Errata:

Spontaneous fission half-lives for ground-state nuclides. IUPAC Technical Report (N. E. Holden and D. C. Hoffman). *Pure Appl. Chem.* **72**, 1525–1562 (2000).

As originally published, the following tables contained errors:

Reference	As Reported	
Author (Year)	$t_{1/2} / \mu s$	Comments
Hulet ¹⁴² (1971)	380. ± 60.	Fission tracks in mica; 3 standard deviation
Hulet ¹⁴³ (1986)	$360. \pm 20.$	Time correlation meas.; 1 standard deviation
Recommended value	$t_{1/2} = 0.37 \pm 0.02 \text{ ms}$	Weighted average

Table LX Spontaneous f	fission half-life of ²⁵⁸ Fm.	
------------------------	---	--

Table XCIV Spontaneous fission half-life of ²⁵³Rf.

Reference Author (Year)	As Reported $t_{1/2}$ / μ s	Comments	
Flerov ¹⁷⁵ (1976)	$\approx 3.6 \times 10^6$	$\lambda_{\rm f} / \lambda_{\rm tot} \approx 0.50$	
Hessberger ¹⁷⁶ (1997)	48. (+ 17. / – 10.)	$\lambda_{\rm f} / \lambda_{\rm tot} \approx 1.0$	
Recommended value	$t_{1/2} \approx 48. \ \mu s$	Selected value	

Table XCV Spontaneous fission half-life of ²⁵⁴Rf.

Reference Author (Year)	As Reported $t_{1/2}$ / μ s	Comments
Oganessian ¹⁷⁷ (1975)	< 3000.	Production not detected
Ter-Akopyan ¹²⁷ (1975)	500. ± 200.	$\lambda_{\rm f} / \lambda_{\alpha} > 8.$
Hessberger ¹⁷⁶ (1997)	23. ± 3.	$\lambda_{\rm f} / \lambda_{\rm tot} > 0.985$
Recommended value	$t_{1/2} = 23. \pm 3. \ \mu s$	Selected value

uncertainties.
and
half-lives
total
and
fission
spontaneous
Recommended
IVX
CX
Table

