the maximum which is clearly visible 
for z=1 disappears as soon as z becomes smaller than 1/2. 

These formula should allow, in principle to evaluate the scattering by 
one segment of a cycle if one knew the quantity N-n i. e. the length of the chain 
equivalent to the network. 
Another quantity which is needed to make calculation for networks is the 
cross-term Pab(q) characterizing the interferences between a segment and a 
contiguous M g ,  as in figure 6 : 

figure 6 a linear chain grafted on a cycle 

As expected, there is no term in p-1 and one obtains : 
4 

P12(q) - (24) 
nl n2p2 

which is identical to the result obtained in the absence of cycles. This suggest 
that, regardless of the structure of the network the contribution of the cross-terms 
is limited to the interaction between contiguous segments and has for value 
1/n1n2p2. 

V) Networks 

These results show that the theory exposed in this paper in the case of 
polymers which can be described as a Cayley tree can be generalized to network 
but, without at the present time being able to give explicit formulae except in 
very simple cases. Fortunately a very simple argument based on the comparison 
of a Gaussian network with an electrical network of resistors by Kirkpatrick(l1) 
allows, using simple hypothesis about the symmetries of the network, to derive 
the following formula(l2): - 

2 2  4 
S(q) = ; + - [2f - 1 - 71 

u2n 
calling f the functionality of the network, n the number average degree of 
polymerizqtion of the elastic chains . The quantity p is, as before, qW/6. This 
formula assumes that all the junctions have f as functionality and that there are 
no pending chains or loops where both extremities of the same elastic chain are 
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bounded to the same cross link. This formula gives always a positive value to the 
second term which is normal by comparison with ring structures. 
Experimentally one observes often in Kratky plots this type of behaviour but, 
until now, no experimental verification has been tried. 

In this review we have limited our discussion to the case of Gaussian 
chains in an isotropic medium forgetting the existence of interactions 
characterized by the parameter x. One could introduce the term x in all the 
equations which have been written but this is only possible if x is small and does 
not perturb the Gaussian statistics of the chains. The extension of these results to 
chains under an anisotropic stress is possible(@ as well as the extension to rodlike 
chain@) but it remains to show that this kind of result can be extended to chains 
with excluded volume(l4). 

VI) Application to the problem of transesterification 

In order to show that these theories can be used by experimentalist, I 
would like to discuss its application to the problem of transesterification 
discussed by Benoft, Fischer and Zachmann(l5) 
Let us assume that we have a mixture of two identical polyesters (for instance 
poly(ethy1ene terephtalate) one usual the other completely deuterated. The large 
angles neutron scattering signal is easily measured and be evaluate using Eq. 6 
and the de Gennes theory giving : 

u v  -- - + z  i(q)b2 - 2 
where u is the fraction of deuterated material and nD , n H and nT the number 
average degree of polymerization of the deuterated polymer, the normal polymer 
and the mixture of both polymers. i(q) is the intensity scattered per statistical 
element ; b is the contrast factor between deuterated and normal polymer and z 
the quantity : 

1 2 nD + G - F  
1 1  1 1  z = -[- 

expression very similar to the result obtained on block copolymers in Eq.21. 

Now if one heats this system in bulk the signal disappear after a time 
which depends on temperature. The mixture of the two polymers A and B is 
transformed in a polydisperse mixture of copolymers containing A and B blocks. 

H H D  

D H 4 
D 

Figure 7 The first step of the transesterification reaction 

The figure represents the first step of the reaction where the scission of one 
ordinary and one deuterated molecule forms two ,two blocks, copolymers. 

As soon as this process has begun on has to replace equation 27 by equation 21 
obtaining for z : 
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where, this time, nD (t) and nH (t) are respectively the number average degree of 
polymerization of the blocks D and H. Since, after each scission, these averages 
diminish one obtains Zimm-plots similar to the diagram of figure 8 : the curves 
stay parallel but the intercept (z) increases as a function of time 

Figure 8. Evolution of the intensity scattered by a mixture of H and D homopolyesters 
as a function of time to< t i< t2 

Each time a scission of the type represented on figure 7 is produced, the 
number of chains of H and of D increases from one unit and after S scission one 
has : 

(29) 
1 so) +- nH(t)=nH(O) NH 

1 
and 

calling N the total number of monomers and ND, NH the monomers D and H. 

1 S(t) +- nD(t>=no(o) ND 
1 

The gnly parameter of the problem is therefore the number of scission as a 
function of time S(t). This number is determined by application of the classical 
laws of chemical physics and one obtains : 

where k is the kinetic constant of the reaction which should depend 
exponentially of the temperature. 

(30) 
1 S(t) = Nuv[l - exp(-~kNt)] 

One can plot the intercept z as function of time and one obtains : 
t 

calling t the quantity t = 2/kN. 
1 

z(t) -z(O) = ?[l-exp(--)l 
t 

This method has already been applied to P.E.T. and other mesoenic copolymers. It 
has the advantage of being mostly sensible to the beginning of the reaction. If the 
number of scissions is equal to the number of molecules the quantity z is divided 
by 2 and easy to measure contrarily to other technique, which, in the case of large 
molecular weights, give only a weak signal. 

Conclusion 

I hope that these simple consid erations can convince the specialists of 
neutron scattering that it is important and usefsul to study the large angle 
scattering. This is more difficult than the zero angle scattering but, if the 

0 1997 IUPAC, Pure and Applied Chemistry69,131-142 



142 H. BENOIT 

experiments are made correctly the interpretation is easier, since one has not to 
take into account the problem of aggregates and interactions, and can bring new 
information on the structure of polymers. 
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