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Abstract: In a series of papers (ref. 1-13) we have recently elaborated the concept of 
“response reactions”, in order to interpret and rationalize the changes taking place 
in multipleequilibrium systems, when the control parameters (pressure, tempera- 
ture, initial amounts of substances) are altered. The concept helps to interpret cer- 
tain unusual phenomena - frequently encountered in multiple-equilibrium systems 
- by decomposing the sensitivity coefficients in a linear way into terms uniquely 
assigned to response reactions. It has also been shown that the “configurational” 
or “relaxational” part of many important first derivatives in chemical t hermody- 
namics may be expressed as a sum of terms, assigned to response reactions. The 
concept of response reactions opens a new way to formulate the change of the ther- 
modynamic potential functions in terms of affinities. As a result, coupling between 
reactions appears in a natural and straightforward manner. The equations derived 
may be extended into the domain of irreversible thermodynamics. 

Introduction 

There are two equivalent approaches to describe a reacting chemical system. The first is the original 
Gibbs formulation (ref. 14): 

dG(T,p) = C:=, p, dn, ( = 0 at  equilibrium) 

and the second is based on De Donder’s theory (ref 15): 

d G ( T , p )  = - C,”=, A, d t ,  
q = number of species, 
m = number of stoichiometrically independent reactions (SIRS), [, = extent of the j - th  SIR, 
p r  = chemical potential of the 2-th species, 
n, = amount of the 2-th species, 
A, = - ( d G / d [ , ) ( ~ , ~ )  = affinity of the 3-th SIR, 
q - m = number of components. 

( = 0 at equilibrium) 
where 

The presentation in this article is based on examples, in order to reveal the “chemistry” behind the 
sometimes complicated mathematical expressions, given in full detail in our previous papers. As an 
example we consider a homogeneous system containing CHI, HzO, CO, COZ, and Hz, at 1000 K. One 
possibility to describe the chemical transformations in this system is the following: 

CH4 + HzO + CO + 3Hz 

K1 = 26.12 ; 

(1) 

AH? = 225.39 k J  mol-’ 
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CH4 + 2 H z 0  f GO2 + 4Hz 

K2 = 35.73 ; AH? = 190.62 kJ mol-' 

(2) 

Denote the initial amount of the i-th species by ny and its equilibrium amount by n:. The total 
amount is denoted by nFot = En: at equilibrium and by nyot = En: in the initial state. Then the 
following two systems of equations may be used to  calculate the composition of the equilibrium state 
at a given total pressure Ptot. The Gibbs approach: 

supplemented with the elementary abundance (mass-conservation) conditions: 
for carbon: 
for oxygen: 
for hydrogen: 

n&,, + ng0 + n& = n5H4 + nko + n& 
n>o + 2nZo2 + nkZ0 = nzo + 2nEoz + n'HO 

4n",,, + 2nLZo + 2nL2 = 4nZH, + 2nh2 + 2ngZo 
We have five equations and five unknowns, their solution IS a standard numerical procedure. 

The second possibility is to employ the De Donder approach: 

Here we have two equations and two unknowns, the solution of which is also straightforward 

The two procedures are equivalent, as far as the calculation of the equilibrium composition is con- 
cerned. When using De Donder's method, the mass-balance conditions are involved in El and E 2 .  The 
difference between the two approaches becomes transparent if we consider the linear transformation of 
the equations (1) and (2). Any - linearly independent - combination of these equations may be used 
in case of the Gibbs approach; the latter three equations (mass-balance) will always be the same, and 
the same quantities (n,") are calculated. 

In case of the De Donder approach, we have only two equations, but the price is that new quantities 
(extents of reactions of SIRs) are introduced. The disadvantage is that if we start with another choice 
of SIRs, then the calculated extents will be different. Before proceeding further, we have to elaborate 
on the meaning of the extents of reactions, because it is crucial to understand how the extents of 
different reactions change by changing the control parameters. 