Nuclide	$\mathrm{SF}t_{1/2}(\mathrm{a})$	Tot $t_{1/2}(a)$	Nuclide	SF $t_{1/2}(a)$	Tot $t_{1/2}(a)$	Nuclide	SF $t_{1/2}(a)$	Tot $t_{1/2}(a)$
208 Pb	$\geq 2 \times 10^{19}$		230 Th	$> 2. \times 10^{18}$	$7.54(10)^4$	232 Th	$(1.2 \pm 0.4) \times 10^{21}$	$1.4(10)^{10}$
231 Pa	$> 2. \times 10^{17}$	$3.25(10)^4$	Ω^{230}	$> 4. \times 10^{10}$	20.8 d	U^{232}	$> 6.8 \times 10^{15}$	68.9
233 U	$> 2.7 \times 10^{17}$	$1.59(10)^{5}$	234 U	$(1.5 \pm 0.2) \times 10^{16}$	$2.45(10)^{5}$	235 U	$(1.0 \pm 0.3) \times 10^{19}$	$7.04(10)^{8}$
Ω^{236} U	$(2.5 \pm 0.1) \times 10^{16}$	$2.34(10)^7$	$\mathrm{U}^{238}\mathrm{U}$	$(8.2 \pm 0.1) \times 10^{15}$	$4.46(10)^{9}$	^{237}Np	$> 1. \times 10^{18}$	$2.14(10)^{6}$
236 Pu	$(1.5 \pm 0.3) \times 10^9$	2.87	238 Pu	$(4.75 \pm 0.09) \times 10^{10}$	87.74	^{239}Pu	$(8. \pm 2.) \times 10^{15}$	$2.411(10)^4$
240 Pu	$(1.14 \pm 0.01) \times 10^{11}$	6537.	241 Pu	$< 6. \times 10^{16}$	14.4	242 Pu	$(6.77 \pm 0.07) \times 10^{10}$	$3.75(10)^5$
244 Pu	$(6.6 \pm 0.2) \times 10^{10}$	$8.00(10)^{7}$	241 Am	$(1.2 \pm 0.3) \times 10^{14}$	432.7	^{242m}Am	$> 3. \times 10^{12}$	141.
243 Am	$(2.0 \pm 0.5) \times 10^{14}$	$7.37(10)^{3}$	240 Cm	$(1.9 \pm 0.4) \times 10^{6}$	27. d	242 Cm	$(7.0 \pm 0.2) \times 10^{6}$	162.8 d
243 Cm	$(5.5 \pm 0.9) \times 10^{11}$	29.1	244 Cm	$(1.32 \pm 0.02) \times 10^7$	18.1	245 Cm	$(1.4 \pm 0.2) \times 10^{12}$	$8.48(10)^3$
246 Cm	$(1.81 \pm 0.02) \times 10^7$	$4.76(10)^{3}$	248 Cm	$(4.15 \pm 0.03) \times 10^6$	$3.48(10)^{3}$	250 Cm	$(1.13 \pm 0.05) \times 10^4$	$\approx 9.7(10)^{3}$
^{249}Bk	$(1.8 \pm 0.1) \times 10^9$	320 d	237 Cf	≈ 21 s	$2.1 \mathrm{s}$	238 Cf	$21 \pm 2 \text{ ms}$	21 ms
240 Cf	$\approx 53 \text{ min}$	1.1 min	242 Cf	≥ 17. d	3.5 min	246 Cf	$(1.8 \pm 0.6) \times 10^3$	1.49 d
248 Cf	$(3.2 \pm 0.3) \times 10^4$	334 d	249 Cf	$(8. \pm 1.) \times 10^{10}$	351.	250 Cf	$(1.7 \pm 0.1) \times 10^4$	13.1
²⁵² Cf	86. ± 1.	2.65	254 Cf	b 0.0 ± 0.0 d	60.5 d	256 Cf	$12. \pm 1. \min$	12 min
^{253}Es	$(6.3 \pm 0.2) \times 10^{5}$	20.47 d	^{254}Es	$> 2.5 \times 10^{7}$	276. d	$^{254\mathrm{m}}\mathrm{Es}$	> 10.	1.64 d
^{255}Es	$(2.6 \pm 0.1) \times 10^3$	40. d	242 Fm	$0.8 \pm 0.2 \text{ ms}$	0.8 ms	$^{243}\mathrm{Fm}$	≥ 50. s	0.2 s
$^{244}\mathrm{Fm}$	$3.3 \pm 0.5 \text{ ms}$	$3.7 \mathrm{ms}$	$^{245}\mathrm{Fm}$	> 1.1 h	4. s	$^{246}\mathrm{Fm}$	8 ± 3 s	1.2 s
$^{248}\mathrm{Fm}$	$10 \pm 5 h$	36. s	$^{250}\mathrm{Fm}$	0.8 ± 0.2	30 min	$^{250\mathrm{m}}\mathrm{Fm}$	≥ 0.07	1.8 s
252 Fm	125 ± 8	1.058 d	$^{254}\mathrm{Fm}$	228 ± 1 d	$3.240 \mathrm{h}$	$^{255}\mathrm{Fm}$	$(1.0 \pm 0.6) \times 10^4$	20.1 h
$^{256}\mathrm{Fm}$	$2.9 \pm 0.1 \text{ h}$	2.63 h	257 Fm	131. ± 3.	100.5 d	258 Fm	$0.37 \pm 0.02 \text{ ms}$	0.37 ms
259 Fm	$1.5 \pm 0.2 \text{ s}$	1.5 s	$^{260}\mathrm{Fm}$	$\approx 4 \text{ ms}$	≈ 4. ms	²⁴⁵ Md	$0.9 \pm 0.3 \text{ ms}$	0.9 ms
247 Md	$\approx 0.2 \text{ s}$	1.1 s	²⁴⁸ Md	≥ 3.9 h	7. s	²⁵⁵ Md	≥ 12.5 d	27. min
²⁵⁶ Md	> 1.9 d	1.30 h	257 Md	≥ 23. d	5.5 h	²⁵⁸ Md	$\ge 4.7 \times 10^3$	51.5 d
^{258m} Md	≥ 190 min	57. min	²⁵⁹ Md	$< 1.62 \pm 0.06 h$	1.6 h	260 Md	27.8-38.1 d	27.8 d
^{250}No	$0.25 \pm 0.05 \text{ ms}$	0.25 ms	^{251}No	≥ 10. s	0.8 s	^{252}No	9. ± 1. s	2.3 s
254 No	8. ± 2. h	55. s	^{254m}No	≥ 2.3 min	$0.28 \mathrm{s}$	^{256}No	9. ± 1. min	2.9 s
257 No	> 28. min	25. s	258 No	$1.2 \pm 0.2 \text{ ms}$	≈1.2 ms	259 No	> 10. h	58. min
260 No	106. ± 8. ms	106. ms	262 No	≈ 5. ms	≈ 8. ms	252 Lr	≥ 100. s	1. s
^{253}Lr	≥ 2.2 min	1.3 s	^{254}Lr	≥ 3.6 h	13. s	^{255}Lr	≥ 6. h	22. s
^{256}Lr	≥ 1. d	28. s	257 Lr	≥ 0.55 h	0.65 s	^{258}Lr	<i>></i> 78. s	3.9 s
^{259}Lr	31. ± 4. s	$6.1 \mathrm{s}$	261 Lr	39 ± 12 min	40. min	262 Lr	> 1.5 d	3.6 h
253 Rf	≈ 48.µs	≈ 48 µs	254 Rf	23. ± 3. μs	23. µs	255 Rf	$2.9 \pm 0.4 \text{ s}$	1.7 s
256 Rf	$6.2 \pm 0.2 \text{ ms}$	6.2 ms	257 Rf	> 5.6 min	$4.7 \mathrm{s}$	258 Rf	14. ± 2. ms	12. ms
								Table continued on next page

