New methods for the synthesis of transitionmetal fullerene complexes*

David M. Thompson, Jason McLeod, and Michael C. Baird[†]

Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada

Abstract: Buckminsterfullerene, C_{60} , is readily reduced on exposure to solutions of strongly reducing transition-metal carbonylate anions to give the radical anion fulleride C_{60}^- and the corresponding highly reactive, 17-electron neutral compounds. Three secondary reaction paths have been identified, depending on the nature of the reactants and the reaction conditions. (1) With Na⁺ and PPN⁺ salts of [Mn(CO)₅]⁻, thermal substitution of a CO on the metal radical by the C_{60}^- results in formation of the anionic, η^2 -fullerene complex [Mn(C_{60})(CO)₄]⁻. (2) With salts of [Co(CO)₄]⁻, the thermal reaction results in formation of a novel transition-metal fulleride NaCoC₆₀ while (3) with Na[CpFe(CO)₂] and [CpM(CO)₃]⁻ (M = Mo, W), the 17-electron intermediates couple to form the 18-electron dimers, [CpFe(CO)₂]₂ and [CpM(CO)₃]₂. In contrast, photochemical reactions of C_{60} with salts of [Mn(CO)₅]⁻, [Co(CO)₄]⁻, and [CpM(CO)₃]⁻ result in excellent yields of the complexes [Mn(C_{60})(CO)₄]⁻, [Co(C_{60})(CO)₃]⁻ and [CpM(C_{60})(CO)₂]⁻, respectively; analogous complexes of C_{70} may be made similarly. The new complexes have been characterized crystallographically, by IR, ¹³C NMR, and/or Raman spectroscopy and by electrospray mass spectrometry.

INTRODUCTION

Although C_{60} (**A**) forms many fulleride *salts* M_nC_{60} (M = Li, Na, K, Rb) by direct reaction with alkali metal vapors [1], very few simple transition-metal fullerides are known. Instead, the majority of C_{60} transition-metal complexes contain the neutral C_{60} coordinated in η^2 -fashion to a metal in complexes of the type (η^2 -ML_n, **B**) (Fig. 1) [2].

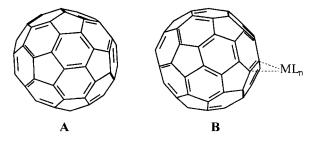


Fig. 1

†Corresponding author

^{*}Lecture presented at the XIXth International Conference on Organometallic Chemistry (XIX ICOMC), Shanghai, China, 23–28 July 2000. Other presentations are published in this issue, pp. 205–376.

A NEW ROUTE TO TRANSITION-METAL CARBONYL C₆₀ COMPOUNDS

General routes to transition-metal fullerides are desirable, as such materials could have very interesting properties arising from varying d electron configurations, nuclearities, etc. C_{60} has a high electron affinity (2.6–2.8 eV) and should readily oxidize carbonylate salts such as Na[Co(CO)₄] (eq. 1).

$$C_{60} + \text{Na}[\text{Co}(\text{CO})_4] \rightarrow \text{Na}C_{60} + \cdot \text{Co}(\text{CO})_4$$
(1)

The Co-containing product is a 17-electron, metal-centered radical which is known to be substitution labile, and one might anticipate that the C_{60}^- radical ion would substitute a CO to give a spin-paired complex $[\text{Co(CO)}_3(\eta^2\text{-}C_{60})]^-$. We have shown, however, that refluxing a tetrahydrofuran (THF) solution of Na $[\text{Co(CO)}_4]$ with a suspension of C_{60} for several hours results in the formation of black, insoluble Na $[\text{CoC}_{60}(\text{THF})_3]$ [3a]. One or more carbonyl containing intermediates with v(CO) at 1992, 1966, and 1920 cm⁻¹ were noted, but could not be identified at the time.

Rather different results were found with Na[Mn(CO)₅], which reacts with C_{60} in refluxing THF to give a green solution containing approximately 50% yields of [Mn(CO)₅]₂ and Na[Mn(CO)₄(η^2 -C₆₀)] [3b]. Although the similarity of the v(CO) [2025, ~2015 (sh), 1938, 1900 cm⁻¹] to those of η^5 -C₅H₅Mn(CO)₃ (2025, 1938 cm⁻¹) suggested that the new compound might be a neutral species, electrospray mass spectrometry (ES MS) showed that it is anionic (molecular ion at m/e 887 for ⁵⁵Mn), and the structure was confirmed crystallographically to be as shown (Fig. 2).

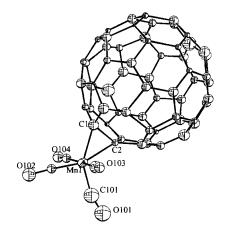


Fig. 2

The IR data suggest that the C_{60} in PPN[Mn(CO)₄(η^2 - C_{60})] is an excellent π -acceptor and, as a result, this new η^2 -fullerene complexes exhibits unusually high stability with respect to both air oxidation (solutions are stable in air for hours), C_{60} dissociation, and thermal substitution by phosphines.