Extents of reactions 

In case of a single reaction, the change of the extent has two different meanings: 

( is a mathematical tool for taking into account the mass balance; 

means that v;[ is the amount of the i-th species, transported between the two sides of the 
stoichiometric equation, where vi is the respective stoichiometric number (negative for reactants 
and positive for products). 

The shift of the extent of a single reaction when the control-parameters are changed is unequivocally 
determined by the Le Chatelier principle. 

The situation which we encounter in multiple-equilibrium systems is also illustrated through the ex- 
ample chosen: 
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It is evident that the extent of the first reaction at equilibrium state must be the change in the 
amount of CO, as this species is missing from the second equilibrium. Similar reasoning applies for 
the extent of the second reaction at equilibrium. It is interesting to realize, that the extent of a given 
reaction is determined by the species which is missing from the other! 

Any two (independent) linear combinations of the equations (1) and (2) may serve as a set of SIRS of 
the same system, for instance: 

CH, + HzO f CO i- 3Hz (1) 

Ii‘’ = 26.12 ; AH? = 225.39 k J  mol-’ ; t1 = nEH, - n&H, 

C02 i- H2 + CO i- HzO (3) 

Iir3 = (Iil/Kz) = 0.731 ; AH? = AH? - AH? = 34.77 k J  mol-’ ; & = n& - ngo2 

It is seen that the extent of reaction (1) depends on the second reaction chosen and not 011 its own 
characteristics. It may be stated, therefore, that in multiple-equilibrium systems the concept of “ex- 
tent of reaction” is a useful mathematical tool for book-keeping purposes, but its second meaning 
is lost. Consequently, without performing a full-scale numerical calculation, we are unable to predict 
how the extents are shifted by changing the control parameters. 

Sensitivity coefficients in multiple-equilibrium systems 

Taking reactions (1) and (2) - for example - one can easily see that in each of them the sign of the 
sensitivity coefficient anH,o/dT is negative. In view of this one would be inclined to predict that 
their joint effect has the same sign (H2O is on the reactant side of both endothermic reactions). Let 
us compare this prediction with results depicted in Figure 1, where dnH,o/aT is plotted as a function 
of pressure. It is seen that the prediction is fulfilled only in a narrow intermediate range of pressure. 
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Figure 1. 
$nH20/aT as a function of pressure, at initial composition: ncH, = 1, nH20 = 1, nco, = 1, nH2 = 1 

and nco = 2 mol. 

A similar consideration shows that if the reactions (1) or (2) are regarded individually, then the sign 
of dnH,o/dP must be positive. Moreover, it may be concluded that at very low pressure, in each 
reaction n H z O  should approach 0. The respective joint effect is seen in Figure 2, exhibiting just the 
opposite features: a non-zero and constant amount of water at low pressure and its decrease at high 
pressure. 

Let us try to predict the pressure-dependence of nHzo if the system is described by the following two 
equations, derived from (1) and (2) by simple linear combination: 

(3) COz + Hz + CO + HzO 

I i j  = 0.731 ; AH? = 34.77 k J  mol-’ 

0 1998 IUPAC, Pure and Applied Chemistry 70,583-590 



586 I. NAGYPAL eta/.  

0.7 

0.6 

0.5 

0.4 

4CO + 2 H 2 0  + 3 c o 2  + C Hq 

I i ,  = 0.0980 ; AH? = -329.7 kJ mol-' 

- 

- 

- 

0, z 
C 

Based on equations (3) and (4), some of the features of Figures 1 and 2 become understandable. It 
should be stressed again that equations (1) and (2) are equivalent to equations (3) and (4)  if our 
aim is calculating the equilibrium composition. If, on the other hand, we want to understand the 
behaviour of t he  system, i.e., if we want to know how the equilibrium is shifted by changing a 
control parameter, none of them gives correct result. 
In some pressure range the system behaves as if equilibria (1) and (2) would be valid, whereas and 
in some other range as if equilibria (3) and (4)  prevail. 
One may find a number of similar phenomena, namely that the response of a multiple-equilibrium 
system cannot be rationalized by considering the expected response of the reactions selected to carry 
out the calculations. In particular: 

0 Unusual concentration distribution in complex equilibrium systems in solutions (ref. 16). 

Dilution of a solution increases the concentration of some of the species (ref. 10). 