© 2001 IUPAC, Pure and Applied Chemistry 73, 1225–1227

N. E. HOLDEN AND D. C. HOFFMAN

Table C	XXVI continued							
Nuclide	SF $t_{1/2}(a)$	Tot $t_{1/2}(a)$	Nuclide	SF $t_{1,2}(a)$	Tot $t_{1/2}(a)$	Nuclide	SF $t_{1/2}(a)$	Tot $t_{1/2}(a)$
²⁵⁹ Rf	$0.7 \pm 0.4 \text{ min}$	3.4 s	²⁶⁰ Rf	20. ± 1. ms	20. ms	²⁶¹ Rf	≥ 11. min	1.1 min
262 Rf	$2.1 \pm 0.2 \text{ s}$	$2.1 \mathrm{s}$	255 Db	≈8 s	≈1.5 s	256 Db	≥ 6.5 s	2.6 s
257 Db	8. ± 6. s	1.5 s	258 Db	≥ 13 s	$4.2 \mathrm{s}$	260 Db	16. ± 2. s	1.5 s
261 Db	> 10. s	1.8 s	262 Db	≥ 1.7 min	34. s	263 Db	$0.8 \pm 0.2 \text{ min}$	0.45 min
^{258}Sg	$\approx 2.9 \text{ ms}$	$\approx 2.9 \text{ ms}$	^{259}Sg	> 2.4 s	0.5 s	260 Sg	7. ± 4. ms	4. ms
261 Sg	> 2.6 s	0.26 s	263 Sg	> 2.7 s	0.8 s	265 Sg	≥ 13. s	7.4 s
266 Sg	≥ 11. s	≈ 21. s	^{261}Bh	> 0.12 s	12. ms	262 Bh	> 0.9 s	102. ms
^{262m}Bh	> 0.07 s	8. ms	264 Hs	$\approx 2. \text{ ms}$	$\approx 1. \text{ ms}$	265 Hs	> 4.8 ms	1.6 ms
267 Hs	$\geq 0.1 \text{ s}$	19. ms	266 Mt	> 5.3 ms	1.7 ms			

Spontaneous fission half-lives for ground-state nuclides. Errata

© 2001 IUPAC, Pure and Applied Chemistry 73, 1225–1227