The reaction of Na[Mn(CO)₅] with C_{60} probably proceeds as in Scheme 1. However, [Mn(CO)₅]₂ readily undergoes photolytic homolysis to Mn(CO)₅ radicals, and therefore a photochemical approach gives better yields (Scheme 2).

$$[Mn(CO)_{5}]_{2} (\sim 50\%)$$

$$2[Mn(CO)_{5}]^{-} + 2C_{60} \longrightarrow 2[Mn(CO)_{5}]^{0} + 2C_{60}^{-}$$

$$\downarrow \qquad \qquad \downarrow$$

$$[Mn(CO)_{4}(\eta^{2}-C_{60})]^{-} + CO (\sim 50\%)$$

Scheme 1

$$[Mn(CO)_{5}]_{2}$$

$$\uparrow \downarrow$$

$$2[Mn(CO)_{5}]^{-} + 2C_{60} \longrightarrow 2[Mn(CO)_{5}]^{0} + 2C_{60}^{-}$$

$$\downarrow \downarrow$$

$$[Mn(CO)_{4}(\eta^{2}-C_{60})]^{-} + CO (\sim 100\%)$$

Scheme 2

Anticipating that the photochemical route might generally give better yields, we returned to the cobalt system to find that the green complex $[\text{Co(CO)}_3(\eta^2\text{-}\text{C}_{60})]^-$ could indeed be prepared in high yield (by IR). Although this complex has not been isolated pure, it was identified by ES MS (molecular ion at e/m 863 for ⁵⁹Co) and IR spectroscopy (v(CO) at 1992 and 1920 cm⁻¹, compared with 1885 cm⁻¹ for Na[Co(CO)₄]). The v(CO) at 1992 and 1920 cm⁻¹ are identical to two of the v(CO) of intermediates formed when $[\text{Co(CO)}_4]^-$ was refluxed with C_{60} , and therefore $[\text{Co(CO)}_3\text{C}_{60}]^-$ is a precursor in the thermal synthesis of NaCoC₆₀(THF)₃. The intermediate is thus stable at room temperature.

Rather different results are obtained with the Group 6 cyclopentadienyl carbonylate anions $[CpM(CO)_3]^-$ (M = Mo, W), for which the thermal reactions in THF gave only the ultimate products of electron transfer, $[CpM(CO)_3]_2$. Under photolytic conditions, however, good yields (IR) of the complexes $[CpMo(CO)_2(\eta^2-C_{60})]^-$ were obtained as the PPN salts. The stoichiometries of these new complexes were established by ES MS (strongest molecular ions at e/m 939 and 1025, respectively, with appropriate isotope distributions), while the IR spectra exhibited v(CO) at 1900, 1818 cm⁻¹ (Mo) and 1894, 1809 cm⁻¹ (W). The analogous chemistry of $[CpFe(CO)_2]^-$ yielded only $[CpFe(CO)_2]_2$.

We find that the photochemical route also works very well with C_{70} , the complexes $[Mn(CO)_4(\eta^2-C_{70})]^-$, $[Co(CO)_3(\eta^2-C_{70})]^-$, $[CpMo(CO)_2(\eta^2-C_{70})]^-$, and $[CpW(CO)_2(\eta^2-C_{70})]^-$ all forming in high yields and being characterized by 1H NMR spectroscopy and by ES MS (molecular ions of $[Mn(CO)_4(\eta^2-C_{70})]^-$, $[Co(CO)_3(\eta^2-C_{70})]^-$, $[CpMo(CO)_2(\eta^2-C_{70})]^-$ and $[CpW(CO)_2(\eta^2-C_{70})]^-$ being observed at m/e 1007, 983, 1059 and 1145). Interestingly, the mass spectrum of the tungsten complex also exhibited a strong manifold of peaks clustered around m/e 725 with each pair separated by 0.5 units. Thus, the ion is to be identified as the doubly charged, ditungsten adduct $[\{CpW(CO)_2\}_2(\eta^2-C_{70})]^{2-}$. The IR spectra were all similar to those of the corresponding C_{60} complexes, although that of the tungsten system is quite complicated because of the presence of two species, one of which may exhibit geometrical isomerism.

ACKNOWLEDGMENTS

We thank the Natural Sciences and Engineering Council of Canada (Research Grant to M.C.B., Graduate Fellowship to D.M.T) for financial assistance.

REFERENCES

- 1. (a) M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund. *Science of Fullerenes and Carbon Nanotubes*, Academic Press, New York (1996); (b) M. J. Rosseinsky. *Chem. Mat.* **10**, 2665 (1998).
- (a) W. Sliwa. Transition Met. Chem. 21, 583 (1996); (b) H. H. Stephens and M. L. H. Green. Adv. Inorg. Chem. 44, 1 (1997); (c) L. Balch and M. M. Olmstead. Chem. Rev. 98, 2123 (1998).
- (a) D. K. Patel, D. M. Thompson, M. C. Baird, L. K. Thompson, K. F. Preston. *J. Organomet. Chem.* 546, 607 (1997); (b) M. Bengough, D. M. Thompson, M. C. Baird. *Organometallics* 18, 2950 (1999).