0 Decrease of the concentration of a coordinatively saturated complex ( M L N )  with increasing 
concentration of the ligand (L)  (ref. 2) .  

0 Two exothermic reactions together behave as if they were endothermic (example given in this 

The increase of pressure decreases the amount of some substance i n  all reactions; their joint 

Precipitation by dilution (ref. 17). 

paper). 

effect is, however, just the opposite (example given in this paper). 

It may be stated that the behaviour of multiple-equilibrium systems is unpredictable. As far as 
.sensitivity coefficients of multiple equilibrium systems are concerned, we can calculate everything, 
but we do not understand anything. 

Response reactions 

In view of the above examples, the most important task is to identify the reactions responsible for 
the response of a multiple-equilibrium system when the control parameters are changed. Detailed 
mathematical analysis (ref. 1-9) of the Hessian matrices of the Gibbs functions, defined in terms of the 
amounts of species, in terms of the extents of reactions, in terms of mole fractions of the species, and the 
use of Binet-Cauchy formula (ref. 18) led us to the definition of response reactions. The response 
reactions have the remarkable property that all conceivable sensitivity coefficients are sums of terms 
uniquely associated with them. In other words - as far as their sensitivity is concerned - multiple- 
equilibrium systems behave as if their thermodynamic properties were simple linear conibinations of 
pertinent contributions coming from individual reactions. 
Instead of the complica,ted definition of response reactions, we present here an algorithm for their 
derivation from the stoichiometrically independent reactions. The algorithm reads as follows: 
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0 Choose m - 1 species which are missing from the given response reaction. 

0 Construct q - m + 1 identical m x ( m  - 1) matrices, containing the stoichionietric coefficients 
of the m - 1 missing species in  the m stoichiometrically independent reactions. 

0 As a last column, add to these matrices, one-by-one, the stoichiometric coefficients of the 
q - m + 1 remaining species. By this, ( q  - m + 1) distinct square matrices of order m are 
constructed. 

0 Calculate the determinants of these matrices. The resulting numbers are the stoichiometric 
coefficients of the species by which the respective m x ( m  - 1) matrices were supplemented. 

Repeat the above procedure for all possible choices of m - 1 species. The resulting (&) 

Carrying out the algorithm for the above example, we arrive at  the following set of response reactions 
(the missing species are denoted in brackets): 

reactions are the response reactions. 

1. (CH4) COz + H2 P CO + HzO A H g  = 34.77 kJ mole-' 
2. (HzO) CH4 + COz P 2CO + 2H2 A H g  = 260.16 kJ mole-' 
3. ( C O )  CH4 + 2H20  + C02 + 4Hz A H g  = 190.62 kJ mole-' 
4. (COz) CO + 3H2 P CH4 + HzO A H 9  = -225.39 kJ mole-' 
5. (Hz) 4CO + 2H20  P 3C02 + CH, A H 9  = -329.70 kJ inole-' 

It should be stressed again that for any thermodynamic calculation, any two of the five reactions 
are sufficient, the remaining three equilibria being redundant. If however, we want to interpret the 
behaviour of the system, then it is necessary to take into account all response reactions. Figure 3 
shows the distribution of the species i n  our example, together with the decomposition of driH20/i3T. 
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Figure 3. 

