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Abstract: α-Carbonyl radicals generated from the corresponding α-iodo
ketones or enones underwent cyclization onto the tethered
trimethylsilylacetylenic side chain to afford the bicyclic vinylsilane ketone or
enones.  The radicals generated from γ-bromo vinylogous derivatives cyclize
preferentially at the γ-position.  Based on the α-carbonyl radical cyclization
methodology, enantioselective total synthesis of (-)-dendrobine is
accomplished.

Radical reactions have emerged as one of the most useful synthetic methodologies in the
formation of carbon-carbon bonds.  Especially, the intramolecular  radical cyclization has been
extensively used in the synthesis of spiro and fused carbo- and heterocyclic structures1.  We have
developed three methodologies involving radical cyclization of α-iodo ketones, α-iodo enones
and γ-bromo enones for the synthesis of bicyclic ketones and enones.2,3

According to our method, α-carbonyl radicals were generated with tributyltin hydride
from the corresponding α-iodo ketones2a and α-iodo enones.2b  The tethered acetylenic side chain
in 3 was introduced by 1,4-addition to cycloalkenone 1.  Thus, CuI-mediated conjugate addition
of Grignard reagent 2 to 1 followed by trapping of the resultant enolate with chlorotrimethylsilane
gave trimethylsilyl enol ether 3.  Iodination of 3 with sodium iodide and m-chloroperoxybenzoic
acid afforded α-iodo ketone 4. Treatment of 4 with tributyltin hydride and AIBN on slow addition
gave bicyclic vinylsilane ketone 5, Scheme 1.
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α-Iodo enones were prepared by literature methods.4,5  Treatment of 6a with tributyltin
hydride and AIBN on rapid addition afforded cyclized product 7a.  t-Boc protected vinylogous
amide 6b under similar radical conditions furnished 7b, Scheme 2.
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As an extension of this work, 4-bromo vinylgous esters, amides and enones were
subjected to similar radical cyclization conditions.3  The regiochemistry of the cyclization
(pathway a or b) of the allylic radicals 9 was investigated, Scheme 3.  The required starting
materials 8 were prepared by literature methods.6  We found that radicals 9 generated from these
γ-bromo enones underwent cyclization preferentially at the γ position. Only in entry 5 when the γ-
position is sterically hindered, the allylic radical cyclizes both at α and γ position. The results are
summarized in Table 1.
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  aThe reaction was carried out in refluxing toluene.   bThe unstable crude cyclization product was treated with I2 and 
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to give pyrrolo compound, which was isolated by flash column chromatography (florisil, 6:1, 
hexane-ethyl acetate).   cThe reaction was carried out in refluxing xylene.   dThe geometry of vinylsilane group in  24  was assigned 
tentatively as E.
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Table 1.  Radical Cyclization of 4-Bromo Vinylogous-Amides, Vinylogous-Esters and Enones
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To understand the unusual regioselectivity we performed PM3 calculations on model
radical systems 27 and 28.  Spin densities at the α and γ positions expressed as the square of
atomic orbital coefficients in SOMO are 0.34 and 0.49 for 27 and 0.33 and 0.53 for  28.  For the
reaction under kinetic control, these coefficients are in accordance with the experimental
observation.  Whereas the HOMO electron densities of the corresponding anionic species 29 at
the α and γ position are 0.47 and 0.32 which are opposite to that of radical species.  We have also
calculated the relative stability of the intermediates 30 and  31 which were formed via the α or γ
cyclization, Scheme 4. We found that 30 is 4.5 kcal mol-1 more stable than 31.

After successful development of these radical cyclization reactions, we exploited α-
carbonyl cyclization methodology for the enantioselective total synthesis of (-)-dendrobine (51).7

Thus, (s)-carvotanacetone (32) was treated sequentially with methylmagnesium chloride, ferric
chloride and chlorotrimethylsilane and then a mixture of trimethyl orthoformate and boron
trifluoride etherate to give acetal 33(55%).8  Reaction of 33 with lithium diisopropylamide (LDA)
and chlorotrimethylsilane generated the corresponding trimethylsilyl enol ether which without
purification was reacted with m-chloroperoxybenzoic acid (m-CPBA) to give siloxy enone
34(71%).  Cyclization of 34 in presence of p-toluenesulfonic acid afforded bicyclic acetal enones
35(14%) and 36(79%).  Compound 35 was separated and isomerized to required enone 36 using
p-toluenesulfonic acid (55% yield with 25% 35 recovered), Scheme 5.  CuI-mediated conjugate
addition of Grignard reagent 37 from the less hindered β-face of 36 followed by trapping of the
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resultant enolate with chlorotrimethylsilane furnished 38.  Reaction of crude 38 with an iodination
reagent, generated by mixing sodium iodide and m-chloroperoxybenzoic acid in THF, gave α-
iodo ketone 39(82% from 36).  Intramolecular radical cyclization of 39 with tributyltin hydride
and AIBN yielded the tricyclic ketone 40 (69%, E:Z = 1:9) as a viscous liquid with a minor
amount of uncyclized product (25%).  The TMS group in 40 was removed by trifluoroacetic acid
to afford acetal 41(84%), Scheme 6.
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Oxidation of the acetal 41 with m-chloroperoxybenzoic acid and  BF3
.OEt2 gave peroxy

compound 42.9  Treatment of 42 with DBU furnished lactone 43(62% from 41).  Stereoselective
hydroboration of 43 with basic H2O2 workup gave diol 46(60%) via intermediates 44 and 45.
Conversion of the diol 46 into azido alcohol 48(80%) followed by Jones oxidation afforded the
azido ketone 49(94%).  Treatment of 49 with PPh3 followed by reduction of the resulting imine
moiety by sodium cyanoborohydride afforded amine 50.  Finally, methylation of the crude amine
with paraformaldehyde and formic acid furnished enantiomerically pure (-)-dendrobine 51(42%
from 49), Scheme 7.
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In conclusion, we have developed efficient radical cyclization reactions of α-iodo ketones,
α-iodo enones and γ-bromo enones.  Utilizing this methodology  an enantioselective total
synthesis of (-)-dendrobine (51) is accomplished.  Recently the methodology has been extended
for the total synthesis  (-)-5-oxosilphiperfol-6-ene (52) and paniculatine (53) and the results will
be published in due course.
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