a. Distribution of the species as a function of pressure. 
b. Decomposition of dns,o/dT. 
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Comparison of the distribution of the species with the decomposition shows that CH4 is - practically 
- missing a t  low pressure. Therefore response reaction (1) is the dominant one, leading to positive 
dnH,o/dT. (Water is on the product side of an endothermic reaction.) Parallel with the formation 
of methane by increasing pressure, the role of response reactions (3)  and (4)  becomes more and more 
important. Both of them are acting in opposite direction. This leads to the decrease of the coefficient 
and in a narrow range causes the change of its sign. Finally at high pressure, where Hz is practically 
missing, response reaction ( 5 )  dominates, where the water is on the reactant side of an exothermic 
reactions. Therefore dncl,o/dT becomes positive again. Note that the response reaction (2)  has no 
effect as water does not participate in it. 
In a completely analogous way, it is easy to interpret the rather complicated change of n ~ , o  as a 
function of pressure (Figure 2 ) .  

In addition to providing a simple means for interpreting the sensitivity coefficients of multiple- 
equilibrium systems, the response reactions have the following noteworthy characteristics: 

They are defined by (m-1) “missing species”. 

Their number is always 

The number of linearly independent response reactions is equal to the number of SIRs (ref. 7 ) .  

Any starting set of SIRs results in the same set of response reactions (ref. 7 )  

e The coupling between response reactions appears in a natural, unambiguous manner and it 

The participating species may be “latent”, i.e., the above algorithm might yield zero stoichio- 

0 Phenomena - unusual at the first sight - which are in apparent contradiction with the Le 

disappears in the case of solution equilibria (ref. 9) .  

metric coefficient for those species which are not missing by definition. 

Chatelier principle may be explained. 
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Figure 4. 
Distribution of the saturated ML3 complex as a function of - I g [ L ]  i n  a metal ion ( M ) ,  ligand A ,  
ligand B system. Total concentrations: TM = 0.01; TA= 0.01 h‘I. Formation constants: / g b M &  = 

10.0, I g p M L 3  = 15.0, l g P M A L 2  =z 15.0. 

Figure 4 shows - for example - the distribution of a coordinatively saturated ML3 complex in a 
model system as a function of the concentration of the free ligand. The equilibria through which the 
change of [ L ]  may affect [ M L 3 ]  are also given. It is easy to realize that the second equilibrium shown 
in Figure 4 is responsible for the strange decrease of [ M & ]  in the intermediate concentration range. L 
and ML3 are found on the same side of the equilibrium. Therefore, i n  a range where this equilibrium 
dominates, the increase of [L]  must increase [ M L 3 ] .  The concept of response reactions has been also 
utilized to interpret unusual dilution effects (ref. 10). 
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G e o m e t r i c  r ep resen ta t ion  

In case of three-component systems, the composition of the participating species may be characterized 
on a usual triangle diagram, as it is illustrated in Figure 5 .  The thick solid lines on Figure 5 outline 
that 

range of composition - in terms of mole fractions of the three components - which may be composed 
from the given species. The dotted lines drawn between two species show the composition which may 
be achieved by mixing them. The  points of intersections correspond to chemical reactions between 
the four species involved. Every point of intersection determines a response reaction, the numbers 
at these points refer to the serial number of the response reaction in the previous example. This 
representation convincingly suggests that - as far as the response of the system is regarded ~ all the 
five reactions must have an effect on it, even if any two of them are sufficient for calculations. 
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Figure 5 .  
Geometric representation of the composition of the species and the response reactions (1  ) ~ ( 5 )  i n  a 

triangle diagram. 

Fundamen ta l  equa t ions  in terms of response  reactions 

As we have seen, in multipleequilibrium systems the extent of reaction is an ambiguous quantity. At 
the same time the affinities are defined as partial derivatives of the Gibbs function with respect to the 
extents of reactions. It has been proven (ref. 12) that in spite of the ambiguity of the extents, the 
respective partial derivatives are well defined, their numerical values are independent of the choice of 
SIRs. Consequently, the change of the Gibbs function (as well as of other thermodynamic potentials) 
may also be defined in terms of affinities (ref. 9), either in terms of SIRs or in terms of response 
reactions. In terms of response reactions it reads: 

6G = -S6T + V 6 P  + Cf”=, C,”=, L ( ~ , ~ ) T , P  Ai ( ~ A ~ ) T , P  

M = (myl) = number of response reactions 

where 

and 

~ ( i , j ) T p  = (m)T,p aZG = coupling coefficient. 
L ( i , j )  is a measure of the thermodynamic coupling between the i-th and the j - th  response reaction. 
It has been demonstrated (ref. 9). that L ( i , j )  disappears in solution equilibria whenever i # j . 
The extension of the concept to the fundamental equations of irreversible thermodynamics is also 
po~s ib le”~ .  The point is that the time derivative of affinity plays the role of flux. By this, the 
inadequacy of the standard approach, caused by different transformation rules for affinities (forces) 
and velocities (fluxes) is avoided. 
The results presented previously and briefly outlined here open a way to  build up a complete set of 
equations of chemical thermodynamics based on response reactions. The  main features of this new 
approach are the following: 
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0 It provides a stoichiometrically unique representation of the multiple-equilibrium syst,ems. 

0 The coupling between response reactions is defined unequivocally. 

All sensitivity coefficients and the relaxational part of the majority of first derivatives may be 

Its application to nonequilibrium thermodynamics is straightforward, without any additional 

Acknowledgement This work was supported by the National Science Foundation of Hungary 

decomposed into terms uniquely associated with response reactions. 

assumption or transformation. 

(OTKA, No. 4207). 

References 

1. 
2. 
3 .  
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
1 3 .  
14. 

15. 

16. 
l i .  
18. 

I. Fishtik, I. Nagypil and I. Gutman, J .  Chem. SOC. Faraday Trans. 90, 3245 (1994) 
I. Fishtik, I. Nagypil and I. Gutman, J. Chem. SOC. Faraday Trans. 91, 259 (1995) 
I. Fishtik, I. Nagypil and I. Gutman, J. Chem. SOC. Faraday Trans. 91, 1325 (1995) 
I. Fishtik, I. Nagypal and I. Gutman, J .  Chem. Phys. 103, 7545 (1995) 
I. Gutman, I. Fishtik and I. Nagypil, J .  Math. Chem. 16, 229 (1994) 
I. Gutman, I. Nagypal and I. Fishtik, J .  Math. Chem. 18, 73 (1995) 
I. Gutman and I. Nagypil, J. Math. Chem. 19, 193 (1996) 
I. Fishtik, I. Nagypil and I. Gutman, 2. Naturforsch. 51a, 1079 (1996) 
I. Fishtik, I. Gutman and I. Nagypil, J.Chem. SOC. Faraday Trans. 92, 3525 (1996) 
I. Fishtik, I. Nagypal and I. Gutman, ACH Models in Chemistry 133, 231 (1996) 
I. Fishtik, D. Geana, I. Gutman and I. Nagypil, J. Math. Chem. (in press) 
I. Gutman, I. Nagypil and I. Fishtik, J .  Serb. Chem. SOC. (in press) 
I. Fishtik, I. Gutman and I. Nagyp5.1, to be published. 
J .  W. Gibbs, The Scientific Papers of J .  Willard Gibbs. Vol. l . ,  Thermodynamics, New York, 
(1903) 
T. De Donder and P. Van Rysselberghe, Thermodynamic Theory of Affinity. University Press, 
Stanford, (1936) 
I.  Nagypil, M. T. Beck and A. Zuberbuhler, Talanta 30, 593 (1983) 
I. Nagypil and M.T. Beck, Talanta 29, 473 (1982) 
F. R.. Gantmaher, Theory of Matrices, Chelsea, New York, (1960). 

0 1998 IUPAC, Pure and Applied Chemistry70,583-590 




